EP0939029B1 - Pale de rotor pour hélicoptère - Google Patents

Pale de rotor pour hélicoptère Download PDF

Info

Publication number
EP0939029B1
EP0939029B1 EP99102137A EP99102137A EP0939029B1 EP 0939029 B1 EP0939029 B1 EP 0939029B1 EP 99102137 A EP99102137 A EP 99102137A EP 99102137 A EP99102137 A EP 99102137A EP 0939029 B1 EP0939029 B1 EP 0939029B1
Authority
EP
European Patent Office
Prior art keywords
rotor blade
flap
blade according
connection element
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99102137A
Other languages
German (de)
English (en)
Other versions
EP0939029A3 (fr
EP0939029A2 (fr
Inventor
Karl Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters Deutschland GmbH
Original Assignee
Eurocopter Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurocopter Deutschland GmbH filed Critical Eurocopter Deutschland GmbH
Publication of EP0939029A2 publication Critical patent/EP0939029A2/fr
Publication of EP0939029A3 publication Critical patent/EP0939029A3/fr
Application granted granted Critical
Publication of EP0939029B1 publication Critical patent/EP0939029B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/001Vibration damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • B64C27/615Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical including flaps mounted on blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/72Means acting on blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/72Means acting on blades
    • B64C2027/7205Means acting on blades on each blade individually, e.g. individual blade control [IBC]
    • B64C2027/7261Means acting on blades on each blade individually, e.g. individual blade control [IBC] with flaps
    • B64C2027/7266Means acting on blades on each blade individually, e.g. individual blade control [IBC] with flaps actuated by actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/30Wing lift efficiency

