EP0944035A2 - Procédé et dispositif de focalisation d'ondes acoustiques - Google Patents

Procédé et dispositif de focalisation d'ondes acoustiques Download PDF

Info

Publication number
EP0944035A2
EP0944035A2 EP99111417A EP99111417A EP0944035A2 EP 0944035 A2 EP0944035 A2 EP 0944035A2 EP 99111417 A EP99111417 A EP 99111417A EP 99111417 A EP99111417 A EP 99111417A EP 0944035 A2 EP0944035 A2 EP 0944035A2
Authority
EP
European Patent Office
Prior art keywords
acoustic
location
transducers
medium
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99111417A
Other languages
German (de)
English (en)
Other versions
EP0944035B1 (fr
EP0944035A3 (fr
Inventor
désignation de l'inventeur n'a pas encore été déposée La
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POUR LES APPLICATIONS DU RETOURNEMENT TEMPOREL Ste
Original Assignee
POUR LES APPLICATIONS DU RETOURNEMENT TEMPOREL Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by POUR LES APPLICATIONS DU RETOURNEMENT TEMPOREL Ste filed Critical POUR LES APPLICATIONS DU RETOURNEMENT TEMPOREL Ste
Publication of EP0944035A2 publication Critical patent/EP0944035A2/fr
Publication of EP0944035A3 publication Critical patent/EP0944035A3/fr
Application granted granted Critical
Publication of EP0944035B1 publication Critical patent/EP0944035B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the present invention relates to methods and focusing and time compression devices of acoustic energy.
  • acoustic should be taken in a general sense, without limiting it to frequencies audible. It is even likely to apply to waves radio-electric, in so far as they have a mode of propagation which approaches that of acoustic waves.
  • the invention is applicable in many fields of the technique, among which the following may be mentioned.
  • the invention allows energy to be concentrated acoustics at a given location.
  • This location can by example being that of a fixed target that we are trying to locate or to destroy. This last case is that of lithotripsy or destruction of a tumor in the body. It is also that of the destruction of an explosive device, such as a mine.
  • the location (or a set of such locations) can still be located on an industrial chain where are successively presented objects to receive each one or more intense acoustic energy pulses, brief and localized.
  • Such methods perform focusing of energy on a target, i.e. compression spatial energy.
  • the present invention aims in particular to produce, in more than one spatial compression per focusing, one temporal compression of energy.
  • the invention notably proposes a method as set out in claim 1.
  • step (a) a pulse lasting less than ten periods and preferably five, from the fundamental period in case of resonant transducers.
  • the second duration is chosen to correspond to the spreading of the arrival times of the acoustic energy having traveled the multi-diffuser environment by all paths possible within this environment, at least as long as the energy transmitted remains appreciable.
  • multi-diffuser medium means a medium deliberately placed between the target location and the network of transducers, and in which are dispersed or distributed individually reflecting or diffusing elements acoustic energy, with low absorption, such as to cause a spread of at least an order of magnitude of the duration of the initial pulse.
  • mean free path 1 of the acoustic waves in this environment that is to say by the distance over which a incoming initial plane wave completely loses memory of its initial direction.
  • This mean free path 1 is equal to 1 / n ⁇ where n is the density of the diffusing elements and where ⁇ is their scattering cross section.
  • Free course is all the smaller that ⁇ is large, which is obtained when the frequency of the acoustic waves is close resonant frequencies of the elements.
  • These elements can be very diverse in nature. They can be including rods, glitter, beads, gas bubbles, reflective particles. Typically, the average dimension has particles is such that 2 ⁇ a / ⁇ is of the order of the unit, ⁇ being the wavelength of the acoustic waves emitted, or the wavelength corresponding to the frequency central of the emitted spectrum.
  • the thickness e of such a medium must be greater than average free path; a thickness of at least five times is often desirable.
  • the reflective elements of the multi-diffuser environment can still be spread around the periphery of the middle of spread. They may in particular consist of impedance discontinuities between the propagation medium and the external environment.
  • the multi-diffuser medium then comprises an acoustic channel between the concentration location of waves and transducers, the walls of which realize by multiple reflections, the temporal spread of the pulse initial, and the despreading of the return waves.
  • step (b) registration takes place during a time window which, in particular when a acoustic signal is likely to come from several separate locations, is chosen according to the selected location and the nature of the environment.
  • the diffusing medium acts after reversal temporal, like a transmitter whose angular opening, seen of the location, can be much greater than the opening angular under which the network is seen.
  • Another aspect of the invention relates to a focusing and time compression device of acoustic energy as set forth in claim 13.
  • FIG. 1 shows the multi-diffuser medium 10 interposed between a source 12, which constitutes a target located at a location where the concentration, and a network of 14 transceiver transducers, connected to a circuit 16 having as many channels transceiver that there are transducers.
  • This circuit 16 has a constitution of the kind already described in the documents EP-A-0 383 650 and EP-A-0 591 061.
  • the tests were carried out with a target 12 constituted by a hydrophone provided with an excitation circuit 18 and capable of emitting short pulses, from 1 microsecond, with a center frequency of 3 MHz.
