EP0946121B1 - Dosing method for adding detergent to a dishwashing machine - Google Patents

Dosing method for adding detergent to a dishwashing machine Download PDF

Info

Publication number
EP0946121B1
EP0946121B1 EP97954371A EP97954371A EP0946121B1 EP 0946121 B1 EP0946121 B1 EP 0946121B1 EP 97954371 A EP97954371 A EP 97954371A EP 97954371 A EP97954371 A EP 97954371A EP 0946121 B1 EP0946121 B1 EP 0946121B1
Authority
EP
European Patent Office
Prior art keywords
conductivity
change
cleaning tank
detergent
metering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97954371A
Other languages
German (de)
French (fr)
Other versions
EP0946121A1 (en
Inventor
Karl Helminger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecolab Engineering GmbH
Original Assignee
Lang Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lang Apparatebau GmbH filed Critical Lang Apparatebau GmbH
Publication of EP0946121A1 publication Critical patent/EP0946121A1/en
Application granted granted Critical
Publication of EP0946121B1 publication Critical patent/EP0946121B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/24Washing or rinsing machines for crockery or tableware with movement of the crockery baskets by conveyors
    • A47L15/241Washing or rinsing machines for crockery or tableware with movement of the crockery baskets by conveyors the dishes moving in a horizontal plane
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/0018Controlling processes, i.e. processes to control the operation of the machine characterised by the purpose or target of the control
    • A47L15/0055Metering or indication of used products, e.g. type or quantity of detergent, rinse aid or salt; for measuring or controlling the product concentration
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/449Metering controlling devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/30Variation of electrical, magnetical or optical quantities
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/07Consumable products, e.g. detergent, rinse aids or salt

Definitions

  • the invention relates to a metering method for feeding a Detergent to a dishwasher, which has: at least a cleaning tank, one arranged in the cleaning tank Conductivity sensor, a spray device with feedback the sprayed cleaning solution in the cleaning tank as well as a dosing device entering the cleaner into the cleaning tank (see WO-A-9 305 696 and DE-U-29 511 175).
  • the dishwasher for which the dosing method of the present invention is a so-called commercial dishwasher GSM, e.g. in commercial kitchens Is used.
  • Such dishwashers have at least one cleaning tank that contains water.
  • water The cleaning tank is turned into a spray device by a pump fed, which the water above the cleaning tank sprayed the dishes to be washed, the water then falls back into the cleaning tank.
  • the water of the Cleaning tanks become detergent from a dosing device fed.
  • the dosing device is controlled by a controller depending on the concentration of the detergent in the Cleaning tank regulated. This concentration is from one Conductivity sensor determined. This is the circumstance exploited that - provided constant temperatures - a extensive proportionality between the concentration of the Cleaner and the resulting conductivity of the water is available.
  • the conductivity controller compares that of Transmitter delivered measured value with a predetermined target value and activates a metering valve or if the setpoint is undershot a dosing pump. When the setpoint is reached again, it will Dosing valve or dosing pump switched off.
  • the regulation of the metering of the cleaner is by a variety influenced by parameters, such as the type and size the dishwasher, the type and nature of the respective cleaner and the water temperature.
  • parameters such as the type and size the dishwasher, the type and nature of the respective cleaner and the water temperature.
  • the dead time i.e. the time between that Start of the metering of the cleaner and the effectiveness of the Dosing by increasing the conductivity.
  • Influencing factors, that influence the concentration control are mechanical Influences such as positioning of the detergent dosing point, positioning the conductivity measuring cell in the cleaning tank, length of the Rinsing line for powder detergents, flow conditions in the wash liquor, as well as chemical influences such as solubility of the Cleaner product, conductivity / concentration behavior of the Detergent product.
  • the invention has for its object a metering method Feed a cleaner to a dishwasher create, in which achievable dosing accuracy is much higher than with conventional controllers.
  • the dosing method according to the invention is based on the application the fuzzy logic, with heuristic, fuzzy rules is working.
  • These influencing variables of the controlled system are in the subsequent operating phase as a heuristic variable, i.e. as fuzzy parameters of the controlled system, as part of a fuzzy control processed. With the fuzzy control, which during the subsequent operating phase, only the conductivity value is measured or the setpoint deviation is used as a measured variable, while the other influencing factors from the previous Learning phase.
  • a new learning phase is preferably carried out whenever if during the operating phase the setpoint deviation over a predetermined minimum time exceeds a limit. In this case it is assumed that the one carried out in the learning phase Evaluation of the influencing variables is no longer correct and new must be carried out.
  • the commercial dishwasher GSM shown in Figure 1 has a conveyor line 10 which in the dishes to be cleaned Transported in the direction of arrow 11.
  • the conveyor section 10 exists from a conveyor belt running over rollers, the is permeable to water.
  • Under the conveyor line 10 are a first cleaning tank 12, a second cleaning tank 13 and one third cleaning tank 14 arranged in the manner of a cascade are, the water from the first cleaning tank 12 over an overflow 15 overflows into the second cleaning tank 13.
  • Out the second cleaning tank 13 the water runs over one Overflow 16 in the third cleaning tank 14 above and from this the water is discharged into a drain 17.
  • the direction of flow of the water is opposite to the direction of transport 11 of the conveyor line 10.
  • each cleaning tank 12, 13, 14 There is a submersible pump 18 in each cleaning tank 12, 13, 14 arranged that the water from this cleaning tank to a Spray device 19 which pumps the water to that on the Transport device 10 sprayed lying dishes.
  • the Spray device 19 is above the cleaning tank open at the top arranged so that the water sprayed by it into the Cleaning tank falls back.
  • a metering device 22 feeds into the first cleaning tank 12 23 cleaners introduced via a metering line.
  • the dosing device 22 is connected to a water pipe 24 and contains a valve 25, which can be opened by an electromagnet 26 Introduce fresh water into a powder container 27.
  • the Powder container 27 contains powdered cleaner, which in the inflowing water is dissolved.
  • the outlet of the powder container 27 is connected to the metering line 23. If the valve 25 for a certain time is opened, a predetermined flows Amount of water in the powder container 27, whereby a appropriate amount of detergent dissolved and into the metering line 23 is introduced.
  • the detergent concentration in the water that is in the first Cleaning tank 12 is located is from a conductivity transmitter 28 determined in the first cleaning tank 12th is arranged and measures the conductivity of the water. It exists extensive proportionality between the detergent concentration in the Water and the measured conductivity.
  • the electrical output signal the sensor 28 is fed to a controller 29, which, depending on the measured value, the electromagnet 26 of the Valve 25 actuated.
  • the valve 25 is only in the on-off mode operated.
  • FIG. 2 shows an example of a response of the measuring signal x from the measuring sensor 28 to a metering pulse I, which was generated by the metering device 22 and in which the valve 25 was opened over a predetermined time t v in order to supply the cleaning tank 12 with detergent.
  • a dead time T t passes that elapses before the cleaner has any effects on the transducer 28. This dead time takes into account the opening behavior of the valve 25, the duration of the solution of the powdered detergent in the powder container 27 and the running time of the liquid detergent solution in the metering line 23.
  • the dead time T t has ended and an initially steep increase in conductivity begins to a point B at which the measured value is x B.
  • This tip can be attributed to the fact that the cleaner entering the cleaning tank 12 first comes close to the sensor 28 before it is distributed in the bath. This is followed by a drop in the measured value to a point C and finally a slow asymtotic rise to the compensation value D, which represents the last maximum of the curve. This increase is due to the fact that mixing takes place in the cleaning tank during the mixing time T M following the dead time T t .
  • the difference between the measured value x O at the point in time D and the measured value x A at the point in time when the metering takes effect is called the change in concentration KD.
  • the compensation speed is determined by the time T M between points A and D of the response curve.
  • the change in measured value MD is also determined.
  • the change in measured value is determined by the slope of the response curve between points A and B.
  • the cleaning liquor is diluted by the water by the rinse device 20 or by another Water inlet gets into the cleaning tank 12. This Water is fed continuously both during the learning phase as well as during the operational phase.
  • the Dilution rate VV is determined by the gradient of the Decline of the response curve determined after point D.
  • the submersible pump 18 and the Spray device 19 in operation.
  • the controller 29 is shown schematically. It is about a fuzzy controller, in which a fuzzification of the above explained influencing variables is made. This was done for each influencing variable has certain membership functions MF fixed. These are triangular curves or trapezoidal curves that the different ranges of values of the influencing variables in semantic Terms such as "very high”, “high”, “medium”, “low” and “very low” divide.
  • the Influencing variable the corresponding membership value in the Membership function MF determined.
  • An interference level contains various "IF ..., THEN " links of the various influencing factors and finally there is a Defuzzification at which the control signal for the dosing device 22 is generated.
  • the linguistic variables according to rules 1 to 5 are determined and saved during the learning phase. They remain unchanged during an operating phase.
  • the variable according to rule 6 is continuously determined during the operating phase and the metering device 22 is controlled as a function of its chronological course.
  • the measured value x of the transmitter 28 is fed to the fuzzy controller 29, as well as the setpoint x s to which the conductivity is to be regulated.
  • the Dosing device 22a a pump 30, the liquid cleaner pumps a liquid container 31 into the metering line 23.
  • the controller 29 controls the pump 30 by making it either turns on or turns off.

