EP0945168A1 - Procédé et dispositif pour la préparation d'un mélange homogéne à action continue - Google Patents

Procédé et dispositif pour la préparation d'un mélange homogéne à action continue Download PDF

Info

Publication number
EP0945168A1
EP0945168A1 EP99102503A EP99102503A EP0945168A1 EP 0945168 A1 EP0945168 A1 EP 0945168A1 EP 99102503 A EP99102503 A EP 99102503A EP 99102503 A EP99102503 A EP 99102503A EP 0945168 A1 EP0945168 A1 EP 0945168A1
Authority
EP
European Patent Office
Prior art keywords
mixing
mixing chamber
control
ventilation
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99102503A
Other languages
German (de)
English (en)
Other versions
EP0945168B1 (fr
Inventor
Jürgen Raak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raak Harald Dr
Original Assignee
Raak Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raak Juergen filed Critical Raak Juergen
Publication of EP0945168A1 publication Critical patent/EP0945168A1/fr
Application granted granted Critical
Publication of EP0945168B1 publication Critical patent/EP0945168B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2112Level of material in a container or the position or shape of the upper surface of the material

Definitions

  • the present invention relates to a method and a Device for continuous production and online dosing homogeneous mixtures of difficult to mix using gaseous, liquid or solid mixes a liquid solvent, preferably Water.
  • the liquid mixed substances can be emulsions, Act dispersions or the like, solid Mixed substances can consist of powders, granules or the like exist.
  • DE-PS 32 22 209 and in EP 0 096 746 B1 is a process for continuous production of mixtures and inline doses of two heavy miscible components, preferably of water and a polyacrylamide suspension described in which the components via a dosing point of a closed, supplied with a turbine mixing cell and mixed, which is characterized is that in the mixing cell a gas cushion by feeding is formed by air, with which the mixed goods initially " be kept contactless "and that the intensive mixing in a pipe mixer connected to the mixing cell he follows.
  • the device essentially consists from the fact that by means of an injector the air for the gas cushion is generated and a turbine in the mixing cell is arranged by the pressure difference of the first component is driven, and that the supply line of the second Component arranged at a distance from the surface of the mix is.
  • the mixed goods must already be pre-mixed or be merged before going over a Conveying device (pump) for further intensive mixing be fed to the static mixer.
  • a Conveying device pump
  • a direct merging and mixing of several Mixing material in the mixer body is not due to the design possible because the static mixer is only from a tube with fixed static mixer inserts. These mixer inserts differ depending on the mixing feed geometric shapes, but they are cannot and cannot be changed during the mixing process thus have no influence on the quality of the solution the mixture. Due to the closed design is also not a visual control of the mixing process possible (trade journal "CHEMIE TECHNIK", 25. Year -1996- No. 1, page 12 + No. 8, page 38).
  • the dynamic mixers are in contrast to do this, as a rule, discontinuously, i.e. in Batch operation, working mixers, which are very expensive in purchase and require considerably more space.
  • the set-up and cleaning work is accordingly associated with a considerable additional effort.
  • System-related moving and rotating parts are required hence an unevenly higher operating cost and Energy consumption than usual with static mixers.
  • dynamic mixers When compared to static mixers dynamic mixers Combine mixed goods in one step and can mix them together at the same time the technical effort required for this is very large. This applies equally if within mixed operation Changes to the device are made can, which have a direct influence on the quality of mixing have, e.g. those entered in the mixing room Mixing energies are changed by variations of the Agitator speeds, drive power etc., or by Limitation of the mixing room volume by level restrictions the batch container etc.
  • the procedure can also both in the pressure and in the vacuum range (vacuum) be performed.
  • the procedure in the Vacuum area is used when disturbing Air or oxygen influences should be avoided e.g. in the case of mixed goods sensitive to oxidation.
  • the already known mixing systems used for this a considerable technical outlay than it does the method according to the invention is the case.
  • an additionally installed ventilation unit enables the solvent intensely before entering the mixing zone to ventilate and, if required, the mixing task does that in the subsequent mixing process of the excess portion not absorbed by means of a venting device immediately from the same Eliminate mixing chamber.
  • New mixing tasks can be realized with this procedure and be carried out, e.g. also by a Modular summary of several consecutive Mixing chambers in a network.
  • a device which is that in a small dimension Reaction chamber of a mixing chamber, which with a transparent top is equipped, the mixed goods merged in a controlled manner and immediately intensively together are mixed, being at any time of the Mixing process there is an option through stepless Changes z.
  • the mixing chamber Control and operating module By means of one connected to the mixing chamber Control and operating module, its electronic Circuit operations are not shown here, the Automated mixing process and the current interconnection the mixing device can also be visualized.
  • the Combine mixing chambers very well, e.g. a Mixing chamber in the suction line under negative pressure conditions and another mixing chamber in simultaneously the pressure line of the same pump under overpressure conditions operate.
  • Each mixing unit is with a small dimension Control electronics with visual status display Execution of a fully automatic process combined.
  • the device is made essentially of two basic parts, the mixing chamber 1 with a small-sized reaction space, in which the mixed goods are brought together and mixed be connected, as well as one with the control line f electronic control and operating module a with which is a continuous and in particular a fully automatic Continuous mixing is guaranteed.
  • a Dosing lock 3 at the apex of the mixing chamber is attached, on the body of the supply connections for the mix 5, a combined vacuum pressure gauge 4 with safety valve 4/1 and the two supply connections 6, 7 are located, which are independent from each other via the flexible supply lines 6/1 and 7/1 from the respective solenoid valves 6/5 and 7/5 or via the two manual valves 6/4 and 7/4 be charged.
  • positions 6/2, 7/2 and 6/6, 7/6 are only connection fittings for the respective supply or ventilation supply lines, where these are equipped with pressure gauges 6/3 and 7/3 for checking are.
  • Supply line with the integrated solenoid valve 7/5 can also use the check valve 7/7 and the Aeration unit 10 gaseous media directly into the solvent inject what is in the aeration process the supply line with the integrated solenoid valve 6/5 otherwise only indirectly, via the solvent-free zone LZ, is possible.
