EP0946868B1 - Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne - Google Patents

Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne Download PDF

Info

Publication number
EP0946868B1
EP0946868B1 EP97951321A EP97951321A EP0946868B1 EP 0946868 B1 EP0946868 B1 EP 0946868B1 EP 97951321 A EP97951321 A EP 97951321A EP 97951321 A EP97951321 A EP 97951321A EP 0946868 B1 EP0946868 B1 EP 0946868B1
Authority
EP
European Patent Office
Prior art keywords
probe
engine
voltage value
oxygen probe
richness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97951321A
Other languages
German (de)
English (en)
Other versions
EP0946868A1 (fr
Inventor
Vasco Afonso
Frédéric Aimard
Sabrina Soussan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0946868A1 publication Critical patent/EP0946868A1/fr
Application granted granted Critical
Publication of EP0946868B1 publication Critical patent/EP0946868B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • F02D41/1476Biasing of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system

Definitions

  • the present invention relates to a method electrical diagnostic of an oxygen sensor of lambda type mounted on the exhaust line of a internal combustion engine.
  • the present invention relates more particularly to the diagnosis of lambda probe fitted to the exhaust line internal combustion engine powered with fuel mixtures of suitable wealth and especially with poor mixtures.
  • Internal combustion engines are conventionally equipped with an electronic command that adjusts, from strategies preprogrammed and according to the conditions of engine operation, amount of fuel injected and the instant of ignition for engines with controlled ignition.
  • Some engines are powered today with a fuel mixture whose richness is adapted to engine operating conditions and which are notably supplied with a lean mixture (lean burn) during the operating phases in partial load.
  • the oxygen sensors arranged on the line engine exhaust. These sensors have function of informing the electronic system of control over the actual oxygen concentration in the exhaust gases.
  • diagnostic means are to cause, when an element fails acting on the level of engine pollution, i.e. activation of degraded operating modes and / or the lighting of an indicator on the dashboard warning the driver (regulations little severe), i.e. the implementation of measures corrective, or even stopping the vehicle (strict regulations).
  • OEMs and builders automobiles have therefore developed a number of technical devices for diagnosing the malfunctions of the sensors fitted to the engines in general and oxygen sensors in particular.
  • this process is not of general application because it does not allow diagnose the electrical connection of a probe to oxygen type lambda, which indicates only one state rich or poor compared to stoichiometry (or richness 1), when such a probe is positioned downstream of a catalytic converter of treatment accelerating reactions in particular oxidation of exhaust gases.
  • Such downstream positioning of an oxygen sensor is used to control the operation of the catalytic converter or for operate a so-called "double loop" regulation when engine operating conditions require to operate with a mixture stoichiometric, such as idle, etc.
  • oxidation catalytic converter intended to accelerate oxidation reactions
  • oxidation catalytic converter (being understood that such a pot is not limited to the single accelerating oxidation reactions and that it can also accelerate reduction reactions as in the case of three-way pots (called selective or trifunctional) to one or more beds), have a relatively oxygen content stable due to chemical conversions, so that the signal from a lambda oxygen sensor arranged downstream of this pot does not switch between values voltage extremes corresponding to "rich" states or “poor” only over relatively long periods long, the simple observation of non-tilting of the probe on either side of the voltage of polarization therefore does not allow to diagnose the state of the electrical connection.
  • the object of the invention is therefore to remedy to the disadvantages of the prior art by proposing an electrical diagnostic process according to claim 1.
  • measuring the voltage level of the signal from the oxygen sensor in the predetermined operating conditions of the engine is only observed after a period of adapted timing.
  • FIG. 1 we see a internal combustion engine in particular intended to equip a motor vehicle.
  • This engine is a four-stroke multi-cylinder engine, of the type direct injection and controlled ignition operating according to several wealth values and especially in a poor mixture.
  • the present invention is not limited to an engine with direct injection and can also be applied to an indirect injection engine provided that last works according to several values of richness and in particular in poor mixture.
  • the illustrated motor conventionally comprises an air intake circuit 3 provided with a flap 4 of butterfly type to adjust the quantity intake air and an idle bypass circuit cooperating with a control valve 5.
  • Fuel injection takes place directly in each combustion chamber 12 thanks to a electro-injector 2 housed in the cylinder head of the engine and opening into the roof of bedroom 12.
  • a spark plug ignition system 6 ensures initiation of combustion of the fuel mixture previously compressed in the cylinders of the engine.
  • the burnt gases are released to the atmosphere through an exhaust line 10 fitted with a catalytic converter 13 intended in particular to treat with oxidation polluting gases and more particularly unburnt HC and carbon monoxide CO and, from a catalytic converter 19 of treatment of polluting gases and more particularly nitrogen oxides NOx by reduction.
  • the catalytic converter 19 also called NOx trap has more particularly the function of store the nitrogen oxides produced, especially during lean mixture operating phases and to regularly operate their catalytic conversion in the presence of hydrocarbon during phases of rich mixture operation.
  • each electro-injector 2 as well as the advance when the candles are ignited 6 or still opening the control valve idle 5 are directly controlled by a electronic control system or computer injection 7.
  • injection computer 7 are memorized formulas and parameters fundamental for optimal engine tuning, these parameters being obtained before the bench engine test. These are in particular the parameters concerning the injection start time or phase fuel injection time, the opening time of injectors 2 which corresponds to an amount of fuel injected and therefore a wealth of fuel mixture filling the chambers with combustion 12, or even the ignition phase candles 6, etc.
  • the injection computer 7 consists of basically a microprocessor or unit central CPU, RAM, memory dead ROMs, analog-to-digital converters A / D, and different input interfaces and outings.
  • the computer microprocessor 7 has electronic circuits and appropriate software to handle signals from different sensors adapted, deduce the states of the engine and set implement predefined operations in order to generate the appropriate control signals for destination in particular of injectors and coils ignition.
  • the opening time Ti of the injectors determining the dosage of the quantity of fuel injected and the richness of the fuel mixture filling each combustion chamber 12 is adapted according to the operating conditions of the motor, for example from values predefined stored as maps pressure / speed in the device memories engine control electronics 7. Values theoretical of the duration of injections read are then modulated by corrective parameters depending in particular on the air temperature, the water temperature, battery voltage, accelerations, clicking, etc., as well as by the output signal from the oxygen probes 14 and 15.
  • Oxygen sensors 14 and 15 are connected via a connecting wire at a specific input / output stage of the injection computer 7.
  • the second probe 15 disposed downstream of the pot catalytic 13 is a nonlinear type probe or lambda, set to the corresponding wealth 1 to the stoichiometric ratio.
  • Probe 15 is shown in Figure 1 also downstream of the pot 19 but this is not limitative of the invention and it is perfectly possible to arrange the probe 15 upstream of the pot 19, this position upstream of the pot 19 being preferable in particular for operating a rapid diagnosis during rich operation in particular to purge the pot 19.
  • Such a lambda 15 probe has several utilities, it is used to measure the performance of catalytic converter 13 as well as to adapt the report air / fuel supplied by the first loop during richness 1 operating phases, in changing for example its operating point or the transfer function used to to alleviate in particular the aging of the probe upstream 14 or even to operate the regulation in real time fuel / air ratio.
  • Such a probe 15 is conventionally formed by a ceramic body (such as dioxide zirconium) part of which is in the flux exhaust and the other is connected to air atmospheric, both sides of the body coated with permeable platinum electrodes gas.