Abstract

The invention relates to a commercial dishwashing machine, where the detergent added to the first wash tank of the wash section is controlled by a regulator which controls a dosing device. The regulator is a fuzzy regulator, which in a learning phase determines characteristic influencing values of the system to be regulated. In the learning phase, detergent is continuously added to the first wash tank for a predefined period. The change in the water's conductivity over that period is determined. In the subsequent operating phase, the extent to which the conductivity measured deviates from a set value is determined. Dosing takes place by fuzzy regulation on the set value deviation, on the basis of the measured influencing values as fuzzy variables. Because in the learning phase all the influencing values of the dishwashing machine, dosage device and detergent are taken into account, dosing is automatically optimally adjusted to prevailing conditions.

Description

Die Erfindung betrifft ein Dosierverfahren zum Zuführen eines Reinigers zu einer Geschirrspülmaschine, die aufweist: mindestens einen Reinigungstank, einen im Reinigungstank angeordneten Leitfähigkeits-Meßwertgeber, eine Sprühvorrichtung mit Rückführung der versprühten Reinigungslösung in den Reinigungstank sowie eine den Reiniger in den Reinigungstank eingebende Dosiervorrichtung (siehe WO-A-9 305 696 und DE-U-29 511 175).The invention relates to a metering method for feeding a Detergent to a dishwasher, which has: at least a cleaning tank, one arranged in the cleaning tank Conductivity sensor, a spray device with feedback the sprayed cleaning solution in the cleaning tank as well as a dosing device entering the cleaner into the cleaning tank (see WO-A-9 305 696 and DE-U-29 511 175).

Die Geschirrspülmaschine, für die das Dosierverfahren der vorliegenden Erfindung bestimmt ist, ist eine sogenannte gewerbliche Geschirrspülmaschine GSM, die z.B. in Großküchen Verwendung findet. Solche Geschirrspülmaschinen weisen mindestens einen Reinigungstank auf, der Wasser enthält. Wasser aus dem Reinigungstank wird von einer Pumpe einer Sprühvorrichtung zugeführt, welche das Wasser oberhalb des Reinigungstank auf das zu spülende Geschirr versprüht, wobei das Wasser anschließend in den Reinigungstank zurückfällt. Dem Wasser des Reinigungstanks wird von einer Dosiervorrichtung ein Reinigungsmittel zugeführt. Die Dosiervorrichtung wird von einem Regler in Abhängigkeit von der Konzentration des Reinigungsmittels im Reinigungstank geregelt. Diese Konzentration wird von einem Leitfähigkeits-Meßwertgeber ermittelt. Hierbei wird der Umstand ausgenutzt, daß - konstante Temperaturen vorausgesetzt - eine weitgehende Proportionalität zwischen der Konzentration des Reinigers und der daraus resultierenden Leitfähigkeit des Wassers vorhanden ist. Der Leitfähigkeitsregler vergleicht den vom Meßwertgeber gelieferten Meßwert mit einem vorgegebenen Sollwert und aktiviert bei Unterschreitung des Sollwerts ein Dosierventil oder eine Dosierpumpe. Ist der Sollwert wieder erreicht, wird das Dosierventil bzw. die Dosierpumpe abgeschaltet.The dishwasher for which the dosing method of the present invention is a so-called commercial dishwasher GSM, e.g. in commercial kitchens Is used. Such dishwashers have at least one cleaning tank that contains water. water The cleaning tank is turned into a spray device by a pump fed, which the water above the cleaning tank sprayed the dishes to be washed, the water then falls back into the cleaning tank. The water of the Cleaning tanks become detergent from a dosing device fed. The dosing device is controlled by a controller depending on the concentration of the detergent in the Cleaning tank regulated. This concentration is from one Conductivity sensor determined. This is the circumstance exploited that - provided constant temperatures - a extensive proportionality between the concentration of the Cleaner and the resulting conductivity of the water is available. The conductivity controller compares that of Transmitter delivered measured value with a predetermined target value and activates a metering valve or if the setpoint is undershot a dosing pump. When the setpoint is reached again, it will Dosing valve or dosing pump switched off.

Die Regelung der Zudosierung des Reinigers wird von einer Vielzahl von Parametern beeinflußt, beispielsweise von der Bauart und Größe der Geschirrspülmaschine, von Art und Beschaffenheit des jeweiligen Reinigers sowie der Wassertemperatur. Insbesondere ist auch die Totzeit zu berücksichtigen, d.h. die Zeit zwischen dem Beginn der Zudosierung des Reinigers und dem Wirksamwerden der Zudosierung durch Erhöhung der Leitfähigkeit. Hierbei spielt auch die Intensität der Durchmischung eine wesentliche Rolle. Einflußgrößen, die die Konzentrationsregelung beeinflußen, sind mechanische Einflüsse wie Positionierung der Reiniger-Dosierstelle, Positionierung der Leitfähigkeits-Meßzelle im Reinigungstank, Länge der Ausspülleitung bei pulverförmigen Reiniger, Strömungsverhältnisse in der Waschflotte, sowie chemische Einflüsse wie Löslichkeit des Reinigerprodukts, Leitfähigkeits-/Konzentrationsverhalten des Reinigerprodukts. Wegen der Vielzahl der Einflußgrößen ist die Einhaltung der Konzentration des Reinigers auf einem gewünschten Sollwert außerordentlich schwierig. Mit den üblichen Dosier- und Regelverfahren ist die Einhaltung einer konstanten Reinigerkonzentration im Reinigungstank unter ungünstigen Bedingungen nicht möglich. So ist beispielsweise damit zu rechnen, daß der gewünschte Sollwert entweder nur sehr langsam erreicht wird oder aber größere Überkonzentrationen auftreten. Selbst wenn eine Optimierung der Regelung mit einem sehr aufwendigen Regler gelingt, ergeben sich bei geringsten Veränderungen an der Geschirrspülmaschine oder bei Verwendung eines anderen Reinigers völlig andere Regelungskriterien, so daß eine einmal eingestellte Regelung völlig verändert werden müßte. Eine exakte Zudosierung des Reinigers und eine möglichst genaue Einhaltung der Soll-Konzentration sind aber Voraussetzung für einen qualitativ hochwertigen Spülbetrieb der Geschirrspülmaschine bei geringstem Verbrauch von Reiniger.The regulation of the metering of the cleaner is by a variety influenced by parameters, such as the type and size the dishwasher, the type and nature of the respective cleaner and the water temperature. In particular is also to consider the dead time, i.e. the time between that Start of the metering of the cleaner and the effectiveness of the Dosing by increasing the conductivity. Here also plays Intensity of mixing plays an important role. Influencing factors, that influence the concentration control are mechanical Influences such as positioning of the detergent dosing point, positioning the conductivity measuring cell in the cleaning tank, length of the Rinsing line for powder detergents, flow conditions in the wash liquor, as well as chemical influences such as solubility of the Cleaner product, conductivity / concentration behavior of the Detergent product. Because of the large number of influencing factors, the Maintaining the concentration of the cleaner on a desired one Setpoint extremely difficult. With the usual dosing and The control procedure is to maintain a constant cleaner concentration not in the cleaning tank under unfavorable conditions possible. For example, it can be expected that the desired setpoint is either reached very slowly or but larger over-concentrations occur. Even if one Optimization of the control with a very complex controller succeed, there are the slightest changes to the dishwasher or completely when using another cleaner other control criteria, so that a once set control would have to be completely changed. An exact dosage of the Cleaner and the most exact possible compliance with the target concentration are a prerequisite for one qualitatively high-quality dishwashing operation of the dishwasher with the least Consumption of detergent.