  • the middle multi-diffuser 10 is made up of 0.5 mm rods length, with an average spacing of around 2 mm.
  • the thickness e of the medium was 45 mm.
  • the width w was of the order of 120 mm.
  • Circuit 16 included, for each channel, a analog-digital converter, a memory organized in queue and reading facilities with a timeline inverted and amplified.
  • a measurement of the characteristics of the return wave having passed through the medium 10 has shown that the beam is refocus on an area having a width, at - 6 dB, substantially equal to ⁇ F / w, F being the distance between the plane of exit from the multi-diffuser medium and the target.
  • This task focal length is finer than it would have been in the absence of multi-diffuser medium. The latter indeed presents a angular aperture, view from target, much higher than the array of transducers 14.
  • the device schematically illustrated in the figure 2 (where the organs corresponding to those already shown in figure 1 are designated by the same reference number) is intended to focus, on a passive target 12, a short pulse and intense, with low power emission means.
  • a multi-diffuser medium 10 is interposed between the network of piezoelectric transducers 14 and the target 12.
  • the transducers 14, or at least some of them, are scheduled to send to target 12, which is reflective, a short pulse at the frequency of acoustic waves to concentrate. It is also possible to use different transducers for the first illumination (step (a) above) and for receiving and re-transmission (steps (b) and (c)).
  • an opening 20 of dimension sufficient to allow passage of an illumination shot in short, without dissemination. The illuminated target returns, towards the multi-diffuser medium 10 and the network of transducers 14, the wave which is then returned in time.
  • the received wave and reflected by target 12 may have variation in the time shown schematically in Figure 3A.
  • This kind of signal from some fundamental and broadband periods, can in particular be obtained using transducers in composite technology.
  • the echo signal received by a particular transducer will then have, because a part at less of the reflected energy has undergone multicasting, a 17 shape which is for example that shown in Figure 3B.
  • means such as mirrors 22 can be arranged around multi-diffuser medium 10, so as to reduce re-emissions of acoustic energy towards directions other than that of the target and / or to constitute an acoustic channel.
  • the signal returned by each transducer 14 is not obtained by analog amplification of the returned signal, but by return of a signal consisting of pulses alternately positive and negative, each having the same duration and the same sign as the corresponding alternation ( Figure 3C).
  • the multi-diffuser medium 10 is placed opposite the target 12 with respect to the array of transducers 14.
  • the first illumination is carried out by a transmitter additional 24 (in the direction f0 of Figure 4).
  • the acoustic energy reflected by the target 12 passes through two times the middle 10, with an intermediate reflection on a mirror 26, as indicated by the arrow f1.
  • Network 14 retransmits him also towards the mirror 26 (arrow f2).
  • step (a) can only be carried out during a phase calibration. Subsequently, the energy concentration is done by repeating step (c).
  • This latter embodiment makes it possible in particular to transmit messages that cannot be received with a high power and intelligibly only in one area well determined.
  • the multi-diffuser medium must then be completely stationary.
  • the amplifier provided on the channel associated with the transducer i will be planned so that the emission by the transducer is of the form ei ( ⁇ -t) ⁇ s (t), ⁇ being a fixed delay, identical for all transducers.
  • Demodulation will take place classical, whatever the modulation of the signal s (t).
  • the network of transducers can be targeted relative to the target and oriented towards a wall of the underwater acoustic channel, as the surface or the bottom.
  • the multi-diffuser medium 30 does not include elements randomly distributed in the middle volume of propagation, but only reflective elements distributed on its surface, thus defining a channel or guide acoustic wave.
  • the array of transducers 14 is placed at one end of this waveguide.
  • the calibration source 12 is placed at the other end of the waveguide 30.
  • the many reflections on the reflecting wall spread the duration of the initial pulse at network 14, and inversely compress this duration during the retransmission focused on the location originally occupied by the calibration source.
  • a transducer 24 is placed near the end of waveguide 30 to illuminate the reflecting target 12 in the direction opposite to the guide 30 during the initial stage.
  • the transducer 24 can be fixed by means of a mount which does not prevent the spread of waves, such as three wires oriented radially with respect to to the axis of the guide, 120 ° from each other.
  • the part of brief beam of illumination returned by target 12 to the guide 30 then undergoes multiple reflections which spread its duration. After time reversal and amplification, energy will focus on the reflective target 12 if it has not moved too much.
  • transducers and an associated circuit for setting up implements the above-mentioned processes. Indeed, the constitution of circuits can be similar to that already given in previous patent applications mentioned. It is only necessary that the memories organized in queue intended to record the complex signal received by the transducers 14 have a sufficient capacity. The capacity of these memories will still be increased if you want to store the waveforms previously registered for several separate locations, later selectable at will in the re-emission phases. The gain of amplifiers provided on each channel of transducers will be, for a given power to be concentrated, function of the time spread produced by the multi-diffuser medium 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)