  • the solvent is fed into the mixing chamber via the inlet 8 1 introduced, aerated by the ventilation unit 10 and by a static integrated in the bore 11 Mixer insert 12 in highly turbulent rotating ring layers transferred.
  • the mix is discharged from the metering lock 3 coming across the solvent free zone LZ vertically from above into this turbulent solvent flow introduced, mixed and over a distributor floor 13 fed with slots to the output 9 to the Leave mixing chamber 1 as a homogeneous mixture.
  • a level sensor 2 is arranged, the contactless through the mixing chamber wall Level of the mixing chamber 1 detected.
  • the solenoid valves 6/5, 7/5 and the electronic level sensor 2 are included the control and operating module a via the control line f electrically connected to each other.
  • the mixing chamber On the surface of the top of the control and operating module a is symbolically the mixing chamber with the respective associated aggregates shown with flashing and / or color-changing LEDs L1, L2 are the current interconnection of the mixing device identifies, in particular the solenoid valves 6/5, 7/5, the electronic level sensor 2 and the function light b.
  • the surface of the housing of the control and operating module a is with an electrical switch d to the friend Vent and e to switch the module on / off.
  • control and operating module a is technically the same designed that an electrical connection of all shown, given electrically operated units together is. With the use of electronic components thus an automatic and controlled mixing process can be set, the power supply of the control and operating module by means of the plug 10 from conventional 220 V sockets.
  • the operation of the device according to the invention in the negative pressure area e.g. B. in the suction line of a suction and pressure pump 9/1 with downstream valve 9/2 and flow meter / flow monitor 9/3.
  • the control and operating module a with the switch d on the function ventilate "set.
  • This ventilation function is only in the vacuum area provided the level in the To keep mixing chamber 1 constant. Should the fluid level rise in the reactor so far that in a preset position adjusted electronic level sensor 2 is activated, the solenoid valve 6/5 opens interval-like and one finely dosed via the manual valve 6/4 Air volume is via the connection fittings 6/6, 6 and Dosing lock 3 fed to the mixing chamber 1 until the desired level in the reactor set and the solenoid valve 6/5 closes again.
  • Aeration medium can z. B. atmospheric Outside air are sniffed.
  • the mixes used for the mixing process are as shown in Figs. 2, 3, 4 by an externally operated Dosing unit 5/1 on the connection fitting 5 and Dosing lock 3 by the level of the Mixing chamber 1 dependent solvent-free zone LZ vertically into that generated by the static mixer part 12 turbulent solvent flow introduced.
  • the suction and pressure pump 9/1 required for conveying the finished mixture continuously withdraws the homogeneous mixture produced in accordance with the method from the connection fitting of the outlet 9 of the mixing chamber 1 in order to use the valve 9/2 and the flow meter / flow monitor 9/3) to transport to the end user.
  • the UNTERPRESSURE that occurs in the mixing chamber 1) 1 with this method can be set by a pressure reducing valve, not shown, in the supply line of the inlet 8 supplying the solvent.
  • the control and operating module a is via the control line g with the actuators of the pump 9/1 and the valve 9/2, with the flow meter / flow monitor 9/3 and the Dosing unit 5/1 connected. Circuitry are involved these units interconnected so that deviations in the specified flow rate from Flow meter / flow monitor 9/3 registered and e.g. by switching off the pumps 5/1, 9/1 or closing the Valve 9/2 are corrected. With this measure an uncontrolled mixing process avoided and always one constant solution concentration ensured.
  • FIG. 3 is the operation of the device according to the invention Device in the overpressure area, e.g. in the pressure line of a suction and pressure pump 8/3 with downstream valve 8/2 and flow meter / flow monitor 8/1 shown.
  • the control and operating module a with switch d set to the "ventilate" function.
  • This ventilation function is also in the overpressure range as provided in the vacuum area Fig. 2 exclusively for the level in the mixing chamber 1 constant to keep.
  • the mixes used for the mixing process are as shown in Figs. 2, 3, 4 by an externally operated Dosing unit 5/1 in the same way as in the vacuum area 2 in the solvent flow of the Mixing chamber introduced.
  • Control and operating modules a are via control line g with the actuators of the pump 8/3 and the valve 8/2 with the flow meter / flow monitor 8/1 and the dosing unit 5/1 connected. Circuitry are involved these units are also electrically interconnected as shown in Fig. 2.
  • the second ventilation line e.g. Compressed air or another gaseous medium Mixing chamber 1 supplied to aerate the solvent become.
  • the connection fitting 7/6 the solenoid valve 7/5 the manual valve 7/4 and the check valve 7/7 the gas then passes into the ventilation unit 10 to be finely divided with the solvent before the actual mixing process in the subsequent reaction space takes place.
  • the course of the reaction is determined by the speed of mass transfer. Since due to the device according to the invention the very small dimensioned reaction volume of the Mixing chamber short mixing times (seconds up to Can be realized in fractions of a second) The methods described here also in particular for gas-liquid reactions.
  • Excess gas that is not absorbed by the solvent can be removed from the mixture can be from the first ventilation line via the connection fitting 6 and the manual valve 6/4 or Solenoid valve 6/5 according to the description Fig. 1 removed become.
  • the control and Control module a) with the switch d on the function "vent" set can be from the first ventilation line via the connection fitting 6 and the manual valve 6/4 or Solenoid valve 6/5 according to the description Fig. 1 removed become.
  • the mixture can also be made after leaving the exit 9 again partly the circuit of the pump 8/3 be fed. This will cause the mixture to come in several times the pump 8/3 circulated. This will make the mix improved.
  • each mixing chamber as independent mixing module can be operated.
  • the stepless adjustment options shown with its Help at any point in the mixing process the mixing quality can be taken. This is particularly beneficial if during adjust the mixing process changes, for example the throughput quantities, temperatures, viscosities, Relate to surface activities or the like can.
  • the representation "mixer lowered” should symbolically show that the static mixer insert 12 in the bore 11 is arranged adjustable in height.
  • the Mixer flowing around solvent flow variable Generate mixed geometries and thus according to the Mixer position different mixing energies and Mixing effects in the reaction chamber of the mixing chamber 1 bring in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
EP99102503A 1998-02-19 1999-02-10 Procédé et dispositif pour la préparation d'un mélange homogéne à action continue Expired - Lifetime EP0945168B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19806934A DE19806934A1 (de) 1998-02-19 1998-02-19 Verfahren und Vorrichtung zur kontinuierlichen Herstellung homogener Mischungen
DE19806934 1998-02-19