In der Regelungstechnik sind außer den klassischen deterministischen Regelverfahren auch "unscharfe" Regelungsverfahren bekannt, bei denen die Eingangsgrößen als sogenannte linguistische Variablen klassifiziert werden, die beispielsweise Zustände wie "groß", "mittel" oder "klein" einnehmen können. Bei dieser Fuzzy-Regelung definieren Zugehörigkeitsfunktionen für die gemessenen Größen die Zugehörigkeitswerte zu diesen unscharfen Mengen. In einem Regelwerk werden Verknüpfungen (WENN ... DANN ... - Regeln) im Sinne der unscharfen Logik vorgenommen. Das Resultat einer jeden Regel ist wiederum eine unscharfe Aussage über die auszugebende Größe (Stellgröße). Durch Defuzzifizierung wird aus dieser unscharfen Beschreibung ein Zahlenwert gewonnen.In control engineering, besides the classic deterministic ones Control procedures also "fuzzy" control procedures known in which the input variables as so-called linguistic Variables are classified, such as states such as can take "large", "medium" or "small". With this fuzzy control define membership functions for the measured Sizes the membership values to these fuzzy sets. In links are created in a set of rules (IF ... THEN ... - Rules) in the sense of fuzzy logic. The result each rule is again a blurred statement about the Size to be output (manipulated variable). Defuzzification turns it into this fuzzy description won a numerical value.

Der Erfindung liegt die Aufgabe zugrunde, ein Dosierverfahren zum Zuführen eines Reinigers zu einer Geschirrspülmaschine zu schaffen, bei dem erreichbare Dosiergenauigkeit wesentlich höher ist als bei herkömmlichen Reglern. The invention has for its object a metering method Feed a cleaner to a dishwasher create, in which achievable dosing accuracy is much higher than with conventional controllers.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den im Patentanspruch 1 angegebenen Merkmalen.This object is achieved with the im Claim 1 specified features.

Das erfindungsgemäße Dosierverfahren beruht auf der Anwendung der Fuzzy-Logik, die mit heuristischen, unscharf formulierten, Regeln arbeitet. Dabei wird zunächst in einer Lernphase über einen vorbestimmten Zeitraum Reiniger in den Reinigungstank zu dosiert. Aus der sich aus der Zudosierung ergebenden Systemantwort werden charakteristische Einflußgrößen der Regelstrecke gewonnen. Die Antwort besteht aus einer Leitfähigkeitskurve, die sich aufgrund der einmaligen Zudosierung einstellt. Es ist gewissermaßen die Sprungantwort der Regelstrecke. Aus ihr werden bestimmte Einflußgrößen bestimmt, beispielsweise die Totzeit, die Konzentrationsänderung, die Ausgleichsgeschwindigkeit und/oder die Meßwertänderung. Diese Einflußgrößen der Regelstrecke werden in der nachfolgenden Betriebsphase als heuristische Variable, also als unscharfe Parameter der Regelstrecke, im Rahmen einer Fuzzy-Regelung verarbeitet. Bei der Fuzzy-Regelung, die während der nachfolgenden Betriebsphase erfolgt, wird nur der Leitfähigkeitsmeßwert bzw. die Sollwertabweichung als Meßgröße verwandt, während die übrigen Einflußgrößen aus der vorhergehenden Lernphase stammen.The dosing method according to the invention is based on the application the fuzzy logic, with heuristic, fuzzy rules is working. First, in a learning phase about a predetermined period of detergent dosed into the cleaning tank. From the system response resulting from the metering characteristic influencing variables of the controlled system are obtained. The answer consists of a conductivity curve that is based on of the one-time addition. In a way it is Step response of the controlled system. It becomes certain Influencing factors determine, for example the dead time, the change in concentration, the compensation speed and / or the Change in measured value. These influencing variables of the controlled system are in the subsequent operating phase as a heuristic variable, i.e. as fuzzy parameters of the controlled system, as part of a fuzzy control processed. With the fuzzy control, which during the subsequent operating phase, only the conductivity value is measured or the setpoint deviation is used as a measured variable, while the other influencing factors from the previous Learning phase.

Infolge der Lernphase werden sämtliche Einflußgrößen der gesamten Regelstrecke, einschließlich derjenigen des Meßwertgebers, der Dosiervorrichtung und des Reglers mitberücksichtigt.As a result of the learning phase, all influencing variables of the entire controlled system, including that of the Transmitter, the dosing device and the controller also taken into account.

Vorzugsweise wird eine neue Lernphase immer dann durchgeführt, wenn während der Betriebsphase die Sollwertabweichung über eine vorgegebene Mindestzeit einen Grenzwert übersteigt. In diesem Fall wird angenommen, daß die in der Lernphase durchgeführte Bewertung der Einflußgrößen nicht mehr stimmt und neu durchgeführt werden muß.A new learning phase is preferably carried out whenever if during the operating phase the setpoint deviation over a predetermined minimum time exceeds a limit. In this case it is assumed that the one carried out in the learning phase Evaluation of the influencing variables is no longer correct and new must be carried out.

Im folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.The following are with reference to the drawings Embodiments of the invention explained in more detail.

Es zeigen:

Fig. 1
eine schematische Darstellung einer gewerblichen Geschirrspülmaschine,
Fig. 2
ein exemplarisches Beispiel einer Antwort des zeitlichen Verlaufs der Leitfähigkeit während der Lernphase,
Fig. 3
eine schematische Darstellung des Fuzzy-Reglers, und
Fig. 4
eine andere Ausführungsform des Dosierteils einer Geschirrspülmaschine, die mit flüssigem Reiniger betrieben wird.
Show it:
Fig. 1
1 shows a schematic illustration of a commercial dishwasher,
Fig. 2
an exemplary example of a response to the time course of the conductivity during the learning phase,
Fig. 3
a schematic representation of the fuzzy controller, and
Fig. 4
another embodiment of the metering part of a dishwasher, which is operated with liquid detergent.

Die in Figur 1 dargestellte gewerbliche Geschirrspülmaschine GSM weist eine Förderstrecke 10 auf, die das zu reinigende Geschirr in Richtung des Pfeiles 11 transportiert. Die Förderstrecke 10 besteht aus einem über Walzen laufenden Förderband, das wasserdurchlässig ist. Unter der Förderstrecke 10 befinden sich ein erster Reinigungstank 12, ein zweiter Reinigungstank 13 und ein dritter Reinigungstank 14, die nach Art einer Kaskade angeordnet sind, wobei das Wasser aus dem ersten Reinigungstank 12 über einen Überlauf 15 in den zweiten Reinigungstank 13 überläuft. Aus dem zweiten Reinigungstank 13 läuft das Wasser über einen Überlauf 16 in den dritten Reinigungstank 14 über und von diesem wird das Wasser in einen Ablauf 17 hinein abgeführt. Die Laufrichtung des Wassers ist gegenläufig zu der Transportrichtung 11 der Förderstrecke 10.The commercial dishwasher GSM shown in Figure 1 has a conveyor line 10 which in the dishes to be cleaned Transported in the direction of arrow 11. The conveyor section 10 exists from a conveyor belt running over rollers, the is permeable to water. Under the conveyor line 10 are a first cleaning tank 12, a second cleaning tank 13 and one third cleaning tank 14 arranged in the manner of a cascade are, the water from the first cleaning tank 12 over an overflow 15 overflows into the second cleaning tank 13. Out the second cleaning tank 13 the water runs over one Overflow 16 in the third cleaning tank 14 above and from this the water is discharged into a drain 17. The The direction of flow of the water is opposite to the direction of transport 11 of the conveyor line 10.

In jedem Reinigungstank 12,13,14 ist eine Tauchpumpe 18 angeordnet, die das Wasser aus diesem Reinigungstank zu einer Sprühvorrichtung 19 pumpt, welche das Wasser auf das auf der Transportvorrichtung 10 liegende Geschirr versprüht. Die Sprühvorrichtung 19 ist oberhalb des oben offenen Reinigungstanks angeordnet, so daß das von ihr versprühte Wasser in den Reinigungstank zurückfällt.There is a submersible pump 18 in each cleaning tank 12, 13, 14 arranged that the water from this cleaning tank to a Spray device 19 which pumps the water to that on the Transport device 10 sprayed lying dishes. The Spray device 19 is above the cleaning tank open at the top arranged so that the water sprayed by it into the Cleaning tank falls back.