  • the electrodes of the lambda 15 probe powered by a suitable electric current called bias, supply voltage in return characteristic of the richness of the fuel mixture.
  • the voltage between the terminals of the electrodes happens to be modified significantly on either side of the bias voltage corresponding to wealth 1, by the differences of oxygen concentration between the two sides of the probe, due to the special properties of the materials used. Monitoring this tension therefore makes it possible to determine the evolution of the richness of gases compared to stoichiometry.
  • stage 17 input / output of the injection computer 7 dedicated to the lambda probe 15.
  • This stage 17 intended to supply a current of adapted polarization includes a circuit electronic including two resistors in series R1 and R2 at the terminals of which a tension goes substantially constant.
  • the lambda 15 sensor is connected to this circuit through its wire link 16 in parallel with resistor R1.
  • the voltage Vs which is read across the resistor R1 by a resistive circuit R3 and capacitive C1 which is connected to a converter analog / digital not shown, is the voltage of output Vs of the lambda probe 15.
  • the choice of the different components of the interface 17 electronic circuit and in particular resistors R1 and R2 are adapted so that the output voltage fluctuates for example between "low” states of approximately 100 mV and “high” states of approximately 700 mV, for respectively "poor” wealth or "rich” of the fuel mixture, that is to say when the exhaust gas content is respectively below or above the setpoint of the richness, the bias voltage substantially corresponding to the output voltage when the richness of the fuel mixture is at the setpoint being approximately 400 mV.
  • the sensitivity of sensor 15 is adapted so that any variation in wealth around value setpoint causes the voltage to switch over output to its upper limit values or bass.
  • the process diagnostic of the connecting wire 16 between the injection computer and downstream lambda probe 15 implementation of the injection computer 7 is then the next one.
  • a short circuit of the connecting wire 16 to the ground is identified by a Vs probe output voltage lower than an adapted threshold value Vccm such than for example 50 mV.
  • Vccm an adapted threshold value
  • the comparison between Vs and Vccm is therefore operated at regular intervals during engine operation and condition link 16 is considered satisfactory if the voltage of output Vs is greater than Vccm, on the other hand if Vs becomes less than Vccm then probe 15 is declared as a short circuit to ground and adapted strategies such as operating in degraded mode or the emission of a signal alert intended to warn the driver by in particular through an indicator light or again storing a diagnostic code correspondent in order to orient the convenience store to the defective item, are triggered by the injection computer 7.
  • a short circuit of the connecting wire 16 to the battery voltage is identified by a voltage of probe output Vs greater than a second value of adapted threshold Vccb such as for example 1.5 V.
  • Vccb adapted threshold
  • the comparison between Vs and Vccb is therefore made at regular intervals while the engine and condition of link 16 is judged satisfactory if the output voltage Vs is lower Vccb, on the other hand if Vs becomes greater than Vccb then probe 15 is declared in battery short circuit and appropriate strategies of the aforementioned type are then triggered by the injection computer 7.
  • the strategy implemented consists of wait for the occurrence of predetermined operation of motor 1 which involves switching the output voltage Vs the lambda 15 probe to a low value (or high) and to observe if indeed we have such a value.
  • the first step of the process therefore consists to follow engine operating conditions and to identify the occurrence of a phase predetermined engine 1 operation during which the richness of the fuel mixture remains different from stoichiometry for a period sufficient such that the operating phases under partial load during which the engine is supplied with a lean mixture (richness 0.7).
  • Partial loads during which fuel injection is depleted are characterized by maintaining the pedal throttle in an intermediate position between the raised foot and full foot position (information provided by a position sensor linked to the accelerator pedal or the throttle valve gas) and on the other hand, by a rotation regime of the motor between threshold values predetermined.
  • the strategy of diagnosis then consists in comparing with each phase operating in lean mixture (or according to all other periodicity, for example the first phase of lean operation of each cycle of motor operation) the output voltage Vs of probe 15 (which must then be at its level low 100 mV characteristic of a fuel mixture poor) at a third threshold value Vco such than for example 200 mV.
  • the oxidation catalytic converters generally used have for first function complete the combustion of the fuel mixture which is only incomplete inside the engine. he it is then a question of regrouping on sites catalytics of oxidizing molecules and reducing molecules present in gases exhaust so that they combine to produce water and carbon dioxide. These sites are formed on a monolith which is a porous structure with a large area of contact with the exhaust gases passing through the pot, and which is coated with various substances chemicals with catalytic properties.
  • This function overcomes the incomplete combustion inside the cylinders of the engine but does not eliminate the polluting substances only when the mixture initial fuel is a stoichiometric mixture.
  • the catalytic converters have also the ability to "store" atoms oxygen by oxidation of chemicals present in the catalyst, such as cerium.
  • the catalytic converter therefore has the function not only to promote chemical reactions between substances contained in gases exhaust, but it also has the function to be a buffer stock of oxygen molecules which regulates the composition of the gases emitted in the atmosphere at the exit of the pot.
  • the adapted delay period T is therefore determined according to the conditions of engine operation and in particular the evolution operating speed, engine displacement and the oxygen adsorption capacity of the pot catalytic used, so the air mass exhausted after this period exceeds the oxygen adsorption capacity of the pot catalytic and therefore that the gases leaving the pot catalytic 13 are poor.
  • the conditions for implementing the process diagnostic of the open circuit are therefore twofold, namely the operation of the engine 1 in mixture poor and maintaining such functioning beyond of a given duration necessary for saturation in air from the catalytic converter 13.
  • the injection computer 7 then performs the comparison of the voltage of output Vs of probe 15 at the threshold value Vco.
  • This effective control of the link state 16 is operated as far as possible at least once during each engine operation.
  • the diagnostic method according to the invention is implemented during the phases of rich mixture operation (richness included between 1.1 and 1.7) required for treatment NOx nitrogen oxides catalytic.
  • the pot 19 only stores the nitrogen oxides during the operating phases in poor mixture.
  • the catalytic conversion of nitrogen oxides requires a reducing medium, this which is the case of hydrocarbons. It is therefore necessary to operate regularly, before the storage sites are not saturated, phases of destocking with a rich fuel mixture adapted.
  • the transient phases of stock purging nitrogen oxides in a rich mixture therefore constitute engine operating phases during which the richness of the fuel mixture remains clearly distinct from wealth 1 corresponding to stoichiometry and therefore during which it is possible to observe or not the tilting of the probe 15 output voltage. phases, the diagnostic process is substantially identical to that described for lean mixture operating phases, if this it is only necessary to plan a period T 'adapted and reverse the comparison since the probe 15 should if everything works well, switch towards its high threshold and not towards its low threshold.
  • This required time period T ' to operate the diagnosis is determined so as to ensure that the catalytic converter 13 a, at this deadline, completely emptied of its buffer stock of oxygen molecules and therefore gases exhaust at the outlet of the pot are rich in hydrocarbons and normally involve, if any works properly, the tilting of the probe output voltage at its rich level.
  • Vco ' for example 600 mV
  • the engine may not be equipped with the catalytic converter 19 intended for the treatment of oxides of nitrogen.
  • the electronic system of order can order the amount of gasoline injected regardless of the probe signal at upstream oxygen 14, using other criteria of regulation that the richness of the fuel mixture as for example the stability of combustions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