Abstract

On provoque l'émission depuis un emplacement-cible (12) d'une impulsion acoustique courte, de première durée. On recueille sur un réseau de transducteurs (14) et on enregistre, pendant une seconde durée, supérieure d'au moins un ordre de grandeur à la première durée, les signaux acoustiques provenant dudit emplacement à travers un milieu multi-diffuseur (10). On émet vers le milieu multi-diffuseur, à partir des transducteurs (14), des signaux de retour obtenus par inversion temporelle et amplification de ceux recueillis pendant la seconde durée, ce qui provoque une focalisation et une compression temporelle d'énergie acoustique à l'emplacement-cible.

Description

La présente invention est relative aux procédés et dispositifs de focalisation et de compression temporelle d'énergie acoustique. Le terme "acoustique" doit être pris dans un sens général, sans le limiter aux fréquences audibles. Il est même susceptible de s'appliquer aux ondes radio-électriques, dans la mesure où elles ont un mode de propagation qui se rapproche de celui des ondes acoustiques.
L'invention est applicable dans de nombreux domaines de la technique, parmi lesquels on peut citer les suivants.
L'invention permet de concentrer une énergie acoustique en un emplacement donné. Cet emplacement peut par exemple être celui d'une cible fixe qu'on cherche à localiser ou à détruire. Ce dernier cas est celui de la lithotritie ou de la destruction d'une tumeur dans le corps. C'est aussi celui de la destruction d'un engin explosif, tel qu'une mine.
L'emplacement (ou un ensemble de tels emplacements) peut encore être situé sur une chaíne industrielle où sont successivement présentés des objets devant recevoir chacun une ou plusieurs impulsions d'énergie acoustique, intenses, brèves et localisées.
Elle permet également la communication entre une station et un récepteur placé à l'emplacement où se concentre l'énergie, avec une discrétion assurée par le caractère sélectif de la concentration d'énergie ; plusieurs récepteurs peuvent être prévus, au prix d'une distribution d'énergie.
On connaít déjà des procédés d'examen d'un milieu pour y repérer des cibles réfléchissantes et/ou de destruction des cibles, utilisant le retournement temporel des signaux reçus par les transducteurs piézo-électriques d'un réseau, avant ré-émission (document EP-A-0 383 650).
De tels procédés effectuent une focalisation d'énergie sur une cible, c'est-à-dire une compression spatiale d'énergie.
La présente invention vise notamment à réaliser, en plus d'une compression spatiale par focalisation, une compression temporelle d'énergie.
Dans ce but, l'invention propose notamment un procédé tel qu'énoncé dans la revendication 1.
En général, on recherchera, au cours de l'étape (a), une impulsion de durée inférieure à dix périodes et de préférence cinq, de la période fondamentale en cas de transducteurs résonants.
La seconde durée est choisie pour correspondre à l'étalement des temps d'arrivée de l'énergie acoustique ayant parcouru le milieu multi-diffuseur par tous les chemins possibles au sein de ce milieu, du moins aussi longtemps que l'énergie transmise reste appréciable.
on entend par "milieu multi-diffuseur" un milieu délibérément placé entre l'emplacement-cible et le réseau de transducteurs, et dans lequel sont dispersés ou répartis des éléments réfléchissant ou diffusant individuellement l'énergie acoustique, avec une absorption faible, de nature à provoquer un étalement d'au moins un ordre de grandeur de la durée de l'impulsion initiale. Dans le cas d'une répartition quasi-aléatoire des éléments dans le volume du milieu de propagation, on peut définir la nature d'un tel milieu multi-diffuseur par le libre parcours moyen 1 des ondes acoustiques dans ce milieu, c'est-à-dire par la distance sur laquelle une onde plane initiale entrante perd complètement la mémoire de sa direction initiale. Ce libre parcours moyen 1 est égal à 1/nσ où n est la densité volumique des éléments diffuseurs et où σ est leur section efficace de diffusion. Le libre parcours est d'autant plus petit que σ est grand, ce qui est obtenu lorsque la fréquence des ondes acoustiques est proche des fréquences de résonance des éléments. Ces éléments peuvent être de natures très diverses. Ils peuvent être notamment des tiges, paillettes, billes, bulles de gaz, particules réfléchissantes. Typiquement, la dimension moyenne a des particules est telle que 2πa/λ soit de l'ordre de l'unité, λ étant la longueur d'onde des ondes acoustiques émises, ou la longueur d'onde correspondant à la fréquence centrale du spectre émis.
Lorsqu'on recherche un étalement important de la durée d'une impulsion et un facteur de compression élevé, l'épaisseur e d'un tel milieu (longueur occupée entre l'emplacement-cible et le réseau) doit être supérieure au libre parcours moyen ; une épaisseur d'au moins cinq fois est souvent souhaitable.
Les éléments réfléchissants du milieu multi-diffuseur peuvent encore être répartis à la périphérie du milieu de propagation. Ils peuvent notamment consister en des discontinuités d'impédance entre le milieu de propagation et le milieu extérieur. Le milieu multi-diffuseur comporte alors un canal acoustique entre l'emplacement de concentration des ondes et les transducteurs, dont les parois réalisent par des réflexions multiples, l'étalement temporel de l'impulsion initiale, et le désétalement des ondes de retour.
Au cours de l'étape (b), l'enregistrement s'effectue pendant une fenêtre temporelle qui, notamment lorsqu'un signal acoustique est susceptible de provenir de plusieurs emplacements distincts, est choisi en fonction de l'emplacement sélectionné et de la nature du milieu.