Über dem Endabschnitt des Förderers 10 ist eine Nachspülvorrichtung 20 angeordnet, die Frischwasser, welches aus keinem der Reinigungstanks stammt, auf das Geschirr versprüht. Unterhalb der Nachspülvorrichtung 20 befindet sich ein schräges Ablaufblech 21, welches das Frischwasser auffängt und in den ersten Reinigungstank 12 leitet. Die Schmutzfracht des Wassers vergrößert sich vom ersten Reinigungstank 12 bis zum dritten Reinigungstank 14 ständig.There is a rinse device over the end portion of the conveyor 10 20 arranged the fresh water, which from none of the cleaning tanks is sprayed on the dishes. Below the rinse device 20 is an oblique Drain plate 21, which collects the fresh water and in the first cleaning tank 12 conducts. The dirt load of the water increases from the first cleaning tank 12 to the third Cleaning tank 14 constantly.

In den ersten Reinigungstank 12 wird von einer Dosiervorrichtung 22 über eine Dosierleitung 23 Reiniger eingeführt. Die Dosiervorrichtung 22 ist an eine Wasserleitung 24 angeschlossen und enthält ein Ventil 25, das von einem Elektromagneten 26 geöffnet werden kann, um Frischwasser in einen Pulverbehälter 27 einzuführen. Der Pulverbehälter 27 enthält pulverförmigen Reiniger, der in dem einströmenden Wasser gelöst wird. Der Auslaß des Pulverbehälters 27 ist an die Dosierleitung 23 angeschlossen. Wenn das Ventil 25 für eine bestimmte Zeit geöffnet wird, strömt eine vorbestimmte Wassermenge in den Pulverbehälter 27, wodurch eine entsprechende Menge des Reinigers gelöst und in die Dosierleitung 23 eingeführt wird.A metering device 22 feeds into the first cleaning tank 12 23 cleaners introduced via a metering line. The dosing device 22 is connected to a water pipe 24 and contains a valve 25, which can be opened by an electromagnet 26 Introduce fresh water into a powder container 27. The Powder container 27 contains powdered cleaner, which in the inflowing water is dissolved. The outlet of the powder container 27 is connected to the metering line 23. If the valve 25 for a certain time is opened, a predetermined flows Amount of water in the powder container 27, whereby a appropriate amount of detergent dissolved and into the metering line 23 is introduced.

Die Reinigerkonzentration in dem Wasser, das sich im ersten Reinigungstank 12 befindet, wird von einem Leitfähigkeits-Meßwertgeber 28 ermittelt, der in dem ersten Reinigungstank 12 angeordnet ist und die Leitfähigkeit des Wassers mißt. Es besteht weitgehende Proportionalität zwischen der Reinigerkonzentration im Wasser und der gemessenen Leitfähigkeit. Das elektrische Ausgangssignal des Meßwertgebers 28 wird einem Regler 29 zugeführt, der in Abhängigkeit vom Meßwert den Elektromagneten 26 des Ventils 25 betätigt. Das Ventil 25 wird nur im Ein-Aus-Betrieb betrieben.The detergent concentration in the water that is in the first Cleaning tank 12 is located, is from a conductivity transmitter 28 determined in the first cleaning tank 12th is arranged and measures the conductivity of the water. It exists extensive proportionality between the detergent concentration in the Water and the measured conductivity. The electrical output signal the sensor 28 is fed to a controller 29, which, depending on the measured value, the electromagnet 26 of the Valve 25 actuated. The valve 25 is only in the on-off mode operated.

In Figur 2 ist ein Beispiel einer Antwort des Meßsignals x des Meßwertgebers 28 auf einen Dosierimpuls I dargestellt, der von der Dosiervorrichtung 22 erzeugt wurde und bei dem über eine vorbestimmte Zeit tv das Ventil 25 geöffnet wurde, um dem Reinigungstank 12 Reiniger zuzuführen. Zunächst verstreicht eine Totzeit Tt, die vergeht, bevor der Reiniger irgendwelche Auswirkungen an dem Meßwertgeber 28 hervorruft. Diese Totzeit berücksichtigt das Öffnungsverhalten des Ventils 25, die Dauer der Lösung des pulverförmigen Reinigers im Pulverbehälter 27 und die Laufzeit der flüssigen Reinigerlösung in der Dosierleitung 23. Bei A der Antwortkurve ist die Totzeit Tt beendet und es beginnt ein zunächst steiler Anstieg der Leitfähigkeit bis zu einem Punkt B, bei dem der Meßwert xB beträgt. Diese Spitze kann darauf zurückzuführen sein, daß der in den Reinigungstank 12 gelangende Reiniger zunächst in die Nähe des Meßwertgebers 28 gelangt, bevor er sich in dem Bad verteilt. Danach erfolgt ein Abfall des Meßwertes auf einen Punkt C und schließlich wieder ein langsamer asymtotischer Anstieg auf den Ausgleichswert D, der das letzte Maximum der Kurve darstellt. Dieser Anstieg ist darauf zurückzuführen, daß während der Mischzeit TM im Anschluß an die Totzeit Tt eine Durchmischung in dem Reinigungstank erfolgt. Die Differenz zwischen dem Meßwert xO zum Zeitpunkt D und dem Meßwert xA zum Zeitpunkt des Beginns des Wirksamwerdens der Zudosierung wird als Konzentrationsänderung KD bezeichnet. Die Ausgleichgeschwindigkeit wird durch die Zeit TM zwischen den Punkten A und D der Antwortkurve bestimmt.FIG. 2 shows an example of a response of the measuring signal x from the measuring sensor 28 to a metering pulse I, which was generated by the metering device 22 and in which the valve 25 was opened over a predetermined time t v in order to supply the cleaning tank 12 with detergent. First, a dead time T t passes that elapses before the cleaner has any effects on the transducer 28. This dead time takes into account the opening behavior of the valve 25, the duration of the solution of the powdered detergent in the powder container 27 and the running time of the liquid detergent solution in the metering line 23. At A of the response curve, the dead time T t has ended and an initially steep increase in conductivity begins to a point B at which the measured value is x B. This tip can be attributed to the fact that the cleaner entering the cleaning tank 12 first comes close to the sensor 28 before it is distributed in the bath. This is followed by a drop in the measured value to a point C and finally a slow asymtotic rise to the compensation value D, which represents the last maximum of the curve. This increase is due to the fact that mixing takes place in the cleaning tank during the mixing time T M following the dead time T t . The difference between the measured value x O at the point in time D and the measured value x A at the point in time when the metering takes effect is called the change in concentration KD. The compensation speed is determined by the time T M between points A and D of the response curve.

Ferner wird die Meßwertänderung MD ermittelt. Die Meßwertänderung wird durch die Steigung der Antwortkurve zwischen den Punkten A und B bestimmt.The change in measured value MD is also determined. The change in measured value is determined by the slope of the response curve between points A and B.

Im Anschluß an das letzte Maximum der Antwortkurve im Punkt D erfolgt eine Verdünnung der Reinigungsflotte durch das Wasser, das durch die Nachspülvorrichtung 20 oder durch einen anderen Wasserzulauf in den Reinigungstank 12 gelangt. Dieser Wasserzulauf erfolgt kontinuierlich sowohl während der Lernphase als auch während der Betriebsphase. Die Verdünnungsgeschwindigkeit VV wird durch den Gradienten des Abfalls der Antwortkurve im Anschluß an Punkt D bestimmt. Während der Lernphase sind auch die Tauchpumpe 18 und die Sprühvorrichtung 19 in Betrieb. Following the last maximum of the response curve in point D the cleaning liquor is diluted by the water by the rinse device 20 or by another Water inlet gets into the cleaning tank 12. This Water is fed continuously both during the learning phase as well as during the operational phase. The Dilution rate VV is determined by the gradient of the Decline of the response curve determined after point D. During the learning phase, the submersible pump 18 and the Spray device 19 in operation.