La présente invention concerne un procédé de diagnostic électrique d'une sonde à oxygène de type lambda montée sur la ligne d'échappement d'un moteur à combustion interne. La présente invention concerne plus particulièrement le diagnostic d'une sonde lambda équipant la ligne d'échappement d'un moteur à combustion interne alimenté avec des mélanges carburés de richesses adaptées et notamment avec des mélanges pauvres.
Les moteurs à combustion interne sont classiquement équipés d'un système électronique de commande qui ajuste, à partir de stratégies préprogrammées et suivant les conditions de fonctionnement du moteur, la quantité de carburant injecté et l'instant d'allumage pour les moteurs à allumage commandé.
Certains moteurs sont alimentés aujourd'hui avec un mélange carburé dont la richesse est adaptée aux conditions de fonctionnement du moteur et qui sont notamment alimentés en mélange pauvre (lean burn) lors des phases de fonctionnement en charge partielle.
Parmi les capteurs utilisés par les systèmes électroniques de commande de ces moteurs pour déterminer les conditions de fonctionnement et adapter en conséquence la richesse du mélange carburé, figurent plus particulièrement le ou les capteurs à oxygène disposés sur la ligne d'échappement du moteur. Ces capteurs ont pour fonction d'informer le système électronique de commande sur la concentration réelle en oxygène dans les gaz d'échappement.
Dans le cadre des futures réglementations antipollution telles que la norme OBD2 (On Board Diagnostic Level 2), il est prévu que les systèmes électroniques des moteurs qui équipent les véhicules automobiles ou routiers soient amenés à diagnostiquer et/ou corriger automatiquement certaines défaillances qui ont un impact direct sur les émissions de polluants.
C'est ainsi qu'il est prévu d'implanter dans les systèmes électroniques de commande des moteurs, des moyens de diagnostic des éventuels dysfonctionnements des capteurs qui participent à la commande du moteur et plus particulièrement des capteurs à oxygène.
Ces moyens de diagnostic ont pour objet de provoquer, lorsqu'il y a défaillance d'un élément agissant sur le niveau de pollution du moteur, soit l'activation de modes de fonctionnement dégradés et/ou l'allumage d'un voyant au tableau de bord prévenant le conducteur (réglementations peu sévères), soit la mise en oeuvre de mesures correctives, soit encore l'arrêt du véhicule (réglementations strictes).
Les équipementiers et les constructeurs automobiles ont donc développé un certain nombre de dispositifs techniques permettant de diagnostiquer les dysfonctionnements des capteurs équipant les moteurs en général et les capteurs à oxygène en particulier.
On peut ainsi citer le document DE-A-19.534.141 qui concerne plus particulièrement le contrôle des fils électriques assurant la connexion des capteurs au calculateur d'injection et qui permet notamment de diagnostiquer l'existence de dysfonctionnements tels qu'un "court-circuit" ou encore un "circuit ouvert" suite à la rupture d'un fil.
Le procédé décrit dans le document DE-A-19.534.141 est directement mis en oeuvre par le calculateur d'injection. Il consiste à comparer régulièrement les valeurs de tensions observées à chaque entrée du calculateur d'injection à des plages de valeurs mémorisées et à en déduire en cas d'écart, l'existence d'un défaut dans la ligne.
Ce procédé n'est toutefois pas d'application générale car il ne permet pas de diagnostiquer la liaison électrique d'une sonde à oxygène de type lambda, qui n'indique qu'un état riche ou pauvre par rapport à la stoechiométrie (ou richesse 1), lorsque qu'une telle sonde est positionnée en aval d'un pot catalytique de traitement accélérant notamment les réactions d'oxydation des gaz d'échappement. Un tel positionnement aval d'une sonde à oxygène est utilisé pour permettre de contrôler le fonctionnement du pot catalytique ou encore pour opérer une régulation dite "double boucle" lors que les conditions de fonctionnement du moteur requièrent de fonctionner avec un mélange stoechiométrique, comme par exemple au ralenti, etc.
En effet, lors des phases de fonctionnements en mélange stoechiométrique, les gaz d'échappement en sortie d'un pot catalytique destiné à accélérer des réactions d'oxydation, ci-après appelé pot catalytique à oxydation (étant entendu qu'un tel pot n'est pas limité à la seule accélération des réactions d'oxydation et qu'il peut également accélérer des réactions de réduction comme dans le cas des pots à trois voies (dits sélectifs ou trifonctionnels) à un ou plusieurs lits), ont une teneur en oxygène relativement stable du fait des conversions chimiques, de sorte que le signal d'une sonde à oxygène lambda disposée en aval de ce pot ne bascule entre les valeurs extrêmes de tension correspondant aux états "riche" ou "pauvre" que sur des périodes relativement longues, la simple observation du non-basculement de la sonde de part et d'autre de la tension de polarisation ne permet donc pas de diagnostiquer l'état de la liaison électrique.
Le but de l'invention est donc de remédier aux inconvénients de l'art antérieur en proposant un procédé de diagnostic électrique selon la revendication 1.
Selon une caractéristique du procédé de diagnostic d'une sonde à oxygène objet de l'invention, la mesure du niveau de tension du signal émis par la sonde à oxygène dans les conditions prédéterminées de fonctionnement du moteur, n'est observée qu'après une période de temporisation adaptée.
On comprendra mieux les buts, aspects et avantages de la présente invention, d'après la description donnée ci-après de modes de réalisation de l'invention, présentés à titre d'exemples non limitatifs, en se référant notamment aux dessins annexés, dans lesquels :
  • la figure 1 est une vue schématique d'un moteur à combustion interne équipé d'un dispositif électronique de commande permettant la mise en oeuvre du procédé selon l'invention ;
  • la figure 2 est une vue de détail du circuit électrique reliant un capteur de mesure, telle que la sonde à oxygène aval, au dispositif électronique de commande présenté à la figure 1.
Conformément aux dessins, seuls les éléments du moteur à combustion interne nécessaires à la compréhension de l'invention ont été représentés et pour en faciliter la lecture, les mêmes éléments portent les mêmes références d'une figure à l'autre.