Publications (2)

Publication Number Publication Date
EP0945168A1 true EP0945168A1 (fr) 1999-09-29
EP0945168B1 EP0945168B1 (fr) 2003-07-02

Family

ID=7858275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99102503A Expired - Lifetime EP0945168B1 (fr) 1998-02-19 1999-02-10 Procédé et dispositif pour la préparation d'un mélange homogéne à action continue

Country Status (3)

Country Link
EP (1) EP0945168B1 (fr)
AT (1) ATE244056T1 (fr)
DE (2) DE19806934A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015117739A1 (fr) * 2014-02-05 2015-08-13 Gea Tds Gmbh Procédé et dispositif de mélange et de dosage de matières à doser solides dans un liquide porteur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892390B (zh) * 2021-01-28 2022-07-15 江西省奋发粘胶化工有限公司 一种硅酮胶用智能化调色设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE927685C (de) * 1950-12-28 1955-05-16 Paul Vollrath Maschinenfabrik Mischvorrichtung fuer Fluessigkeiten mit pulvrigen oder koernigen Stoffen
DE3222209A1 (de) * 1982-06-12 1983-12-15 Allied Colloids Manufacturing GmbH, 2000 Hamburg Verfahren und vorrichtung zur herstellung von mischungen und in-line-dosierungen schwer mischbarer komponenten, wie zum beispiel wasser und polymere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE927685C (de) * 1950-12-28 1955-05-16 Paul Vollrath Maschinenfabrik Mischvorrichtung fuer Fluessigkeiten mit pulvrigen oder koernigen Stoffen
DE3222209A1 (de) * 1982-06-12 1983-12-15 Allied Colloids Manufacturing GmbH, 2000 Hamburg Verfahren und vorrichtung zur herstellung von mischungen und in-line-dosierungen schwer mischbarer komponenten, wie zum beispiel wasser und polymere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015117739A1 (fr) * 2014-02-05 2015-08-13 Gea Tds Gmbh Procédé et dispositif de mélange et de dosage de matières à doser solides dans un liquide porteur
CN106457172A (zh) * 2014-02-05 2017-02-22 基伊埃Tds有限公司 用于将固体的计量材料混合并且计量供应到载液中的方法和设备
CN106457172B (zh) * 2014-02-05 2019-11-05 基伊埃Tds有限公司 用于将固体的计量材料混合并且计量供应到载液中的方法和设备