Die während der Lernphase aus der Antwortkurve ermittelten Einflußgrößen sind also die folgenden:

  • Totzeit Tt
  • Ausgleichsgeschwindigkeit MV
  • Meßwertänderung MD
  • Konzentrationsänderung KD
  • Verdünnungsgeschwindigkeit VV.
  • The influencing variables determined from the response curve during the learning phase are therefore the following:
  • Dead time T t
  • Compensation speed MV
  • Measurement change MD
  • Change in concentration KD
  • Dilution rate VV.
  • Diese Einflußgrößen werden in dem Regler 15 gespeichert und verarbeitet.These influencing variables are stored in the controller 15 and processed.

    In Figur 3 ist der Regler 29 schematisch dargestellt. Es handelt sich um einen Fuzzy-Regler, in welchem eine Fuzzifizierung der oben erläuterten Einflußgrößen vorgenommen wird. Hierzu wurden für jede Einflußgröße bestimmte Zugehörigkeitsfunktionen MF festgelegt. Diese sind Dreieckskurven oder Trapezkurven, die die verschiedenen Bereiche der Werte der Einflußgrößen in semantische Begriffe wie "sehr hoch", "hoch", "mittel", "niedrig" und "sehr niedrig" unterteilen. In der Lernphase wird für den ermittelten Wert der Einflußgröße der entsprechende Zugehörigkeitswert in der Zugehörigkeitsfunktion MF ermittelt. Eine Interferenz-Stufe enthält verschiedene "WENN..., DANN ..."-Verknüpfungen der verschiedenen Einflußgrößen und schließlich erfolgt eine Defuzzifizierung, bei der das Steuersignal für die Dosiervorrichtung 22 erzeugt wird.In Figure 3, the controller 29 is shown schematically. It is about a fuzzy controller, in which a fuzzification of the above explained influencing variables is made. This was done for each influencing variable has certain membership functions MF fixed. These are triangular curves or trapezoidal curves that the different ranges of values of the influencing variables in semantic Terms such as "very high", "high", "medium", "low" and "very low" divide. In the learning phase the Influencing variable the corresponding membership value in the Membership function MF determined. An interference level contains various "IF ..., THEN ..." links of the various influencing factors and finally there is a Defuzzification at which the control signal for the dosing device 22 is generated.

    Im einzelnen werden die linguistischen Eingangsvariablen bei diesem Beispiel wie folgt definiert: In detail, the linguistic input variables are at defined in this example as follows:

    Regel 1: Totzeit (Tt)Rule 1: dead time (T t )

  • Wenn Zeit zwischen Dosiervorgang und erster Leitfähigkeitsänderung an der Meßzelle > 12 sec, dann Totzeit = sehr lang.If there is time between the dosing process and the first change in conductivity on the measuring cell> 12 sec, then dead time = very long.
  • Wenn Zeit zwischen Dosiervorgang und erster Leitfähigkeitsänderung an der Meßzelle > 7 < 12 sec, dann Totzeit = lang.If there is time between the dosing process and the first change in conductivity on the measuring cell> 7 <12 sec, then dead time = long.
  • Wenn Zeit zwischen Dosiervorgang und erster Leitfähigkeitsänderung an der Meßzelle > 4 < 7 sec, dann Totzeit = mittel.If there is time between the dosing process and the first change in conductivity on the measuring cell> 4 <7 sec, then dead time = medium.
  • Wenn Zeit zwischen Dosiervorgang und erster Leitfähigkeitsänderung an der Meßzelle > 2 < 4 sec, dann Totzeit = kurz.If there is time between the dosing process and the first change in conductivity on the measuring cell> 2 <4 sec, then dead time = short.
  • Wenn Zeit zwischen Dosiervorgang und erster Leitfähigkeitsänderung an der Meßzelle < 2 sec, dann Totzeit = sehr kurz.If there is time between the dosing process and the first change in conductivity on the measuring cell <2 sec, then dead time = very short.
  • Abbruch des Lernprozesses und Fehlermeldung bei Totzeit > 15 sec, da Regelprozeß nicht mehr beherrschbar.Abort of the learning process and error message with dead time> 15 sec, since control process is no longer manageable.

    Regel 2: Ausgleichsgeschwindigkeit MVRule 2: Equalization speed MV

  • Wenn Zeit zwischen erster Leitfähigkeitsänderung und Auftreten des letzten Maximums < 2 sec, dann Ausgleichsgeschwindigkeit = sehr hoch.If there is time between the first change in conductivity and the appearance of the last maximum <2 sec, then compensation speed = very high.
  • Wenn Zeit zwischen erster Leitfähigkeitsänderung und Auftreten des letzten Maximums > 2 sec < 4 sec, dann Ausgleichsgeschwindigkeit = hoch.If there is time between the first change in conductivity and the appearance of the last maximum> 2 sec <4 sec, then compensation speed = high.
  • Wenn Zeit zwischen erster Leitfähigkeitsänderung und Auftreten des letzten Maximums > 4 sec < 7 sec, dann Ausgleichsgeschwindigkeit = mittel.If there is time between the first change in conductivity and the appearance of the last maximum> 4 sec <7 sec, then compensation speed = medium.
  • Wenn Zeit zwischen erster Leitfähigkeitsänderung und Auftreten des letzten Maximums > 7 sec < 12 sec, dann Ausgleichsgeschwindigkeit = niedrig. If there is time between the first change in conductivity and the appearance of the last maximum> 7 sec <12 sec, then compensation speed = low.
  • Wenn Zeit zwischen erster Leitfähigkeitsänderung und Auftreten des letzten Maximums > 12 sec, dann Ausgleichsgeschwindigkeit = sehr niedrig.If there is time between the first change in conductivity and the appearance of the last maximum> 12 sec, then compensation speed = very low.
  • Regel 3: Meßwertänderung MDRule 3: change in measured value MD

  • Wenn Verhältnis zwischen Maximum und Minimum der Leitfähigkeitsänderung > 10 : 1, dann Meßwertänderung = sehr schnell.If ratio between maximum and minimum of the change in conductivity > 10: 1, then change in measured value = very fast.
  • Wenn Verhältnis zwischen Maximum und Minimum der Leitfähigkeitsänderung > 5 : 1 < 10 : 1, dann Meßwertänderung = schnell.If ratio between maximum and minimum of the change in conductivity > 5: 1 <10: 1, then change in measured value = fast.
  • Wenn Verhältnis zwischen Maximum und Minimum der Leitfähigkeitsänderung > 3 : 1 < 5 : 1, dann Meßwertänderung = mittel.If ratio between maximum and minimum of the change in conductivity > 3: 1 <5: 1, then change in measured value = medium.
  • Wenn Verhältnis zwischen Maximum und Minimum der Leitfähigkeitsänderung > 1 : 1 < 3 : 1, dann Meßwertänderung = langsam.If ratio between maximum and minimum of the change in conductivity > 1: 1 <3: 1, then change in measured value = slowly.
  • Wenn Verhältnis zwischen Maximum und Minimum der Leitfähigkeitsänderung < 1 : 1, dann Meßwertänderung = sehr langsam.If ratio between maximum and minimum of the change in conductivity <1: 1, then change in measured value = very slow.
  • Regel 4: Konzentrationsänderung KDRule 4: Change in concentration KD

  • Wenn Mittelwert der Leitfähigkeitsänderung nach Dosiervorgang > 1,5 x Lf alt, dann Konzentrationsänderung = sehr hoch.If the average change in conductivity after dosing> 1.5 x Lf old, then change in concentration = very high.
  • Wenn Mittelwert der Leitfähigkeitsänderung nach Dosiervorgang > 1,3 x LF alt < 1,5 x LF alt, dann Konzentrationsänderung = hoch.If the average change in conductivity after dosing> 1.3 x LF old <1.5 x LF old, then change in concentration = high.
  • Wenn Mittelwert der Leitfähigkeitsänderung nach Dosiervorgang > 1,1 x LF alt < 1,3 x LF alt, dann Konzentrationsänderung = mittel.If the average change in conductivity after dosing> 1.1 x LF old <1.3 x LF old, then change in concentration = medium.
  • Wenn Mittelwert der Leitfähigkeitsänderung nach Dosiervorgang > 1,05 x LF alt < 1,1 x LF alt, dann Konzentrationsänderung = niedrig.If the average change in conductivity after dosing> 1.05 x LF old <1.1 x LF old, then change in concentration = low.
  • Wenn Mittelwert der Leitfähigkeitsänderung nach Dosiervorgang < 1,05 x LF alt, dann Konzentrationsänderung = sehr niedrig.If average change in conductivity after dosing < 1.05 x LF old, then change in concentration = very low.
  • Regel 5: Verdünnung durch Wasserzulauf VVRule 5: Dilution by water supply VV