Definitions

  • the present invention relates to a rotor blade for a helicopter, wherein the rotor blade has a movable flap in its profile area.
  • Rotor blades for helicopters often have movable profiles Flaps at the rear end of the profile.
  • the flaps are used to control the Helicopter.
  • the flaps are articulated stored and controlled mechanically via a swash plate.
  • the Setting the flaps over the swash plate can be done collectively or also cyclically, with a frequency, for example, in a range of 7 Hz.
  • flaps are in the rear profile area used that are electrically controlled. These flaps are used to Increase rotor power and at the same time reduce the vibration level.
  • the Flaps are supported with a joint and influence by Control with relatively high frequency the dynamic blade behavior. As a result, the rotor blade is deformed by air forces in such a way that the Vibration behavior of the rotor blade is improved.
  • the frequencies with which the flaps are controlled are, for example, in the range of 35 Hz and higher.
  • a rotor blade for a helicopter is known with: a movable flap that is in a profile area of the rotor blade is arranged; Means for adjusting the flap by an angle of attack towards the rest of the rotor blade; and - when considering the Rotor blade in a profile cross-section - three flexible bends made of Delrin® Fasteners at different points in the profile cross section are arranged and on which the flap is mounted several times and which connect the flap to the rotor blade, so that one on the Actuator acting a bending of the three connecting elements and the flap is adjusted relative to the rotor blade.
  • a wing for a hydrofoil is known, with a movable flap that in a rear profile area of the Wing is arranged; Means for adjusting the flap by one Angle of attack relative to the rest of the wing; and - at Viewing the wing in a profile cross section - one within the Profile cross-section between the flap and a rear wing area arranged flap bearing in the form of a curve on which the Flap is pivotally mounted.
  • the curve guide and a the upper outer skin structure is the wing adjacent to these elements of the wing as a thin, flexible skin element (in DE-A-28 04 254 referred to as "membrane"), which disguises the curve and bend elastically when the flap pivots and the Movements of the flap can follow. So with this construction takes over the curve guide the flap bearing, while the thin, pliable Membrane on the outer contour of the wing profile cross section no bearing functions exercises, but the actual bearing mechanism of the flap aerodynamically clad only on the critical upper side of the profile.
  • the present invention provides rotor blades with movable flaps created that have a wear-free bearing, high loads withstand and require significantly less maintenance.
  • the bearing remains even at high frequencies of the flap movement durable and stable, and there is an angle of attack of the flaps of approximately ⁇ 15 ° and more. It also improves aerodynamics achieved. Disturbing vibrations can be dampened, especially in Connection with a control of the flaps with high frequency piezoelectric elements. And there will be a high level of reliability achieved particularly light and compact design. Even at high The frequency of the flap movement can change the maintenance or inspection intervals be extended significantly.
  • the connecting element is preferably made of fiber-reinforced plastic produces or contains fibers, which can be glass fibers. With the fibers a particularly high strength is achieved with low weight. Glass fibers allow a particularly high elasticity or insensitivity to stretch of the connecting element and high fatigue strength.
  • the connecting element preferably has a smaller thickness in the bending region on than in the adjacent areas.
  • the fibers in the connecting element preferably run in the direction of Connection between the rotor blade and the flap, and advantageously the fibers have a smaller mutual distance in the bending area on than in the rest of the connecting element.
  • An upper wall of the rotor blade with an upper part of the flap is preferred and / or a lower wall of the rotor blade with a lower part of the flap connected by the connecting element. This makes a particularly good one Aerodynamics of the rotor blade achieved.
  • the upper part and the lower part of the flap preferably touch each other in an end area of the flap and move in the event of a rash Flap relative to each other on a sliding surface, which is preferably made of Teflon is made. This creates a firm connection between the flap and the top Underside of the rotor blade allows. With a flap deflection a Avoid gap between flap and rotor blade. An abrasion on the Contact surface is prevented.
  • the upper part and the lower part of the flap are advantageously mutually opposed biased. When controlling only one flap part this also moves the opposite flap part.
  • the connecting element and the respectively adjoining element are preferred Area of the rotor blade or the flap formed in one piece, advantageously over the entire width of the connecting element.
  • the connecting element when looking at the rotor blade in cross section or be arranged in profile in the axis of symmetry of the flap. This will make a possible buckling of the connecting element avoided.
  • Each flap part can have a separate one Lever arm can be controlled. This will cause the flap to move required force reduced.
  • the lever arm comprises a fiber joint in order to provide the actuating force to transfer the flaps.
  • the lever arm can be designed as a pull rod, which preferably consist of one or more fibers, in particular glass fibers, is made. This also contributes to wear in the area of the lever arm the power transmission from the lever to the flap is reduced. Furthermore is a high and permanent strength of the lever with a small design and low weight achieved.
  • FIG. 1 shows an inventive rotor blade 1 of a helicopter.