On peut encore remarquer qu'en donnant au milieu multi-diffuseur une ouverture angulaire, vue de l'emplacement de concentration, nettement supérieure à l'ouverture angulaire du réseau, on obtient également une résolution de la tache de refocalisation beaucoup fine que dans le cas d'un milieu homogène. Le milieu diffuseur agit, après retournement temporel, comme un émetteur dont l'ouverture angulaire, vue de l'emplacement, peut être très supérieure à l'ouverture angulaire sous laquelle est vu le réseau.
Le principe mis en oeuvre par l'invention ressort de ce qui précède. Les signaux acoustiques de retour (étape (c) ci-dessus) parcourent dans le milieu diffuseur des chemins inverses de ceux parcourus antérieurement, dans la mesure où le milieu n'évolue pas ou n'a qu'une évolution lente (typiquement avec des déplacements des diffuseurs n'entraínant pas une modification de la longueur des chemins de diffusion multiple de plus d'1/10 de la plus petite longueur d'onde pour laquelle le spectre émis présente une puissance appréciable) du fait du principe du retour inverse. L'onde acoustique ré-émise subit toutes les diffusions et/ou réflexions multiples dans une chronologie inversée de celle de l'aller et reforme à la sortie du milieu l'onde acoustique initiale, constituée par une impulsion courte.
Lorsque le milieu multi-diffuseur est, totalement ou partiellement, entouré de surfaces réfléchissantes pour les ondes, toute l'énergie ré-émise est concentrée sur l'emplacement choisi pendant la durée de l'impulsion initiale, et on obtient un gain très supérieur au gain d'antenne classique dû à la focalisation, puisqu'il est multiplié par un facteur de compression temporelle. Même avec des transducteurs de faible puissance ou des amplificateurs à faible gain, on peut concentrer des puissances élevées lorsque le milieu multi-diffuseur provoque un allongement important, qui peut être de l'ordre de 100 et davantage.
Un autre aspect de l'invention se rapporte à un dispositif de focalisation et de compression temporelle d'énergie acoustique tel qu'énoncé dans la revendication 13.
D'autres caractéristiques et avantages de l'invention apparaítront au cours de la description détaillée suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif, en regard des dessins joints.
Sur les dessins :
  • la figure 1 est un schéma de principe montrant les conditions d'un essai destiné à prouver la faisabilité du procédé selon l'invention ;
  • la figure 2 est un schéma d'un premier mode de réalisation ;
  • les figures 3A à 3C montrent l'allure des signaux acoustiques ; et
  • les figures 4 à 6 montrent trois variantes de réalisation.
Pour faire apparaítre l'intérêt de l'invention, on donnera tout d'abord les résultats d'essais effectués en utilisant, comme milieu multi-diffuseur, des tiges métalliques parallèles réparties de façon quasi aléatoire et ayant un diamètre de l'ordre de la longueur d'onde □ de l'énergie acoustique. La figure 1 montre le milieu multi-diffuseur 10 interposé entre une source 12, qui constitue une cible située à un emplacement où s'effectuera la concentration, et un réseau de transducteurs 14 émetteurs-récepteurs, reliés à un circuit 16 ayant autant de voies d'émission-réception qu'il y a de transducteurs. Ce circuit 16 a une constitution du genre déjà décrit dans les documents EP-A-0 383 650 et EP-A-0 591 061.
Les essais ont été effectués avec une cible 12 constituée par un hydrophone muni d'un circuit d'excitation 18 et capable d'émettre des impulsions brèves, de 1 microseconde, avec une fréquence centrale de 3 MHz. Le milieu multi-diffuseur 10 est constitué de tiges de 0,5 mm de longueur, avec un espacement moyen de l'ordre de 2 mm. L'épaisseur e du milieu était de 45 mm. Le libre parcours moyen, pour la longueur d'onde considérée, était d'environ 1 = 7 mm. La largeur w était de l'ordre de 120 mm.
L'onde acoustique sphérique émise par la cible 12, dont la partie émettrice avait un diamètre de l'ordre de 0,5 mm, subit des diffusions multiples, sans dissipation notable du fait de la réflectivité du métal. Le réseau de transducteurs 14 comportait 48 transducteurs et le circuit associé 16 était prévu pour enregistrer les signaux individuels sur des durées d'environ 100 microsecondes, correspondant à l'étalement des temps d'arrivée des ondes acoustiques ayant parcouru le milieu multi-diffuseur par tous les chemins possibles.
Le circuit 16 comportait, pour chaque voie, un convertisseur analogique-numérique, une mémoire organisée en file d'attente et des moyens de lecture avec une chronologie inversée et d'amplification.
Une mesure des caractéristiques de l'onde de retour ayant traversé le milieu 10 a montré que le faisceau se refocalise sur une zone ayant une largeur, à - 6 dB, sensiblement égale à λF/w, F étant la distance entre le plan de sortie du milieu multi-diffuseur et la cible. Cette tache focale est plus fine qu'elle ne l'aurait été en l'absence du milieu multi-diffuseur. Ce dernier présente en effet une ouverture angulaire, vue de la cible, beaucoup plus élevée que le réseau de transducteurs 14.
Le dispositif schématiquement illustré sur la figure 2 (où les organes correspondant à ceux déjà montrés en figure 1 sont désignés par le même numéro de référence) est destiné à concentrer, sur une cible passive 12, une impulsion brève et intense, avec des moyens d'émission de faible puissance.