  • Wenn Gradient der Leitfähigkeitsänderung nach Vermischung > -0.1 mS/sec, dann Verdünnung = sehr schnell.If the gradient of the conductivity change after mixing> -0.1 mS / sec, then dilution = very fast.
  • Wenn Gradient der Leitfähigkeitsänderung nach Vermischung >-0,05 mS/sec < -0,1 mS/sec, dann Verdünnung = schnell.If gradient of conductivity change after mixing> -0.05 mS / sec <-0.1 mS / sec, then dilution = fast.
  • Wenn Gradient der Leitfähigkeitsänderung nach Vermischung >-0,03 mS/sec < -0,05 mS/sec, dann Verdünnung = mittel.If the gradient of the conductivity change after mixing> -0.03 mS / sec <-0.05 mS / sec, then dilution = medium.
  • Wenn Gradient der Leitfähigkeitsänderung nach Vermischung >-0,01 mS/sec < -0,03 mS/sec, dann Verdünnung = langsam.If the gradient of the conductivity change after mixing> -0.01 mS / sec <-0.03 mS / sec, then dilution = slow.
  • Wenn Gradient der Leitfähigkeitsänderung nach Vermischung <-0,01 mS/sec, dann Verdünnung = sehr langsam.If gradient of conductivity change after mixing <-0.01 mS / sec, then dilution = very slow.
  • Regel 6: Sollwertabweichung □xRule 6: setpoint deviation □ x

  • Wenn gleitender Mittelwert aus Leitfähigkeitsmessung < Proportionalbereich(-), dann Sollwertabweichung = neg. groß.If moving average from conductivity measurement < Proportional range (-), then setpoint deviation = neg. Large.
  • Wenn gleitender Mittelwert aus Leitfähigkeitsmessung < Proportionalbereich/2 > Proportionalbereich(-), dann Sollwertabweichung = neg. mittel.If moving average from conductivity measurement < Proportional range / 2> proportional range (-), then Setpoint deviation = neg. Average.
  • Wenn gleitender Mittelwert aus Leitfähigkeitsmessung = Sollwert +/- Proportionalbereich/10, dann Sollwertabweichung = null.If moving average from conductivity measurement = setpoint +/- Proportional range / 10, then setpoint deviation = zero.
  • Wenn gleitender Mittelwert aus Leitfähigkeitsmessung = > Proportionalbereich/2 < Proportionalbereich(+), dann Sollwertabweichung = pos. mittel.If moving average from conductivity measurement => Proportional range / 2 <proportional range (+), then Setpoint deviation = pos. medium.
  • Wenn gleitender Mittelwert aus Leitfähigkeitsmessung = > Proportionalbereich(+), dann Sollwertabweichung = pos. groß.If moving average from conductivity measurement => Proportional range (+), then setpoint deviation = pos. large.
  • Die linguistischen Variablen gemäß den Regeln 1 bis 5 werden während der Lernphase ermittelt und gespeichert. Sie bleiben während einer Betriebsphase unverändert. Dagegen wird die Variable gemäß Regel 6 während der Betriebsphase laufend ermittelt und in Abhängigkeit von ihrem zeitlichen Verlauf wird die Dosiervorrichtung 22 gesteuert. Hierzu wird dem Fuzzy-Regler 29 der Meßwert x des Meßwertgebers 28 zugeführt, sowie der Sollwert xs, auf den die Leitfähigkeit geregelt werden soll. Aus diesen beiden Werten wird die Sollwertabweichung □x = x - xs gebildet.The linguistic variables according to rules 1 to 5 are determined and saved during the learning phase. They remain unchanged during an operating phase. In contrast, the variable according to rule 6 is continuously determined during the operating phase and the metering device 22 is controlled as a function of its chronological course. For this purpose, the measured value x of the transmitter 28 is fed to the fuzzy controller 29, as well as the setpoint x s to which the conductivity is to be regulated. The setpoint deviation □ x = x - x s is formed from these two values.

    Das Ausgangssignal des Fuzzy-Reglers 29 kann folgende Zustände einnehmen:

    • dauernd ein
    • sehr lang ein
    • lang ein
    • mittel ein
    • kurz ein
    • sehr kurz ein
    • dauernd aus.
    The output signal of the fuzzy controller 29 can assume the following states:
    • constantly on
    • very long one
    • long
    • medium one
    • short one
    • very briefly
    • constantly off.

    Nachfolgend sind einige Fuzzy-Regeln angegeben:

  • Wenn Totzeit = sehr lang und Sollwertabweichung = neg. mittel, dann Ausgang = mittel ein.
  • Wenn Totzeit = lang und Sollwertabweichung = neg. mittel, dann Ausgang = lang ein.
  • Wenn Totzeit = mittel und Sollwertabweichung = neg. mittel, dann Ausgang = lang ein.
  • Wenn Totzeit = kurz und Sollwertabweichung = neg. mittel, dann Ausgang = sehr lang ein.
  • Wenn Totzeit = sehr kurz und Sollwertabweichung = neg. mittel. dann Ausgang = dauernd ein.
  • Some fuzzy rules are given below:
  • If dead time = very long and setpoint deviation = neg. Medium, then output = medium on.
  • If dead time = long and setpoint deviation = neg. Medium, then output = long on.
  • If dead time = medium and setpoint deviation = neg. Medium, then output = long on.
  • If dead time = short and setpoint deviation = neg. Medium, then output = very long on.
  • If dead time = very short and setpoint deviation = neg. Medium. then exit = continuously on.
  • Daraus folgt, daß je kürzer die Totzeit ist um so länger die Dosierung gewählt werden kann, weil die Konzentrationsänderung sofort erfaßt wird.

  • Wenn Verdünnung = sehr schnell und Sollwertabweichung = neg. mittel, dann Ausgang = dauernd ein.
  • Wenn Verdünnung = schnell und Sollwertabweichung = neg. mittel, dann Ausgang = sehr lang ein.
  • Wenn Verdünnung = mittel und Sollwertabweichung = neg. mittel, dann Ausgang = lang ein.
  • Wenn Verdünnung = langsam und Sollwertabweichung = neg. mittel, dann Ausgang = mittel ein.
  • Wenn Verdünnung = sehr langsam und Sollwertabweichung = neg. mittel, dann Ausgang = kurz ein.
  • It follows that the shorter the dead time, the longer the dosage can be selected because the change in concentration is detected immediately.
  • If dilution = very fast and setpoint deviation = neg. Medium, then output = permanently on.
  • If dilution = fast and setpoint deviation = neg. Medium, then output = very long on.
  • If dilution = medium and setpoint deviation = neg. Medium, then output = long on.
  • If dilution = slow and setpoint deviation = neg. Medium, then output = medium on.
  • If dilution = very slow and setpoint deviation = neg. Medium, then output = briefly on.
  • Aus der vorstehenden Regel folgt, daß die Verdünnungsgeschwindigkeit die Dauer der Dosierung bei gleicher Regelabweichung beeinflußt. D.h. je höher die Verdünnungsgeschwindigkeit, um so mehr muß dosiert werden.From the rule above follows that the rate of dilution the duration of the dosage at the same Control deviation influenced. I.e. the higher the rate of dilution, all the more must be dosed.

    Durch Verknüpfung sämtlicher angegebener Fuzzy-Variabler, die in den Regeln 1 bis 5 angegeben sind, kann eine sehr hohe Regelgenauigkeit erreicht werden.By linking all the fuzzy variables specified in rules 1 to 5 can be a very high one Control accuracy can be achieved.

    Wenn während einer Betriebsphase ermittelt wird, daß die Sollwertabweichung □x über eine vorgegebene Mindestzeit einen Grenzwert übersteigt, wird angenommen, daß die zuvor in der Lernphase ermittelten Einflußgrößen nicht mehr stimmen und es wird eine neue Lernphase durchgeführt, bei der eine neue Antwort auf einen Dosierimpuls I ermittelt wird. If it is determined during an operating phase that the Setpoint deviation □ x over a specified minimum time Exceeds the limit, it is assumed that the previously in the Learning phase determined influencing variables are no longer correct and it will carried out a new learning phase in which a new answer to a metering pulse I is determined.