En se reportant à la figure 1, on voit un moteur à combustion interne plus particulièrement destiné à équiper un véhicule automobile. Ce moteur est un moteur multicylindre à quatre temps, du type à injection directe et allumage commandé fonctionnant selon plusieurs valeurs de richesse et notamment en mélange pauvre. Bien évidemment la présente invention n'est pas limitée à un moteur à injection directe et peut également s'appliquer à un moteur à injection indirecte à condition que ce dernier fonctionne selon plusieurs valeurs de richesse et notamment en mélange pauvre.
Le moteur illustré comporte classiquement un circuit d'admission d'air 3 muni d'un volet 4 de type papillon permettant de régler la quantité d'air admis et d'un circuit de bipasse ralenti coopérant avec une vanne de régulation 5. L'injection du carburant s'effectue directement dans chaque chambre de combustion 12 grâce à un électro-injecteur 2 logé dans la culasse du moteur et débouchant dans le toit de la chambre 12. Un système d'allumage à bougies 6 assure le déclenchement de la combustion du mélange carburé préalablement comprimé dans les cylindres du moteur.
Les gaz brûlés sont rejetés à l'atmosphère à travers une ligne d'échappement 10 équipée d'un pot catalytique 13 destiné notamment à traiter par oxydation les gaz polluants et plus particulièrement les hydrocarbures imbrûlés HC et le monoxyde de carbone CO et, d'un pot catalytique 19 de traitement des gaz polluants et plus particulièrement des oxydes d'azote NOx par réduction.
Le pot catalytique 19 encore appelé NOx trap a plus particulièrement pour fonction de stocker les oxydes d'azote produits notamment lors des phases de fonctionnement en mélange pauvre et d'opérer régulièrement leur conversion catalytique en présence d'hydrocarbure lors de phases de fonctionnement en mélange riche.
L'ouverture de chaque électro-injecteur 2 ainsi que l'avance à l'allumage des bougies 6 ou encore l'ouverture de la vanne de régulation ralenti 5 sont directement commandées par un système électronique de commande ou calculateur d'injection 7.
Dans le calculateur d'injection 7 sont mémorisés les formules et les paramètres fondamentaux pour le réglage optimal du moteur, ces paramètres étant obtenus préalablement au banc d'essai du moteur. Ce sont notamment les paramètres concernant l'instant de début d'injection ou phase d'injection du carburant, la durée d'ouverture des injecteurs 2 qui correspond à une quantité de carburant injectée et donc à une richesse du mélange carburé remplissant les chambres de combustion 12, ou bien encore la phase d'allumage des bougies 6, etc.
Le calculateur d'injection 7 se compose essentiellement d'un microprocesseur ou unité centrale CPU, de mémoires vives RAM, de mémoires mortes ROM, de convertisseurs analogiques-numériques A/D, et différentes interfaces d'entrées et de sorties.
Le microprocesseur du calculateur d'injection 7 comporte des circuits électroniques et des logiciels appropriés pour traiter les signaux en provenance de différents capteurs adaptés, en déduire les états du moteur et mettre en oeuvre des opérations prédéfinies afin de générer les signaux de commande appropriés à destination notamment des injecteurs et des bobines d'allumage.
Parmi les signaux d'entrée du calculateur d'injection 7 figurent : l'information "charge" donnée par un capteur de position du papillon des gaz, l'information "pression collecteur" donnée par un capteur de pression 9 disposé dans le circuit d'admission 3 en aval du boítier papillon 4, l'information "régime" donnée par un capteur de position angulaire 8 coopérant avec une cible dentée portée par le vilebrequin et l'information "richesse" donnée par les signaux de sortie de deux capteurs ou sondes à oxygène 14 et 15 disposées sur la ligne d'échappement 10 du moteur de part et d'autre du pot catalytique 13.
Le temps d'ouverture Ti des injecteurs déterminant le dosage de la quantité de carburant injectée et la richesse du mélange carburé remplissant chaque chambre de combustion 12 est adapté suivant les conditions de fonctionnement du moteur, par exemple à partir de valeurs prédéterminées stockées sous forme de cartographies pression/régime dans les mémoires du dispositif électronique de contrôle moteur 7. Les valeurs théoriques de la durée des injections lues sont ensuite modulées par des paramètres correcteurs dépendant notamment de la température d'air, de la température d'eau, de la tension de la batterie, des accélérations, du cliquetis, etc., ainsi que par le signal de sortie des sondes à oxygène 14 et 15.
Les sondes à oxygène 14 et 15 sont connectées par l'intermédiaire d'un fil de liaison à un étage d'entrée/sortie spécifique du calculateur d'injection 7.
Le signal fourni par la sonde 14 disposée à la sortie du collecteur d'échappement en amont du pot catalytique 13, sonde qui est de préférence de type proportionnelle ou UEGO, sert à corriger la quantité de carburant qui est injectée en amont des cylindres du moteur par l'intermédiaire d'une boucle de contre-réaction adaptée, de façon à ajuster la valeur de richesse du mélange carburé à la valeur de choisie compte tenu des conditions de fonctionnement du moteur.
La seconde sonde 15 disposée en aval du pot catalytique 13 est une sonde de type non linéaire ou lambda, réglée sur la richesse 1 correspondant au rapport stoechiométrique. La sonde 15 est représentée sur la figure 1 en aval également du pot 19 mais cela n'est limitatif de l'invention et il est parfaitement possible de disposer la sonde 15 en amont du pot 19, cette position en amont du pot 19 étant préférable notamment pour opérer un diagnostic rapide en phase de fonctionnement riche destiner notamment à purger le pot 19.
Une telle sonde lambda 15 a plusieurs utilités, elle sert à mesurer les performances du pot catalytique 13 ainsi qu'à adapter le rapport air/carburant fourni par la première boucle lors des phases de fonctionnement à richesse 1, en changeant par exemple son point de fonctionnement ou encore la fonction de transfert utilisée pour pallier notamment au vieillissement de la sonde amont 14 ou bien encore à opérer la régulation en temps réel du rapport carburant/air.