Dans ce cas encore, un milieu multi-diffuseur 10 est interposé entre le réseau de transducteurs piézo-électriques 14 et la cible 12. Les transducteurs 14, ou au moins certains d'entre eux, sont prévus pour envoyer sur la cible 12, qui est réfléchissante, une impulsion brève à la fréquence des ondes acoustiques à concentrer. Il est également possible d'utiliser des transducteurs différents pour la première illumination (étape (a) ci-dessus) et pour la réception et la ré-émission (étapes (b) et (c)). Dans le milieu multi-diffuseur 10 est ménagée une ouverture 20 de dimension suffisante pour permettre le passage d'un tir d'illumination bref, sans diffusion. La cible illuminée renvoie, vers le milieu multi-diffuseur 10 et le réseau de transducteurs 14, l'onde qui est ensuite retournée temporellement. L'onde reçue et réfléchie par la cible 12 peut avoir la variation dans le temps montrée schématiquement en figure 3A. Ce type de signal, de quelques périodes fondamentales et à bande large, peut notamment être obtenu à l'aide de transducteurs en technologie composite. Le signal d'écho reçu par un transducteur particulier aura alors, du fait qu'une partie au moins de l'énergie réfléchie a subi la multi-diffusion, une 17 allure qui est par exemple celle montrée sur la figure 3B.
Pour réduire les pertes d'énergie acoustique, des moyens tels que des miroirs 22 peuvent être disposés autour du milieu multi-diffuseur 10, de façon à réduire les ré-émissions d'énergie acoustique vers des directions autres que celle de la cible et/ou à constituer un canal acoustique.
Dans une variante simplifiée de réalisation, le signal retourné par chaque transducteur 14 n'est pas obtenu par amplification analogique du signal retourné, mais par retour d'un signal constitué d'impulsions alternativement positives et négatives, ayant chacune la même durée et le même signe que l'alternance correspondante (figure 3C).
Dans la variante de réalisation montrée en figure 4, le milieu multi-diffuseur 10 est placé à l'opposé de la cible 12 par rapport au réseau de transducteurs 14. Dans ce cas, la première illumination est effectuée par un émetteur supplémentaire 24 (suivant la direction f0 de la figure 4). L'énergie acoustique réfléchie par la cible 12 traverse deux fois le milieu 10, avec une réflexion intermédiaire sur un miroir 26, comme indiqué par la flèche f1. Le réseau 14 ré-émet lui aussi vers le miroir 26 (flèche f2).
Dans un autre cas encore, on cherche à concentrer de l'énergie dans une zone déterminée de l'espace, constituant cible, qu'on a préalablement sélectionnée. Dans ce cas, l'étape (a) peut n'être effectuée qu'au cours d'une phase d'étalonnage. Ultérieurement, la concentration d'énergie s'effectue en répétant l'étape (c).
Ce dernier mode d'exécution permet notamment de transmettre des messages qui ne pourront être reçus avec une puissance élevée et de façon intelligible que dans une zone bien déterminée. Le milieu multi-diffuseur doit alors être complètement stationnaire.
Dans ce cas, si l'onde acoustique reçue au cours de l'étape (b) par un transducteur i est représentable par ei(t) et le message à transmettre est de la forme s(t), l'amplificateur prévu sur la voie associée au transducteur i sera prévu pour que l'émission par le transducteur soit de la forme ei(τ-t) ⊗ s(t), τ étant un retard fixe, identique pour tous les transducteurs. La démodulation s'effectuera de façon classique, quelle que soit la modulation du signal s(t).
Pour la transmission sous-marine, par exemple à partir d'un bâtiment ou d'un robot sous-marin, le réseau de transducteurs peut être dépointé par rapport à la cible et orienté vers une paroi du canal acoustique sous-marin, comme la surface ou le fond.
Dans les variantes de réalisation des figures 5 et 6, le milieu multi-diffuseur 30 ne comporte pas d'éléments répartis aléatoirement dans le volume du milieu de propagation, mais seulement des éléments réfléchissants répartis à sa surface, définissant ainsi un canal ou guide d'onde acoustique. Le réseau de transducteurs 14 est placé à une extrémité de ce guide d'onde.
Dans le cas de la figure 5, la source d'étalonnage 12 est placée à l'autre extrémité du guide d'onde 30. Les nombreuses réflexions sur la paroi réfléchissante étalent la durée de l'impulsion initiale au niveau du réseau 14, et compriment inversement cette durée lors de la ré-émission focalisée vers l'emplacement initialement occupé par la source d'étalonnage.
Dans le cas de la figure 6, un transducteur 24 est placé près de l'extrémité du guide d'onde 30 pour illuminer la cible réfléchissante 12 en direction opposée au guide 30 lors de l'étape initiale. Le transducteur 24 peut être fixé au moyen d'une monture n'entravant pas la propagation des ondes, telle que trois fils orientés radialement par rapport à l'axe du guide, à 120° les uns des autres. La partie du bref faisceau d'illumination renvoyée par la cible 12 vers le guide 30 subit alors les réflexions multiples qui étalent sa durée. Après retournement temporel et amplification, l'énergie se concentrera sur la cible réfléchissante 12 si elle ne s'est pas trop déplacée.
On ne décrira pas ici de façon complète des transducteurs et un circuit associé permettant de mettre en oeuvre les procédés ci-dessus mentionnés. En effet, la constitution des circuits peut être similaire à celle déjà donnée dans les demandes de brevet antérieures précédemment mentionnées. Il est seulement nécessaire que les mémoires organisées en file d'attente destinées à enregistrer le signal complexe reçu par les transducteurs 14 aient une capacité suffisante. La capacité de ces mémoires devra encore être augmentée si on souhaite stocker les formes d'ondes préalablement enregistrées relativement à plusieurs emplacements distincts, ultérieurement sélectionnables à volonté dans les phases de ré-émission. Le gain des amplificateurs prévus sur chaque voie de transducteurs sera, pour une puissance donnée à concentrer, fonction de l'étalement temporel réalisé par le milieu multi-diffuseur 10.