    In Figur 2 wurde angenommen, daß der Anfangswert xA gleich oder annähernd Null ist. Dies ist dann nicht der Fall, wenn in dem Reinigungstank bereits eine gewisse Konzentration an Reiniger vorhanden ist. In Abhängigkeit von der Anfangskonzentration kann eine unterschiedliche Bewertung der Einflußgrößen-Meßwertänderung und/oder Ausgleichsgeschwindigkeit erforderlich sein, was durch Multiplizierung mit einem entsprechenden Faktor erfolgen kann.In Figure 2 it was assumed that the initial value x A is equal to or approximately zero. This is not the case if there is already a certain concentration of detergent in the cleaning tank. Depending on the initial concentration, it may be necessary to evaluate the change in the influencing variable measured value and / or the rate of compensation differently, which can be done by multiplying by a corresponding factor.

    Bei dem Ausführungsbeispiel von Figur 4 enthält die Dosiervorrichtung 22a eine Pumpe 30, die flüssigen Reiniger aus einem Flüssigkeitsbehälter 31 in die Dosierleitung 23 pumpt. In diesem Fall steuert der Regler 29 die Pumpe 30, in dem er diese entweder einschaltet oder ausschaltet.In the embodiment of Figure 4, the Dosing device 22a a pump 30, the liquid cleaner pumps a liquid container 31 into the metering line 23. In In this case, the controller 29 controls the pump 30 by making it either turns on or turns off.

    Claims (5)

    1. A metering process for delivering detergent to a dishwashing machine comprising: at least one cleaning tank (12), a conductivity transducer (28) located in the cleaning tank, a spray arm (19) with means for returning the sprayed detergent solution to the cleaning tank (12) and a metering unit (22) for introducing detergent into the cleaning tank (12), characterized in that detergent is continuously introduced into the cleaning tank (12) for a predetermined time in a learning phase and the resulting response of the conductivity as a function of time is determined; in that characteristic influencing factors (Tt, MV, MD, KV, VV) of the control system are obtained from the response; in that a conductivity setpoint (xs) is adjusted for a following operating phase; and in that, in the operating phase, the setpoint deviation (□x) of the measured conductivity is determined and metering is carried out by a fuzzy control system as a function of the setpoint deviation (□x) on the basis of the determined influencing factors as fuzzy variables.
    2. A metering process as claimed in claim 1, characterized in that the influencing factors of the control system obtained from the response comprise at least the dead time (Tt), the change in concentration (KD) between the starting value (A) and the last maximum (D) of the response and the equalizing rate (MV) and/or the change in the measured value (MD) between maximum and minimum conductivity.
    3. A metering process as claimed in claim 1 or 2, characterized in that the influencing factors of the control system obtained from the response comprise the dilution rate (VV) caused by addition of water after the last maximum (D).
    4. A metering process as claimed in any of claims 1 to 3, characterized in that a new learning phase is carried out when the setpoint deviation
      Figure 00180001
      exceeds a limit for a predetermined minimum time.
    5. A metering process as claimed in any of claims 1 to 4, characterized in that the conductivity value (x) is measured at the beginning of the learning phase and the influencing factor-measured value change and/or the equalizing rate and/or change in concentration is evaluated in dependence thereon.
    EP97954371A 1996-12-18 1997-12-10 Dosing method for adding detergent to a dishwashing machine Expired - Lifetime EP0946121B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19652733 1996-12-18
    DE19652733A DE19652733C2 (en) 1996-12-18 1996-12-18 Dosing method for adding a detergent to a dishwasher
    PCT/EP1997/006888 WO1998026704A1 (en) 1996-12-18 1997-12-10 Dosing method for adding detergent to a dishwashing machine

    Publications (2)

    Publication Number Publication Date
    EP0946121A1 EP0946121A1 (en) 1999-10-06
    EP0946121B1 true EP0946121B1 (en) 2000-08-02

    Family

    ID=7815170

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97954371A Expired - Lifetime EP0946121B1 (en) 1996-12-18 1997-12-10 Dosing method for adding detergent to a dishwashing machine

    Country Status (13)

    Country Link
    US (1) US20020117187A1 (en)
    EP (1) EP0946121B1 (en)
    JP (1) JP4001391B2 (en)
    AT (1) ATE195062T1 (en)
    CA (1) CA2275388A1 (en)
    DE (2) DE19652733C2 (en)
    DK (1) DK0946121T3 (en)
    ES (1) ES2150293T3 (en)
    GR (1) GR3034327T3 (en)
    NO (1) NO992955D0 (en)
    NZ (1) NZ336803A (en)
    PT (1) PT946121E (en)
    WO (1) WO1998026704A1 (en)

    Families Citing this family (49)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19940645A1 (en) * 1999-08-26 2001-03-08 Henkel Ecolab Gmbh & Co Ohg Dishwashing process and dishwasher
    US6792637B2 (en) * 2002-01-08 2004-09-21 U.S. Chemical Corporation Automatic detergent dispensing system for a warewasher
    US6996869B2 (en) 2002-11-25 2006-02-14 Ecolab, Inc. Dispensing cartridge and method of dispensing a product from a dispensing cartridge
    US6819977B2 (en) * 2002-12-24 2004-11-16 Ecolab Inc. Dispenser having multiple modes of operation
    US20040226959A1 (en) 2003-05-12 2004-11-18 Mehus Richard J. Methods of dispensing
    DE10322421A1 (en) * 2003-05-16 2004-12-09 Electrolux Home Products Corporation N.V. Method for dispensing products in a dish washing machine from a multi-compartment dispensing unit in the minimum quantities required has a fuzzy logic control system
    US6991131B2 (en) 2003-09-02 2006-01-31 Ecolab, Inc. Distributable container and system and method using distributable container
    DE10347766A1 (en) * 2003-10-14 2005-06-09 BSH Bosch und Siemens Hausgeräte GmbH Household machine with a system for supplying detergent into the cleaning liquid
    CA2567603C (en) 2004-06-23 2013-06-11 Ecolab Inc. Method for multiple dosage of liquid products, dosing apparatus and dosing system
    US20070295036A1 (en) * 2004-08-23 2007-12-27 Reckitt Benckiser N.V. Detergent Dispensing Device
    US7571734B2 (en) * 2005-01-20 2009-08-11 General Electric Company Fluid dispensing system for a washing device
    US7942978B2 (en) * 2005-08-15 2011-05-17 Ecolab Inc. Auxiliary rinse phase in a wash machine
    GB0522660D0 (en) * 2005-11-07 2005-12-14 Reckitt Benckiser Nv Assembly and device
    WO2007051989A1 (en) * 2005-11-07 2007-05-10 Reckitt Benckiser N.V. Dosage element
    DE102005062479A1 (en) * 2005-12-27 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Dosing arrangement for adding an additive into a chamber of a household appliance comprises actuators formed as electro-active polymers for driving conveyor units
    AU2007206708A1 (en) 2006-01-21 2007-07-26 Reckitt Benckiser N.V. Article
    US20100065084A1 (en) * 2006-01-21 2010-03-18 Reckitt Benckiser N.V. Multi-Dosing Detergent Delivery Device
    EP1976421B1 (en) 2006-01-21 2017-06-21 Reckitt Benckiser Finish B.V. An article for use in a ware washing machine
    DE102006014464B3 (en) * 2006-03-29 2007-10-04 Wolfgang Gutacker Conveyor-based automatic dishwasher for cleaning e.g. dinnerware, has dosing device with output unit for increasing amount of cleaning agent to be dispensed with increasing transportation speed depending on clock impulse of clock generator
    GB0621574D0 (en) * 2006-10-30 2006-12-06 Reckitt Benckiser Nv Multi-dosing detergent delivery device
    GB0621569D0 (en) * 2006-10-30 2006-12-06 Reckitt Benckiser Nv Mounting device
    GB0621572D0 (en) 2006-10-30 2006-12-06 Reckitt Benckiser Nv Multi-dosing detergent delivery device
    JP2010508415A (en) * 2006-10-30 2010-03-18 レキット ベンキサー プロダクション (ポーランド) エスピー.ゼットオー.オー. Compressed detergent composition
    GB0621578D0 (en) * 2006-10-30 2006-12-13 Reckitt Benckiser Nv Multi-dosing detergent delivery device
    EP2086382A1 (en) * 2006-10-30 2009-08-12 Reckitt Benckiser N.V. Multi-dosing detergent delivery device
    GB0621570D0 (en) 2006-10-30 2006-12-06 Reckitt Benckiser Nv Multi-dosing detergent delivery device
    GB0621576D0 (en) 2006-10-30 2006-12-06 Reckitt Benckiser Nv Device status indicator
    GB0710229D0 (en) * 2007-05-30 2007-07-11 Reckitt Benckiser Nv Detergent dosing device
    AU2008296167B2 (en) 2007-09-07 2013-03-28 Diversey, Inc. Material delivery systems and methods
    US7802335B2 (en) * 2007-10-12 2010-09-28 General Electric Company Bulk dispense user adjustable controls
    US8056374B2 (en) * 2007-10-12 2011-11-15 General Electric Company Multiple compartments wash additives auto-dispenser in washer or dryer pedestal
    US8056747B2 (en) * 2007-10-12 2011-11-15 General Electric Company Removable tank for laundry bulk dispenser system
    DE102008044952A1 (en) * 2008-08-29 2010-03-04 Premark Feg L.L.C., Wilmington Dishwasher in the form of a programmer and method of operation thereof
    USRE48951E1 (en) 2015-08-05 2022-03-01 Ecolab Usa Inc. Hand hygiene compliance monitoring
    USD663911S1 (en) 2009-07-22 2012-07-17 Reckitt Benckiser N.V. Detergent dispensing device lid
    US9102509B2 (en) 2009-09-25 2015-08-11 Ecolab Inc. Make-up dispense in a mass based dispensing system
    US9051163B2 (en) 2009-10-06 2015-06-09 Ecolab Inc. Automatic calibration of chemical product dispense systems
    US9265398B2 (en) * 2010-03-08 2016-02-23 Whirlpool Corporation Dishwasher with separate sump for concentrated fluid supply
    DE102010062138A1 (en) * 2010-11-29 2012-05-31 Henkel Ag & Co. Kgaa Method for controlling a dosing device for flowable detergents or cleaners
    DE102011006176B4 (en) * 2011-03-25 2015-03-12 Judo Wasseraufbereitung Gmbh Method for operating a metering pump and associated metering device
    US8944286B2 (en) 2012-11-27 2015-02-03 Ecolab Usa Inc. Mass-based dispensing using optical displacement measurement
    AT515721A1 (en) * 2014-04-30 2015-11-15 Hans Georg Hagleitner Dispenser and dosing system for the metered dispensing of stored in containers chemical substances to a dishwasher or washing machine
    AT515709A1 (en) * 2014-04-30 2015-11-15 Hans Georg Hagleitner Dosing system for metered delivery of stored in containers chemical substances to a dishwasher or washing machine
    EP3161203B1 (en) * 2014-06-24 2019-11-06 Electrolux Appliances Aktiebolag Method for operating a laundry washing appliance and laundry washing appliance implementing the same
    ITUB20152349A1 (en) * 2015-07-21 2017-01-21 Seko Spa SELF-CALIBRATED DOSAGE METHOD
    US10273625B2 (en) 2016-11-29 2019-04-30 Whirlpool Corporation Retrofittable bulk dispensing system for household appliances
    US10456008B2 (en) 2016-11-29 2019-10-29 Whirlpool Corporation Learning dispensing system for water inlet hose
    CN110383355B (en) 2017-03-07 2021-08-27 埃科莱布美国股份有限公司 Monitoring module for hand hygiene dispenser
    CA3123862A1 (en) 2018-12-20 2020-06-25 Ecolab Usa Inc. Adaptive route, bi-directional network communication