Une telle sonde 15 est classiquement formée par un corps en céramique (tel que du dioxyde de zirconium) dont une partie se trouve dans le flux des gaz d'échappement et l'autre est reliée à l'air atmosphérique, les deux côtés du corps étant revêtus par des électrodes en platine perméables aux gaz. Les électrodes de la sonde lambda 15 alimentées par un courant électrique adapté dit de polarisation, fournissent en retour une tension caractéristique de la richesse du mélange carburé.
La tension entre les bornes des électrodes se trouve être en effet modifiée de façon sensible de part et d'autre de la tension de polarisation correspondant à la richesse 1, par les différences de concentration en oxygène entre les deux côtés de la sonde, en raison des propriétés particulières des matériaux utilisés. Le suivi de cette tension permet donc de déterminer l'évolution de la richesse des gaz par rapport à la stoechiométrie.
En se reportant à la figure 2, on voit de façon schématique l'étage 17 d'entrée/sortie du calculateur d'injection 7 dédiée à la sonde lambda 15. Cet étage 17 destiné à fournir un courant de polarisation adapté comporte un circuit électronique comprenant deux résistances en série R1 et R2 aux bornes desquelles est appliquée une tension Va sensiblement constante.
La sonde lambda 15 vient se connecter sur ce circuit par l'intermédiaire de son fil de liaison 16 en parallèle à la résistance R1. La tension Vs qui est lue aux bornes de la résistance R1 par un circuit résistif R3 et capacitif C1 qui est connecté à un convertisseur analogique/numérique non figuré, est la tension de sortie Vs de la sonde lambda 15.
Le choix des différents composants du circuit électronique de l'interface 17 et notamment des résistances R1 et R2 sont adaptés, de façon que la tension de sortie fluctue par exemple entre des états "bas" d'environ 100 mV et "haut" d'environ 700 mV, pour des richesses respectivement "pauvre" ou "riche" du mélange carburé c'est-à-dire lorsque la teneur des gaz d'échappement est respectivement en dessous ou au-dessus de la valeur de consigne de la richesse, la tension de polarisation correspondant sensiblement à la tension de sortie lorsque la richesse du mélangé carburé est à la valeur de consigne étant d'environ 400 mV. La sensibilité du capteur 15 est adaptée de façon que toute variation de la richesse autour de la valeur de consigne provoque le basculement de la tension de sortie vers ses valeurs limites hautes ou basses.
Conformément à ce qui précède, le procédé de diagnostic du fil de liaison 16 entre le calculateur d'injection et la sonde lambda aval 15 mise en oeuvre du calculateur d'injection 7 est alors le suivant.
Un court-circuit du fil de liaison 16 à la masse est repéré par une tension de sortie sonde Vs inférieure à une valeur de seuil adaptée Vccm telle que par exemple 50 mV. La comparaison entre Vs et Vccm est donc opérée à intervalles réguliers pendant le fonctionnement du moteur et l'état de la liaison 16 est jugé satisfaisant si la tension de sortie Vs est supérieure à Vccm, par contre si Vs devient inférieure à Vccm alors la sonde 15 est déclarée en court-circuit à la masse et des stratégies adaptées telles qu'un fonctionnement en mode dégradé ou encore l'émission d'un signal d'alerte destiné à avertir le conducteur par l'intermédiaire notamment d'un voyant lumineux ou encore la mise en mémoire d'un code diagnostic correspondant afin d'orienter le dépanneur sur l'élément défectueux, sont déclenchées par le calculateur d'injection 7.
Un court-circuit du fil de liaison 16 à la tension batterie est repéré, par une tension de sortie sonde Vs supérieure à une deuxième valeur de seuil adaptée Vccb telle que par exemple 1,5 V. La comparaison entre Vs et Vccb est donc opérée à intervalles réguliers pendant le fonctionnement du moteur et l'état de la liaison 16 est jugé satisfaisant si la tension de sortie Vs est inférieure Vccb, par contre si Vs devient supérieure à Vccb alors la sonde 15 est déclarée en court-circuit batterie et des stratégies adaptées du type précité sont alors déclenchées par le calculateur d'injection 7.
Pour ce qui est du contrôle d'une éventuelle rupture du fil de liaison 16 (ou circuit ouvert), la stratégie mise en oeuvre consiste à attendre la survenue de conditions de fonctionnement prédéterminées du moteur 1 qui implique le basculement de la tension de sortie Vs de la sonde lambda 15 à une valeur basse (ou élevée) et d'observer si effectivement on a bien une telle valeur.
La première étape du procédé consiste donc à suivre les conditions de fonctionnement du moteur et à identifier la survenue d'une phase prédéterminée de fonctionnement du moteur 1 durant laquelle la richesse du mélange carburé demeure différente de la stoechiométrie pendant une durée suffisante telle que les phases de fonctionnement sous charge partielle pendant lesquelles le moteur est alimenté en mélange pauvre (richesse 0,7).
Les charges partielles pendant lesquels l'injection du carburant est appauvrie, sont caractérisées, par le maintien de la pédale d'accélérateur dans une position intermédiaire entre la position pied levé et pied à fond (informations fournies par un capteur de position lié à la pédale d'accélérateur ou au papillon des gaz) et d'autre part, par un régime de rotation du moteur compris entre des valeurs de seuil prédéterminées.
Selon l'invention, la stratégie de diagnostic consiste alors à comparer à chaque phase de fonctionnement en mélange pauvre (ou selon toute autre périodicité, par exemple la première phase de fonctionnement en mélange pauvre de chaque cycle de fonctionnement du moteur) la tension de sortie Vs de la sonde 15 (qui doit être alors à son niveau bas de 100 mV caractéristique d'un mélange carburé pauvre) à une troisième valeur de seuil Vco telle que par exemple 200 mV.
Cette comparaison de Vs à Vco n'est toutefois opérée qu'après une période adaptée T pendant laquelle le pot catalytique a pu saturer l'ensemble de ses sites récepteurs en oxygène, de sorte que l'on soit sûr après cette période T d'observer un débit de gaz riche en oxygène à la sortie du pot catalytique 13 et implique le basculement de la tension Vs de la sonde 15 dans son état "bas" si tout fonctionne correctement.