Claims (16)

  1. Procédé de focalisation et de compression temporelle d'énergie acoustique en au moins un emplacement, suivant lequel :
    a) on provoque l'émission depuis ledit emplacement (12) d'une impulsion acoustique courte, de première durée,
    b) on recueille sur un réseau de transducteurs (14) et on enregistre, pendant une seconde durée, supérieure d'au moins un ordre de grandeur à la première durée, les signaux acoustiques provenant dudit emplacement à travers un milieu multi-diffuseur (10;30) ; et
    c) on émet vers le milieu multi-diffuseur, à partir des dits transducteurs (14), des signaux de retour obtenus par inversion temporelle et amplification de ceux recueillis pendant la seconde durée.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on donne, au milieu multi-diffuseur (10;30), une ouverture angulaire, vue dudit emplacement (12), supérieure à l'ouverture angulaire du réseau (14).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on amplifie les signaux inversés temporellement avec un gain fonction croissante du retard d'arrivée sur les transducteurs.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que les signaux de retour au cours de l'étape (c) sont d'amplitude constante et ont le signe des signaux enregistrés.
  5. Procédé selon la revendication 1 ou 12, caractérisé en ce qu'on module les signaux de retour par un message à transmettre.
  6. Procédé selon la revendication 1 à 5, caractérisé en ce que l'on effectue une seule fois les étapes (a) et (b) au cours d'une phase d'étalonnage et en ce qu'on émet des signaux de retour de façon répétitive, le milieu multi-diffuseur (10;30) étant stationnaire.
  7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le milieu multi-diffuseur (10) comporte une ouverture (20), et en ce que l'étape (a) comporte l'émission depuis le réseau de transducteurs (14) d'un faisceau d'illumination à travers l'ouverture du milieu multi-diffuseur, et la réflexion du faisceau d'illumination par une cible réfléchissante (12) définissant ledit emplacement.
  8. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'étape (a) comporte l'émission depuis un transducteur (24) n'appartenant pas au réseau (14) d'un faisceau d'illumination, et la réflexion du faisceau d'illumination par une cible réfléchissante (12) définissant ledit emplacement.
  9. Procédé selon l'une quelconque des revendications à 1 à 8, caractérisé en ce que ledit milieu multi-diffuseur comprend un milieu de propagation et des éléments réfléchissants répartis.
  10. Procédé selon la revendication 9, caractérisé en ce que les éléments réfléchissants sont répartis dans le volume du milieu de propagation.
  11. Procédé selon la revendication 9, caractérisé en ce que les éléments réfléchissants sont répartis à la périphérie du milieu de propagation.
  12. Procédé selon la revendication 11, caractérisé en ce que les éléments réfléchissants sont constitués par des discontinuités d'impédance acoustique entre le milieu de propagation et le milieu extérieur.
  13. Dispositif de focalisation et de compression temporelle d'énergie acoustique en un emplacement, comprenant :
    des moyens (18;24) pour provoquer l'émission d'une impulsion acoustique brève depuis ledit emplacement (12) ;
    un réseau de transducteurs (14) ;
    un milieu multi-diffuseur (10;30) destiné à être interposé entre le réseau de transducteurs et ledit emplacement, et agencé pour étaler temporellement ladite impulsion acoustique de façon à augmenter sa durée d'au moins un ordre de grandeur au niveau du réseau de transducteurs, le réseau de transducteurs étant commandé pour émettre des signaux acoustiques obtenus par inversion temporelle et amplification de signaux acoustiques captés en réponse à l'émission de ladite impulsion.
  14. Dispositif selon la revendication 13, caractérisé en ce que l'épaisseur du milieu multi-diffuseur (10) est sensiblement supérieure au libre parcours moyen des ondes dans ce milieu.
  15. Dispositif selon la revendication 13 ou 14, caractérisé en ce qu'il comporte de plus des moyens définissant un canal acoustique.
  16. Dispositif selon la revendication 15, caractérisé en ce que le réseau de transducteurs est orienté vers une paroi du canal acoustique.
EP99111417A 1995-07-13 1996-07-11 Procédé et dispositif de focalisation d'ondes acoustiques Expired - Lifetime EP0944035B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9508543 1995-07-13
FR9508543 1995-07-13
EP96925774A EP0842508B1 (fr) 1995-07-13 1996-07-11 Procede et dispositif de focalisation d'ondes acoustiques

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP96925774A Division EP0842508B1 (fr) 1995-07-13 1996-07-11 Procede et dispositif de focalisation d'ondes acoustiques
EP96925774.0 Division 1997-01-30

Publications (3)

Publication Number Publication Date
EP0944035A2 true EP0944035A2 (fr) 1999-09-22
EP0944035A3 EP0944035A3 (fr) 2001-04-18
EP0944035B1 EP0944035B1 (fr) 2011-03-30

Family

ID=9480993

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99111417A Expired - Lifetime EP0944035B1 (fr) 1995-07-13 1996-07-11 Procédé et dispositif de focalisation d'ondes acoustiques
EP96925774A Expired - Lifetime EP0842508B1 (fr) 1995-07-13 1996-07-11 Procede et dispositif de focalisation d'ondes acoustiques

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP96925774A Expired - Lifetime EP0842508B1 (fr) 1995-07-13 1996-07-11 Procede et dispositif de focalisation d'ondes acoustiques