  • the Rotor blade 1 comprises a blade connection area or a blade root 11 and an adjoining profile area 12.
  • a movable flap 3 is arranged in the area of the rear Profile end 120 of the rotor blade 1.
  • the Flap 3 is designed so that it forms part of the leaf profile.
  • a rear end 30 of the flap 3 lies with the rear profile end 120 of the remaining leaf part on a line, i.e. it is in its starting position compared to the remaining part of the profile area 12.
  • a fitting 13 made of metal, which the front sheet edge covered and protects against erosion or damage.
  • At the blade root 11 is still a vibration damper 14 and a connector 150 arranged.
  • FIG. 2 shows schematically a cross section through the invention Rotor blade along the line A - A 'of Figure 1.
  • the flap 3 on the rear Profile end of the rotor blade 1 is - based on the observation of the rotor blade 1 in the cross section according to Fig. 2 - over a single flexible Connecting element 4, which is a fiber joint made of fiber-reinforced plastic is manufactured, connected to the remaining part of the rotor blade 1.
  • the dashed Lines in Figure 2 show the flap 3 in different positions relative to the rotor blade 1.
  • the connecting element 4 In the area of connection is the connecting element 4 together with those adjoining it Areas of the flap 3 and the rotor blade 1 in one piece over its entire width educated.
  • control unit 5 with piezoelectric in its interior Elements.
  • the control unit 5 is via a pull / push rod 6 and a lever element 7 connected to the control flap 3.
  • the flap 3 At a Movement of the pull / push rod 6 in its longitudinal direction, i.e. towards the Double arrow B in Figure 2, the flap 3 is deflected relative to the Rotor blade 1, as shown by the double arrow B 'in Figure 2.
  • the flap 3 is driven electrically, e.g. about piezoelectric elements, with a frequency that can be 35 Hz and more.
  • FIG 3 shows schematically the rear profile area of an embodiment of the Rotor blade 1 in an enlarged view.
  • the connecting element 4 between the top 15 of the rotor blade 1 and the flap upper part 35 has Glass fibers 41 in the direction of the connection between the rotor blade 1 and the flap 3 run.
  • the fibers 41 are only in the area of Connection element 4 and shown in the adjacent areas.
  • the fiber joint or connecting element 4 has a bending area 42 a relatively small thickness. Due to the opposite areas this reduced thickness or height of the connecting element takes place Movement of the flap 3 about an axis that lies in this area.
  • the lower wall 16 of the rotor blade 1 is provided with an apron 16a which protrudes at the end of the lower wall 16 and a gap between the End of the lower wall 16 of the rotor blade 1 and the lower part 36 of the flap 3 covers. This will have a negative impact on the flow at the Side of the rotor blade, which lies opposite the connecting element 4, prevented.
  • the mutual distance between the fibers 41 is reduced in the bending area 42. Due to the continuous fiber course, a particularly high strength is achieved achieved.
  • the connecting element 4 can also be on the lower wall of the rotor blade 1 be arranged, the skirt 16a in this case on the top wall of the rotor blade 1 is arranged.
  • the flap 3 is through that Connecting element 4 over its entire width with the rest of the leaf part connected. Due to the smooth transition on the surface of the rotor blade 1 in the area of the connecting element 4 there are greatly improved aerodynamic properties. With a smooth transition to flap 3 the underside of the rotor blade 1 is also a particularly good one Aerodynamics achieved.
  • FIG. 4 shows a further embodiment of the invention. Both are the upper wall 15 and the lower wall 16 of the rotor blade 1 with the Upper side 35 or lower side 36 of flap 3 via connecting elements 4 connected.
  • the two flap parts are separated by lever arms 7a, 7b and tension / compression rods 6a, 6b moved.
  • At the rear end area of the flap 3 are the upper part 35 and the lower part 36 of the flap in mutual Sliding contact.
  • a sliding surface 40 made of Teflon to prevent wear and tear To prevent abrasion at this point.
  • the pull / push rods 6a and 6b work in opposite directions. With a traction that via the upper rod 6a and the upper lever element 7a onto the lower part 36 the flap acts, the flap 3 is deflected upwards. At the same time a compressive force on the upper part 35 of the flap via the lower rod 6b and the lower lever element 7b. This is for the movement of each flap part only half the force required.
  • the two ends of the flap parts 35 and 36, which are in contact with each other via the sliding surface 40 remain with everyone Position or deflection of the flap 3 connected to each other.
  • Through the two connecting elements 4 on the upper wall 15 and on the lower Wall 16 of the rotor blade 1 has a particularly high strength and durability the flap attachment achieved, and there will be smooth surfaces created without gaps and gaps. With a deflection of the The flap 3 moves up and down, the two flap parts 35 and 36 against each other on the sliding surface 40, which is in the rear region of the Flap 3 is attached to one or both flap parts.
  • the Lever arm 7 designed as an integrated flexible fiber joint.
  • the Pull rod 6 is integrated in the lever arm 7 or in one piece with it designed and consists of one or more glass fibers.
  • Lever arm on the top and bottom of flap 3 Through the mutual bias of the two flap parts takes place on the Flap 3 only by tensile forces. This is for a drive with piezo elements advantageous and enables a light and small construction.
  • the fiber joint or connecting element 4 has in its bending area a wall thickness of approx. 0.5 - 1 mm. With such a wall thickness achieved sufficient strength or good bending properties, whereby thereby a high and permanent strength is present.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)
  • Toys (AREA)
  • Moulding By Coating Moulds (AREA)