En effet, les pots catalytiques à oxydation généralement utilisés ont pour première fonction d'achever la combustion du mélange carburé qui n'est qu'incomplète à l'intérieur du moteur. Il s'agit alors de regrouper sur des sites catalytiques des molécules oxydantes et des molécules réductrices présentes dans les gaz d'échappement pour qu'elles se combinent afin de produire de l'eau et du dioxyde de carbone. Ces sites sont formés sur un monolithe qui est une structure poreuse présentant une grande superficie de contact avec les gaz d'échappement traversant le pot, et qui est revêtue de diverses substances chimiques comportant des propriétés catalytiques.
Cette fonction permet de pallier la combustion incomplète à l'intérieur des cylindres du moteur mais ne permet pas d'éliminer les substances polluantes que lorsque le mélange carburé initial est un mélange stoechiométrique.
Aussi, les pots catalytiques possèdent également la faculté de "stocker" des atomes d'oxygène par oxydation de substances chimiques présentes dans le catalyseur, telles que le cérium.
Ainsi, lorsque les gaz d'échappement qui entrent dans le pot catalytique sont issus de la combustion d'un mélange pauvre, ils comportent des atomes d'oxygène en excès et ceux-ci sont stockés dans le pot catalytique. Lorsque le mélange brûlé dans le moteur est riche, les gaz d'échappement qui arrivent dans le pot contiennent des molécules réductrices mais celles-ci peuvent se combiner avec les atomes d'oxygènes, précédemment stockés dans le pot catalytique au cours d'une phase de fonctionnement avec un mélange pauvre pour produire de l'eau et du dioxyde de carbone.
Le pot catalytique a donc pour fonction non seulement de favoriser les réactions chimiques entre des substances contenues dans les gaz d'échappement, mais il a également pour fonction d'être un stock-tampon de molécules d'oxygène qui permet de réguler la composition des gaz émis dans l'atmosphère à la sortie du pot.
La période adaptée de temporisation T est donc déterminée suivant les conditions de fonctionnement du moteur et notamment l'évolution du régime de fonctionnement, la cylindrée du moteur et la capacité d'adsorption en oxygène du pot catalytique utilisé, de sorte que la masse d'air rejetée à l'échappement après cette période excède la capacité d'adsorption en oxygène du pot catalytique et donc que les gaz en sortie de pot catalytique 13 sont pauvres.
Si donc la phase de fonctionnement en mélange pauvre se poursuit après la période T, on procède, alors et seulement alors, à la comparaison entre Vs et Vco et si Vs demeure supérieure à Vco alors la sonde 15 est déclarée en circuit ouvert et des stratégies correspondantes sont déclenchées par le calculateur d'injection. Si la phase de fonctionnement en mélange pauvre s'interrompt avant la fin de la période T, la stratégie de diagnostic est alors arrêtée et elle est relancée lors de la phase de fonctionnement en mélange pauvre suivante.
Les conditions de mise en oeuvre du procédé de diagnostic du circuit ouvert sont donc doubles, à savoir le fonctionnement du moteur 1 en mélange pauvre et le maintien d'un tel fonctionnement au-delà d'une durée donnée nécessaire à la saturation en air du pot catalytique 13. Lorsque ces conditions sont réunies, le calculateur d'injection 7 opère alors la comparaison de la tension de sortie Vs de la sonde 15 à la valeur de seuil Vco.
Ce contrôle effectif de l'état de liaison 16 est opéré dans la mesure du possible au moins une fois lors de chaque fonctionnement moteur.
Le procédé de diagnostic selon l'invention, est mis en oeuvre lors des phases de fonctionnement en mélange riche (richesse comprise entre 1,1 et 1,7) nécessaire aux traitement catalytique des oxydes d'azote NOx.
En effet, le pot 19 ne fait que stocker les oxydes d'azote lors des phases de fonctionnement en mélange pauvre. La conversion catalytique des oxydes d'azotes nécessite un milieu réducteur, ce qui est le cas des hydrocarbures. Il est donc nécessaire d'opérer régulièrement, avant que les sites de stockage ne soient saturés, des phases de déstockage avec un mélange carburé de richesse adaptée.
Les phases transitoires de purge du stock d'oxydes d'azote en mélange riche constituent donc des phases de fonctionnement du moteur pendant lesquelles la richesse du mélange carburé demeure clairement distincte de la richesse 1 correspondant à la stoechiométrie et donc pendant lesquelles il est possible d'observer ou non le basculement de la tension de sortie de la sonde 15. Lors de ces phases, le déroulement du procédé de diagnostic est sensiblement identique à celui décrit pour les phases de fonctionnement en mélange pauvre, si ce n'est qu'il est nécessaire de prévoir une période T' adaptée et d'inverser la comparaison puisque la sonde 15 doit si tout fonctionne bien, basculer vers son seuil haut et non pas vers son seuil bas.
Cette période de temporisation T' requise pour opérer le diagnostic est déterminée de façon à garantir que le pot catalytique 13 a, à cette échéance, totalement vidé son stock-tampon de molécules d'oxygène et que par conséquent les gaz d'échappement en sortie de pot sont bien riches en hydrocarbures et impliquent normalement, si tout fonctionne correctement, le basculement de la tension de sortie de la sonde à son niveau riche.
Par ailleurs, il est nécessaire de prévoir une nouvelle valeur de seuil Vco' ( par exemple 600 mV), de sorte que si, la phase de fonctionnement en mélange riche se poursuit après la période T', si Vs demeure inférieure à Vco' alors la sonde 15 est déclarée en circuit ouvert et des stratégies correspondantes sont déclenchées par le calculateur d'injection.
Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit et illustré qui n'a été donné qu'à titre d'exemple.
Au contraire, l'invention comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont effectuées suivant son esprit.
Ainsi, le moteur peut ne pas être équipé du pot catalytique 19 destiné au traitement des oxydes d'azotes. De même, le système électronique de commande peut commander la quantité d'essence injectée indépendamment du signal de la sonde à oxygène amont 14, en utilisant d'autres critères de régulation que la richesse du mélange carburé comme par exemple la stabilité des combustions.