Country Status (5)

Country Link
US (2) US6198829B1 (fr)
EP (2) EP0944035B1 (fr)
JP (1) JP3675836B2 (fr)
DE (2) DE69638347D1 (fr)
WO (1) WO1997003438A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69638347D1 (de) * 1995-07-13 2011-05-12 Applic Du Retournement Temporel Soc Pour Verfahren und Anordnung zur Fokussierung akustischer Welle
FR2815717B1 (fr) * 2000-10-20 2003-01-10 Centre Nat Rech Scient Procede et dispositif non invasif de focalisation d'ondes acoustiques
FR2830468B1 (fr) * 2001-10-04 2004-02-20 Inst Nat Sante Rech Med Dispositif et procede de production d'impulsions ultrasonores de forte pression
FR2840418B1 (fr) * 2002-06-04 2004-08-20 Centre Nat Rech Scient Procede pour generer un champ d'ondes predetermine
US20040059265A1 (en) * 2002-09-12 2004-03-25 The Regents Of The University Of California Dynamic acoustic focusing utilizing time reversal
FR2858099B1 (fr) 2003-07-25 2006-03-24 Centre Nat Rech Scient Procede et dispositif de focalisation d'ondes acoustiques
WO2005106842A2 (fr) * 2004-04-16 2005-11-10 Raytheon Company Procede et systeme de signalisation de refus a un plongeur
FI20060910A0 (fi) * 2006-03-28 2006-10-13 Genelec Oy Tunnistusmenetelmä ja -laitteisto äänentoistojärjestelmässä
FR2912817B1 (fr) * 2007-02-21 2009-05-22 Super Sonic Imagine Sa Procede d'optimisation de la focalisation d'ondes au travers d'un element introducteur d'aberations.
US7613076B2 (en) * 2007-05-31 2009-11-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic power transformer including lens
EP2315458A3 (fr) * 2008-04-09 2012-09-12 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Appareil et procédé pour générer des caractéristiques de filtres
TW201026009A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst An electrical apparatus, circuit for receiving audio and method for filtering noise
FR2977671B1 (fr) * 2011-07-08 2013-11-29 01Db Metravib Procede et dispositif pour controler des structures par retournement temporel
FR2991807B1 (fr) * 2012-06-06 2014-08-29 Centre Nat Rech Scient Dispositif et procede de focalisation d'impulsions
FR2991791B1 (fr) 2012-06-06 2014-08-08 Commissariat Energie Atomique Interface de stimulation tactile par retournement temporel
FR3076941B1 (fr) * 2018-01-12 2021-06-04 Valeo Systemes Dessuyage Procede de calibration pour systeme de focalisation acoustique
FR3076940B1 (fr) * 2018-01-12 2021-04-16 Valeo Systemes Dessuyage Procede d'emission sonore focalisee et systeme de focalisation acoustique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092336A (en) * 1989-02-08 1992-03-03 Universite Paris Vii-Bureau De La Valorisation Et De Relations Industrielle Method and device for localization and focusing of acoustic waves in tissues
US5428999A (en) * 1992-10-02 1995-07-04 Universite Paris Vii Method and apparatus for acoustic examination using time reversal
US5438624A (en) * 1992-12-11 1995-08-01 Jean-Claude Decaux Processes and devices for protecting a given volume, preferably arranged inside a room, from outside noises

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2334953A1 (fr) * 1975-12-11 1977-07-08 Labo Electronique Physique Systeme d'analyse par ultrasons et son application a l'echographie
US4882714A (en) * 1984-02-07 1989-11-21 Nec Corporation Object detecting system using ultrasonic waves
US5267320A (en) * 1991-03-12 1993-11-30 Ricoh Company, Ltd. Noise controller which noise-controls movable point
FR2683323B1 (fr) 1991-11-05 1994-02-11 Paris Vii Universite Procede et dispositif de controle interne de pieces par ultrasons.
WO1994024662A1 (fr) * 1993-04-21 1994-10-27 Sri International Methode de calcul de la ponderation de filtres pour systemes de neutralisation des ondes de pression
US5327496A (en) * 1993-06-30 1994-07-05 Iowa State University Research Foundation, Inc. Communication device, apparatus, and method utilizing pseudonoise signal for acoustical echo cancellation
FR2726115B1 (fr) * 1994-10-20 1996-12-06 Comptoir De La Technologie Dispositif actif d'attenuation de l'intensite sonore
US5745580A (en) * 1994-11-04 1998-04-28 Lord Corporation Reduction of computational burden of adaptively updating control filter(s) in active systems
DE69638347D1 (de) * 1995-07-13 2011-05-12 Applic Du Retournement Temporel Soc Pour Verfahren und Anordnung zur Fokussierung akustischer Welle
US5699437A (en) * 1995-08-29 1997-12-16 United Technologies Corporation Active noise control system using phased-array sensors
JPH09303477A (ja) * 1996-05-16 1997-11-25 Nissan Motor Co Ltd 能動型騒音振動制御装置
FR2749938B1 (fr) * 1996-06-13 1998-08-28 Fink Mathias Procede et dispositif de detection et de localisation de source sonore reflechissante
US5963651A (en) * 1997-01-16 1999-10-05 Digisonix, Inc. Adaptive acoustic attenuation system having distributed processing and shared state nodal architecture
US6292433B1 (en) * 1997-02-03 2001-09-18 Teratech Corporation Multi-dimensional beamforming device
US5978489A (en) * 1997-05-05 1999-11-02 Oregon Graduate Institute Of Science And Technology Multi-actuator system for active sound and vibration cancellation
US6490469B2 (en) * 2000-03-15 2002-12-03 The Regents Of The University Of California Method and apparatus for dynamic focusing of ultrasound energy
US6449566B1 (en) * 2000-11-06 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Acoustic scattering measurement and processing for determining variances in multiple features
US6755083B2 (en) * 2001-06-13 2004-06-29 The Regents Of The University Of California Method for distinguishing multiple targets using time-reversal acoustics
US6687188B2 (en) * 2002-05-14 2004-02-03 The United States Of America As Represented By The Secretary Of The Navy Underwater telemetry apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092336A (en) * 1989-02-08 1992-03-03 Universite Paris Vii-Bureau De La Valorisation Et De Relations Industrielle Method and device for localization and focusing of acoustic waves in tissues
US5428999A (en) * 1992-10-02 1995-07-04 Universite Paris Vii Method and apparatus for acoustic examination using time reversal
US5438624A (en) * 1992-12-11 1995-08-01 Jean-Claude Decaux Processes and devices for protecting a given volume, preferably arranged inside a room, from outside noises