Claims (17)

  1. Pale de rotor pour hélicoptère comportant :
    un clapet mobile (3) disposé dans une zone profilée (12) de la pale de rotor,
    des moyens (5, 6, 7 ; 6a, 6b, 7a, 7b) pour déplacer le clapet (3) d'un angle d'incidence par rapport à la partie restante de la pale de rotor (1) et
    lorsqu'on regarde la pale de rotor dans une section transversale profilée - un seul élément de liaison (4) configuré comme une articulation en fibres flexible avec une zone de flexion (42), sur lequel est logé le clapet (3) et qui relie le clapet (3) à la pale de rotor (1) de sorte que, dans le cas d'une force de réglage agissant sur le clapet (3), il se produit une déformation de l'élément de liaison (4) dans sa zone de flexion (42) et un déplacement du clapet (3) relativement à la pale de rotor (1).
  2. Pale de rotor pour hélicoptère comportant :
    un clapet mobile (3) disposé dans une zone profilée (12) de la pale de rotor,
    des moyens (5, 6, 7 ; 6a, 6b, 7a, 7b) pour déplacer le clapet (3) d'un angle d'incidence par rapport à la partie restante de la pale de rotor (1) et
    lorsqu'on regarde la pale de rotor dans une section transversale profilée - deux éléments de liaison (4) individuels, configurés comme une articulation en fibres flexible avec une zone de flexion (42), qui agissent sur une paroi supérieure (15) et une paroi inférieure (16) de la pale de rotor (1) et sur lesquels est logé le clapet (3) et qui relient le clapet (3) à la pale de rotor (1) de sorte que, dans le cas d'une force de réglage agissant sur le clapet (3), il se produit une déformation de l'élément de liaison (4) dans sa zone de flexion (42) correspondante et un déplacement du clapet (3) relativement à la pale de rotor (1).
  3. Pale de rotor selon la revendication 1 ou 2,
    caractérisée en ce que
    l'élément de rotor (4) est fabriqué en matière plastique renforcée par des fibres (41).
  4. Pale de rotor selon la revendication 3,
    caractérisée en ce que
    les fibres (41) sont des fibres de verre.
  5. Pale de rotor selon la revendication 3 ou 4,
    caractérisée en ce que
    les fibres (41) s'étendent, dans l'élément de liaison (4) en direction de la liaison entre la pale de rotor (1) et le clapet (3) et présentent, dans la zone de flexion (42) une distance réciproque plus faible que dans le reste de la zone de l'élément de liaison (4).
  6. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    l'élément de liaison (4) présente, dans sa zone de flexion (42) une épaisseur plus faible que dans les zones contiguës.
  7. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    l'élément de liaison (4) relie une paroi supérieure (15) de la pale de rotor (1) à une partie supérieure (35) du clapet (3) et/ou une paroi inférieure (16) de la pale de rotor (1) à une partie inférieure (36) du clapet (3).
  8. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    la partie supérieure (35) et la partie inférieure (36) du clapet (3) se touchent réciproquement dans une zone d'extrémité du clapet (3) et bougent relativement l'une par rapport à l'autre lors d'un déplacement du clapet (3) sur une surface de glissement (40).
  9. Pale de rotor selon la revendication 8,
    caractérisée en ce que
    la surface de glissement (40) est fabriquée en Téflon®.
  10. Pale de rotor selon l'une quelconque des revendications 8 ou 9,
    caractérisée en ce que
    la partie supérieure (35) et la partie inférieure (36) du clapet (3) sont précontraintes l'une contre l'autre.
  11. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    l'élément de liaison (4) et une zone adjacente de la pale de rotor (1) et du clapet (3) forment une seule pièce sur toute la largeur de l'élément de liaison (4).
  12. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    l'élément de liaison (4), lorsqu'on regarde la pale de rotor dans la section transversale ou de profil, est disposé sur l'axe de symétrie du clapet (3).
  13. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée par
    au moins un bras de levier (7 ; 7a, 7b), qui relie la partie supérieure (35) et/ou la partie inférieure (36) du clapet (3) à une barre de traction et/ou de pression (6 ; 6a, 6b) pour transmettre la force de réglage.
  14. Pale de rotor selon la revendication 13,
    caractérisée en ce que
    chaque partie du clapet (35 ; 36) est reliée à un bras de levier (7 ; 7a, 7b).
  15. Pale de rotor selon la revendication 13 ou 14,
    caractérisée en ce que
    le bras de levier (7 ; 7a, 7b) présente une articulation en fibres.
  16. Pale de rotor selon l'une quelconque des revendications 13 à 15,
    caractérisée en ce que
    la barre de traction (6a, 6b) est fabriquée à partir d'une ou plusieurs fibres, en particulier des fibres de verre.
  17. Pale de rotor selon l'une quelconque des revendications précédentes,
    caractérisée en ce qu'
    une unité d'entraínement (5) présente les éléments piézo-électriques destinés à l'entraínement du clapet (3).
EP99102137A 1998-02-27 1999-02-03 Pale de rotor pour hélicoptère Expired - Lifetime EP0939029B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19808196A DE19808196C2 (de) 1998-02-27 1998-02-27 Rotorblatt für einen Hubschrauber
DE19808196 1998-02-27