Claims (4)

  1. Procédé de diagnostic électrique d'une sonde à oxygène (15) d'un moteur à combustion interne (1) fonctionnant selon plusieurs valeurs de richesse et notamment en mélange pauvre, ladite sonde à oxygène (15) de type lambda étant disposée sur la ligne d'échappement en aval d'un pot catalytique de traitement par oxydation des gaz polluants et émettant un signal électrique dont le niveau de tension est représentatif de l'écart de la richesse avec le rapport stoechiométrique, à destination du système de commande électronique (7) du moteur par l'intermédiaire d'une liaison électrique (16) en réponse à un courant de polarisation adapté, caractérisé en ce qu'il comprend les étapes suivantes :
    suivre le fonctionnement du moteur ;
    lorsque des conditions de fonctionnement prédéterminées sont observées où la richesse du mélange carburé demeure différente de la stoechiométrie pendant une durée suffisante, mesurer le niveau de tension du signal (Vs) émis par ladite sonde à oxygène (15) ;
    comparer cette valeur de tension (Vs)à une première valeur de tension seuil (Vco).
    en déduire si ladite valeur de tension est supérieure à la première tension seuil, l'existence d'un premier type de défaut sur la liaison électrique (16) de la sonde (15), les conditions de fonctionnement prédéterminées comprennent des phases de fonctionnement du moteur en mélange riche servant au traitement des oxydes d'azote générés lors des phases de fonctionnement en mélange pauvre et qui sont stockés dans un pot catalytique adapté (19).
  2. Procédé de diagnostic d'une sonde à oxygène selon la revendication 1, caractérisé en ce que la mesure du niveau de tension du signal émis par ladite sonde à oxygène (15) dans lesdites conditions prédéterminées de fonctionnement du moteur (1) n'est observée qu'après une période de temporisation adaptée (T).
  3. Procédé de diagnostic électrique d'une sonde à oxygène selon l'une des revendications précédantes caractérisé en ce qu'il comprend les étapes suivantes
    comparer la tension de sortie à une deuxième valeur de tension seuil
    en déduire si la valeur de tension de sortie est supérieure à la deuxième tension seuil l'existence d'un deuxième type défaut sur la liaison (16) électrique de la sonde (15).
  4. Procédé de diagnostic électrique d'une sonde à oxygène selon l'une des revendications précédentes caractérisé en ce qu'il comprend les étapes suivantes
    comparer la tension de sortie à une troisième valeur de tension seuil
    en déduire si la valeur de tension de sortie est inférieure à la troisième tension seuil l'existence d'un troisième type de défaut sur la liaison (16) électrique de la sonde (15).
EP97951321A 1996-12-20 1997-12-12 Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne Expired - Lifetime EP0946868B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9615724 1996-12-20
FR9615724A FR2757634B1 (fr) 1996-12-20 1996-12-20 Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne
PCT/FR1997/002284 WO1998028615A1 (fr) 1996-12-20 1997-12-12 Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0946868A1 EP0946868A1 (fr) 1999-10-06
EP0946868B1 true EP0946868B1 (fr) 2004-02-11