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FINK M ET AL: "PHASE ABERRATION CORRECTION WITH ULTRASONIC TIME REVERSAL MIRRORS" PROCEEDINGS OF THE ULTRASONICS SYMPOSIUM,US,NEW YORK, IEEE, 1 novembre 1994 (1994-11-01), pages 1629-1638, XP000525109 ISBN: 0-7803-2013-1 *
FINK M: "TIME REVERSAL OF ULTRASONIC FIELDS-. ÖPART I: BASIC PRINCIPLES" IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL,US,IEEE INC. NEW.YORK, vol. 39, no. 5, 1 septembre 1992 (1992-09-01), pages 555-566, XP000306730 ISSN: 0885-3010 *

Also Published As

Publication number Publication date
EP0944035B1 (fr) 2011-03-30
DE69638347D1 (de) 2011-05-12
WO1997003438A1 (fr) 1997-01-30
EP0842508B1 (fr) 2000-01-12
US20010001603A1 (en) 2001-05-24
JP3675836B2 (ja) 2005-07-27
DE69606179T2 (de) 2000-08-17
US6198829B1 (en) 2001-03-06
DE69606179D1 (de) 2000-02-17
JP2000501896A (ja) 2000-02-15
EP0842508A1 (fr) 1998-05-20
EP0944035A3 (fr) 2001-04-18
US6978028B2 (en) 2005-12-20

Similar Documents

Publication Publication Date Title
EP0944035B1 (fr) Procédé et dispositif de focalisation d'ondes acoustiques
EP0591061B1 (fr) Procédé et dispositif d'examen acoustique à retournement temporel
FR2642640A1 (fr) Procede et dispositif de focalisation d'ultrasons dans les tissus
EP0543445B1 (fr) Appareil d'examen de milieux par échographie ultrasonore
EP0459583B1 (fr) Echographe ultrasonore à correction adaptative d'aberration de phase
EP0107552A1 (fr) Sonar interférométrique en acoustique non-linéaire
CA2777036A1 (fr) Dispositif de mesure de la vitesse du vent
CA2874836A1 (fr) Dispositif et procede de focalisation d'impulsions.
EP0733408B1 (fr) Capteur à ultrasons et procédés de détection utilisant un tel capteur
CA2657708C (fr) Procede et dispositif de transmission d'ondes
EP0825453A1 (fr) Procédé et dispositif pour le traitement de signaux représentatifs d'ondes réfléchies ou transmises par une structure volumique en vue d'effectuer une exploration et une analyse de cette structure
WO2018189450A1 (fr) Procédé et dispositif de sondage ultrasonore par focalisation adaptative au moyen d'un objet solide réverbérant
FR2827392A1 (fr) Sonar d'imagerie et systeme de detection utilisant un tel sonar
WO2002075362A1 (fr) Imageur acoustique d'objets enfouis
EP1531729B1 (fr) Procede pour generer un champ d ondes predetermine
WO2005015540A1 (fr) Procede et dispositif d'imagerie par ondes acoustiques
EP3204984A1 (fr) Procédé de génération de rayonnements électromagnétiques haute puissance
Tourin et al. Dynamic time reversal of randomly backscattered acoustic waves
WO1994017514A1 (fr) Appareil de therapie a focalisation variable sans focalisation secondaire
EP3038210A1 (fr) Émetteur d'ondes électromagnétiques à cavité réverbérante, et procédé d'émission associé
BE542461A (fr)
WO2001081947A1 (fr) Procede, systeme et dispositif d'alarme base sur l'emission de signaux acoustiques
EP0351267A1 (fr) Dispositif et procédé d'identification passif interrogeable à distance
FR2476360A1 (fr)
WO2004055941A1 (fr) Dispositif de production de retards pour appareil de synthese de faisceaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990611

AC Divisional application: reference to earlier application

Ref document number: 842508

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEWINER, JACQUES

Inventor name: FINK, MATHIAS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20060905

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0842508

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69638347

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 69638347

Country of ref document: DE

Effective date: 20110512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 69638347

Country of ref document: DE

Effective date: 20120102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150623

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69638347

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160710