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI80729C (en) * 1988-04-07 1990-07-10 Vesa Hakulinen FOERFARANDE OCH ANORDNING FOER DOSERING AV TVAETTMEDEL.
    GB9108387D0 (en) * 1991-04-19 1991-06-05 Unilever Plc Washing process
    JPH04341296A (en) * 1991-05-16 1992-11-27 Sanyo Electric Co Ltd Washing machine
    DE4132306A1 (en) * 1991-09-27 1993-04-08 Henkel Kgaa METHOD FOR CONTROLLING AND REGULATING THE DETERGENT SUPPLY OF A DISHWASHER
    US5404893A (en) * 1992-03-12 1995-04-11 Ecolab Inc. Self-optimizing detergent controller
    US5500050A (en) * 1994-07-15 1996-03-19 Diversey Corporation Ratio feed detergent controller and method with automatic feed rate learning capability

    Also Published As

    Publication number Publication date
    NZ336803A (en) 2000-03-27
    DE19652733C2 (en) 2001-03-01
    DK0946121T3 (en) 2000-12-18
    ATE195062T1 (en) 2000-08-15
    JP4001391B2 (en) 2007-10-31
    CA2275388A1 (en) 1998-06-25
    ES2150293T3 (en) 2000-11-16
    JP2001506151A (en) 2001-05-15
    WO1998026704A1 (en) 1998-06-25
    PT946121E (en) 2000-12-29
    DE19652733A1 (en) 1998-06-25
    DE59702115D1 (en) 2000-09-07
    GR3034327T3 (en) 2000-12-29
    EP0946121A1 (en) 1999-10-06
    NO992955L (en) 1999-06-17
    NO992955D0 (en) 1999-06-17
    US20020117187A1 (en) 2002-08-29

    Similar Documents

    Publication Publication Date Title
    EP0946121B1 (en) Dosing method for adding detergent to a dishwashing machine
    EP0580643B1 (en) Process and device for washing
    EP0003118B1 (en) Process and apparatus for regenerating and maintaining the activity of a photographic treating solution
    EP0501996B1 (en) Process for the continuous machine-cleaning of utility crockery
    DE2361151B2 (en) Process for the preparation of the effluents in photographic development processes and device for carrying out the process
    DE19512011C2 (en) Process for preparing soft water in dishwashers or washing machines
    WO1994023286A1 (en) Process for measuring the degree of soil of a wash bath
    EP0146732B1 (en) Process and apparatus for separating, for example, copper from a liquid electrolyte introduced into a pluricellular electrolyser
    CH670964A5 (en)
    DE1913868A1 (en) Machine for washing textiles, dishes or the like.
    DE3725831A1 (en) METHOD AND DEVICE FOR CONTINUOUS WET-IN-WET TREATMENT
    DE102016109965B4 (en) Dishwasher and method for operating a dishwasher
    DE4015141A1 (en) Galvanic process operation using pre- and post-treatment baths - involves continuously or cyclically supplying fresh liq. whose life is limited by continuous operation
    CH655995A5 (en) DOSING SYSTEM IN AN AIR CONDITIONING AND A METHOD FOR THE OPERATION THEREOF.
    DE19727939C2 (en) Device for optimal dosing of rinsing liquid
    EP1526203A1 (en) Method and device for rinsing fabric in roped form
    DD151013A3 (en) TACTICAL WASHING MACHINE FOR DISINFECTION TREATMENT OF WAESCHE
    DE19539760C2 (en) Method for controlling the water flow in a rinsing system of a plant for electroplating and surface technology
    DE2203590A1 (en) DRUM SPOOL DEVICE
    EP1002582A1 (en) Method of operating a ion exchanger
    DE4403457A1 (en) Method and appliance for rinsing workpieces
    DE3911735C2 (en)
    DE102020208139A1 (en) Dishwasher, method for operating a dishwasher and computer program product
    DE3921564A1 (en) Controlling concn. of developer, coating remover sol. for PCB(s) - by measuring electrical conductivity of sol. circulated through measurement cell at defined temp. and adding sol or water accordingly
    DE19608442A1 (en) Automatic dyeing and pH control system

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990609

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19991014

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    REF Corresponds to:

    Ref document number: 195062

    Country of ref document: AT

    Date of ref document: 20000815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59702115

    Country of ref document: DE

    Date of ref document: 20000907

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2150293

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20001102

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20001010

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20010927

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20011206

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20011212

    Year of fee payment: 5

    Ref country code: AT

    Payment date: 20011212

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20011219

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20011220

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20011228

    Year of fee payment: 5

    Ref country code: NL

    Payment date: 20011228

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20020104

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020109

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020218

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021210

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021210

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021210

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030131

    BERE Be: lapsed

    Owner name: *LANG APPARATEBAU G.M.B.H.

    Effective date: 20021231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030707

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030701

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20030630

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20021211

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20161111

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20161207

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20161221

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20161213

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20171209

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20171209