Publications (3)

Publication Number Publication Date
EP0939029A2 EP0939029A2 (fr) 1999-09-01
EP0939029A3 EP0939029A3 (fr) 2001-04-11
EP0939029B1 true EP0939029B1 (fr) 2004-04-21

Family

ID=7859037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99102137A Expired - Lifetime EP0939029B1 (fr) 1998-02-27 1999-02-03 Pale de rotor pour hélicoptère

Country Status (3)

Country Link
US (1) US6168379B1 (fr)
EP (1) EP0939029B1 (fr)
DE (2) DE19808196C2 (fr)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053620B1 (ja) * 1999-02-25 2000-06-19 株式会社コミュータヘリコプタ先進技術研究所 ロ―タブレ―ドのフラップ駆動装置
JP3451041B2 (ja) 1999-09-17 2003-09-29 川崎重工業株式会社 フラップヒンジ機構およびその製造方法ならびにフラップヒンジ装置
GB2369575A (en) * 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
DE10061636B4 (de) 2000-12-11 2010-02-04 Eurocopter Deutschland Gmbh Rotorblatt mit Klappe und Klappenantrieb
DE10126927B4 (de) * 2001-06-01 2009-08-13 Eads Deutschland Gmbh Hubschrauberrotorblatt mit verstellbaren Mitteln zur Profilanpassung
DE10156733B4 (de) * 2001-11-19 2006-04-20 Eads Deutschland Gmbh Aerodynamisches Profil mit verstellbarer Klappe
US6666648B2 (en) 2002-05-17 2003-12-23 Sikorsky Aircraft Corporation Directional elastomeric coupler
US6932569B2 (en) 2002-05-17 2005-08-23 Sikorsky Aircraft Corporation Active control of multi-element rotor blade airfoils
US6769872B2 (en) 2002-05-17 2004-08-03 Sikorsky Aircraft Corporation Active control of multi-element rotor blade airfoils
US7014142B2 (en) * 2004-02-03 2006-03-21 The Boeing Company Low-drag rotor/wing flap
US6955215B2 (en) * 2004-03-09 2005-10-18 King Fahd University Of Petroleum And Minerals Hybrid cooling system and method for cooling electronic devices
DE102004056649A1 (de) * 2004-11-24 2006-06-01 Airbus Deutschland Gmbh Deckhaut für eine formvariable aerodynamische Fläche
EP1738895B1 (fr) 2005-06-29 2012-07-18 SGL Carbon SE Joint
FR2892384B1 (fr) * 2005-10-26 2007-12-07 Eurocopter France Pale de giravion munie d'un volet orientable a l'aide d'au moins une rotule principale dont le premier arbre est solidaire dudit volet.
US20070131820A1 (en) * 2005-12-09 2007-06-14 Sikorsky Aircraft Corporation Rotorcraft control system and method of using
US8915710B2 (en) 2005-12-09 2014-12-23 Sikorsky Aircraft Corporation Brushless direct current (BLDC) motor based linear or rotary actuator for helicopter rotor control
DE102005061751B4 (de) * 2005-12-21 2013-09-19 Eurocopter Deutschland Gmbh Rotorblatt für ein Drehflügelflugzeug
US20080001037A1 (en) * 2006-03-30 2008-01-03 Roller Bearing Company Of America, Inc. Actuator link assembly, flight control system and method of making same
BRPI0710353B1 (pt) * 2006-04-27 2020-03-17 Flexsys, Inc. Arranjo de alteração morfológica de borda para um aerofólio que tem superfícies de controle superior e inferior
DE102007012984B4 (de) * 2007-03-14 2018-10-11 Airbus Helicopters Deutschland GmbH Verbindungselement zur Kraftübertragung zwischen einem Klappenantrieb und einer an einem Flügel eines Luftfahrzeugs schwenkbeweglich gelagerten Klappe
DE102007030095B4 (de) * 2007-06-28 2012-12-20 Eurocopter Deutschland Gmbh Rotorblatt für ein Drehflügelflugzeug
GB2467945B (en) * 2009-02-20 2014-03-05 Westland Helicopters Device which is subject to fluid flow