Family

ID=9498909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951321A Expired - Lifetime EP0946868B1 (fr) 1996-12-20 1997-12-12 Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne

Country Status (6)

Country Link
EP (1) EP0946868B1 (fr)
AU (1) AU5489198A (fr)
DE (1) DE69727588T2 (fr)
ES (1) ES2213842T3 (fr)
FR (1) FR2757634B1 (fr)
WO (1) WO1998028615A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864849B1 (fr) 2004-01-07 2006-04-07 Renault Sas Procede de diagnostic electrique d'une sonde a oxygene de type tout ou rien a reservoir de gaz de reference
DE102005053648A1 (de) * 2005-11-10 2007-05-16 Audi Ag Verfahren zur On-Board-Diagnose eines Sytems in einem Fahrzeug
DE102011089383A1 (de) * 2011-12-21 2013-06-27 Robert Bosch Gmbh Verfahren zur Korrektur von Messwerten eines Sensorelements
IT201900003269A1 (it) * 2019-03-06 2020-09-06 Fpt Motorenforschung Ag Metodo e gruppo per controllare l'alimentazione di combustibile per un motore a combustione interna ad accensione comandata, in particolare per un motore alimentato a gas naturale

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612915C2 (de) * 1976-03-26 1986-05-28 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und Vorrichtung einer unter der Führung einer λ-Sonde arbeitenden Regelung
DE2919220A1 (de) * 1979-05-12 1980-11-27 Bosch Gmbh Robert Verfahren zur regelung des kraftstoff/luftverhaeltnisses bei brennkraftmaschinen
JPH073403B2 (ja) * 1986-03-27 1995-01-18 本田技研工業株式会社 酸素濃度センサの異常検出方法
JP2912474B2 (ja) * 1991-07-18 1999-06-28 ダイハツ工業株式会社 内燃機関の空燃比制御方法
JPH06193494A (ja) * 1992-12-24 1994-07-12 Honda Motor Co Ltd 内燃機関の空燃比制御装置
JP3033449B2 (ja) * 1994-10-20 2000-04-17 三菱自動車工業株式会社 火花点火式内燃エンジンの燃焼制御装置

Also Published As

Publication number Publication date
ES2213842T3 (es) 2004-09-01
DE69727588D1 (de) 2004-03-18
DE69727588T2 (de) 2004-12-16
WO1998028615A1 (fr) 1998-07-02
AU5489198A (en) 1998-07-17
FR2757634A1 (fr) 1998-06-26
FR2757634B1 (fr) 1999-01-22
EP0946868A1 (fr) 1999-10-06

Similar Documents

Publication Publication Date Title
US6230487B1 (en) Method for regenerating a catalytic converter
JP2000104537A (ja) 触媒の機能性の判定方法
FR2780447A1 (fr) Procede de correction de la duree d'injection dans un moteur a combustion interne a systeme d'air secondaire
US6877366B2 (en) Test method for an exhaust gas catalytic converter and a corresponding testing device
FR2807473A1 (fr) Dispositif et procede pour coordonner des mesures a prendre concernant les gaz d'echappement
EP0946868B1 (fr) Procede de diagnostic electrique d'une sonde a oxygene d'un moteur a combustion interne
FR2793841A1 (fr) Procede et dispositif de diagnostic pour un adsorbant
WO2008142342A2 (fr) Procede de surveillance de l'efficacite d'un convertisseur catalytique stockant les nox implante dans une ligne d'echappement d'un moteur a combustion interne et moteur comportant un dispositif mettant en oeuvre ledit procede
EP0962639A1 (fr) Procédé et dispositif de commande de purge en oxydes de soufre d'un pot catalytique de traitement des gaz d'échappement d'un moteur à combustion interne
FR2756389A1 (fr) Procede de controle d'un capteur equipant un moteur a combustion interne
EP1214504B1 (fr) Procede et systeme de surveillance du fonctionnement des pots catalytiques d'un moteur a combustion interne
FR2796670A1 (fr) Procede et dispositif de commande du mode de combustion d'un moteur a combustion interne
FR3057022A1 (fr) Procede de surveillance d'un catalyseur associe a un moteur a allumage commande
EP0719918B1 (fr) Procédé et dispositif de contrÔle de la richesse d'un moteur à allumage commandé
EP1787020B1 (fr) Systeme de controle du fonctionnement d'un moteur diesel de vehicule automobile
FR3091896A1 (fr) Procede de test d'efficacite d'un catalyseur de ligne d'echappement d'un moteur thermique
FR2726031A1 (fr) Procede de controle du fonctionnement d'une pompe a air de moteur a combustion interne
FR2849471A1 (fr) Procede pour le diagnostic d'un catalyseur dans un flux de gaz d'echappement d'un moteur a combustion interne et dispositif pour la mise en oeuvre du procede
EP3034827B1 (fr) Procédé de diagnostic d'un piège à oxydes d'azote et dispositif associé
FR2864849A1 (fr) Procede de diagnostic electrique d'une sonde a oxygene de type tout ou rien a reservoir de gaz de reference
FR3129689A1 (fr) Gestion du fonctionnement d’un catalyseur d’échappement d’un moteur à combustion interne
FR3096085A1 (fr) Procédé de contrôle d’une sonde lambda
FR2722248A1 (fr) Procede et dispositif de regulation de las richesse de combustion d'un moteur a combustion interne
FR2891009A1 (fr) Procede de gestion d'une sonde de gaz d'echappement a saut et dispositif pour la mise en oeuvre
WO2021069204A1 (fr) Procede de diagnostic d'un systeme de post-traitement d'un moteur a allumage commande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOUSSAN, SABRINA

Inventor name: AIMARD, FREDERIC

Inventor name: AFONSO, VASCO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

17Q First examination report despatched

Effective date: 20020717

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69727588

Country of ref document: DE

Date of ref document: 20040318

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040322

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2213842

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 20

Ref country code: GB

Payment date: 20161222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161223

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69727588

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171213