Also Published As

Publication number Publication date
DE59906142D1 (de) 2003-08-07
EP0945168B1 (fr) 2003-07-02
ATE244056T1 (de) 2003-07-15
DE19806934A1 (de) 1999-09-30

Similar Documents

Publication Publication Date Title
EP3227010B1 (fr) Appareil et procédé pour charger un liquide avec gaz
EP0729780A2 (fr) Appareil pour mélanger des liquides avec des solides
EP0029165B2 (fr) Installation pour la fabrication en continu d'un lait d'amidon
EP0175252B1 (fr) Procédé et dispositif pour préparer par réaction un mélange fluide moussant à partir de composants fluides stockés dans des réservoirs
DE19919519A1 (de) Vorrichtung zur Herstellung einer fliessfähigen Masse
EP0945168B1 (fr) Procédé et dispositif pour la préparation d'un mélange homogéne à action continue
DE102006026254A1 (de) Vorrichtung zum Erzeugen einer Komponentenmischung aus mindestens zwei Komponenten und Verfahren hierzu
DE29802891U1 (de) Mischmodul zum kontinuierlichen Mischen und Dosieren
EP0332032B1 (fr) Procédé et dispositif pour charger en gaz au moins une composante réactive fluide, notamment en quantité minime, pour la fabrication de matières moussées, notamment de matière moussées de polyuréthane
DE2701508A1 (de) Verfahren zur kontinuierlichen herstellung und foerderung einer mischung aus fein- bis grobkoernigem material mit einer fluessigkeit und vorrichtung zur durchfuehrung des verfahrens
DE19823839A1 (de) Verfahren und Vorrichtung zum Mischen und Dispergieren mindestens zweier Phasen
DE69006320T2 (de) Verfahren und Apparat zum Beschichten eines Polymerisationsreaktors mit einem verdünnten Katalysatorschlamm.
DE3536992C1 (de) Vorrichtung zum Mischen von Fluessigkeiten
DE10010287B4 (de) Verfahren zur Herstellung von flüssigen Gemischen für das chemisch-mechanische Polieren von Wafern
DE942211C (de) Vorrichtung zum Verteilen eines Gases in einer Fluessigkeit
DE3803217A1 (de) Vorrichtung zum mischen und dosieren fester und fluessiger dosiergueter
DE2263752C3 (de) Vorrichtung und Verfahren zum Stabilisieren von Abwasserschlamm oder ähnlichem Abfallmaterial
DE1093274B (de) Druckgasruehrvorrichtung fuer auf Wolle u. dgl. aufzubringende Schmaelze
DE2807481A1 (de) Flotationsverfahren
DE3434443C2 (fr)
DE202022104411U1 (de) Bodenelement für eine Anlage mit Rotor-Stator-System
DE19944389A1 (de) Verfahren zur Belüftung von Abwasser, dafür geeignete Belüftungseinrichtung und mit der Belüftungseinrichtung ausgestattetes Belebungsbeckung mit ungünstigem Fläche/Tiefe-Verhältnis
DE3808318A1 (de) Verfahren und vorrichtung zur aufbereitung von loesungen eines chemischen konzentrats
WO1992020439A1 (fr) Installation et procede pour le melange et/ou l'homogeneisation de composants liquides
DE2411262A1 (de) Verfahren und vorrichtung zum loesen von quellfaehigen verdickungsmitteln, insbesondere zur verwendung in der textilindustrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FI FR GB IT LI NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000320

AKX Designation fees paid

Free format text: AT CH DE ES FI FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010215

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RAAK, HARALD, DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAAK, JUERGEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE ES FI FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030702

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59906142

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031013

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: DR. HARALD RAAK;SONNENHOFSTRASSE 18;8853 LACHEN (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: DR. HARALD RAAK;UNTERE REBRAINSTRASSE 6;9213 HAUPTWIL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130211

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130528

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906142

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906142

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902