GB2469854A (en) * 2009-04-30 2010-11-03 Vestas Wind Sys As Wind turbine rotor blade
US8352082B2 (en) * 2009-12-31 2013-01-08 Schneider Electric USA, Inc. Methods and apparatuses for displaying energy savings from an HVAC system
DE102010041111A1 (de) 2010-09-21 2012-03-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotorblatt mit integrierter passiver Oberflächenklappe
US9278755B2 (en) 2011-02-11 2016-03-08 Sikorsky Aircraft Corporation Modular integrated device for rotor blade control
EP2514669B1 (fr) * 2011-04-18 2014-09-10 Claverham Limited Volet de Gurney actif
EP2514668B1 (fr) 2011-04-18 2016-11-02 Claverham Limited Volet de Gurney actif
EP2514667B1 (fr) 2011-04-18 2015-06-10 Claverham Limited Volet de Gurney actif
US8506248B2 (en) 2011-10-06 2013-08-13 General Electric Company Wind turbine rotor blade with passively modified trailing edge component
US8602732B2 (en) * 2011-10-06 2013-12-10 General Electric Company Wind turbine rotor blade with passively modified trailing edge component
US9090343B2 (en) * 2011-10-13 2015-07-28 Sikorsky Aircraft Corporation Rotor blade component cooling
EP2687440B1 (fr) 2012-07-16 2017-10-11 Airbus Defence and Space GmbH Appareil et procédé pour réduire, éviter ou éliminer les vibrations latérales d'un hélicoptère
US9938006B2 (en) 2012-08-28 2018-04-10 Bell Helicopter Textron Inc. Actuation system for an active element in a rotor blade
US9180965B2 (en) * 2012-08-28 2015-11-10 Bell Helicopter Textron Inc. Actuation system for an active element in a rotor blade
US9180966B2 (en) * 2012-08-28 2015-11-10 Bell Helicopter Textron Inc. Actuation system for an active element in a rotor blade
CN102897318B (zh) * 2012-10-24 2015-08-19 哈尔滨工业大学 一种用于直升机旋翼振动控制的桨叶
US9777579B2 (en) 2012-12-10 2017-10-03 General Electric Company Attachment of composite article
US9797257B2 (en) 2012-12-10 2017-10-24 General Electric Company Attachment of composite article
FR3007737B1 (fr) * 2013-06-26 2017-07-14 Eurocopter France Pale a rigidite en torsion reduite et rotor muni d'une telle pale
GB2537630B (en) * 2015-04-21 2020-11-04 Agustawestland Ltd An aerofoil
RU2603707C1 (ru) * 2015-10-23 2016-11-27 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Лопасть несущего винта вертолёта с отклоняемой задней кромкой
US9592910B1 (en) 2015-12-18 2017-03-14 Amazon Technologies, Inc. Geometrically reconfigurable propellers
US10287006B1 (en) 2015-12-18 2019-05-14 Amazon Technologies, Inc. Adjustable propeller blades for sound control
EP3736207A1 (fr) 2015-12-18 2020-11-11 Amazon Technologies, Inc. Traitements de la pale d'hélice pour contrôle du bruit
US10370098B1 (en) * 2015-12-18 2019-08-06 Amazon Technologies, Inc. Adjustable propeller blade with sound flaps
FR3053083B1 (fr) * 2016-06-22 2019-11-01 Safran Aircraft Engines Anneau de carenage de roue a aubes
CN106516104A (zh) * 2016-11-30 2017-03-22 哈尔滨工业大学 用于降低旋翼振动的装置
US10532804B2 (en) * 2017-02-08 2020-01-14 The Boeing Company Aerodynamic control surface and associated trailing edge close-out method
CA3004054C (fr) 2017-05-05 2024-02-13 Laflamme Aero Inc. Assemblage de moyeu de rotor d'helicoptere et helicoptere comportant ledit assemblage
CN109665089A (zh) * 2018-12-26 2019-04-23 南京航空航天大学 采用柔性铰链的直升机桨叶后缘襟翼驱动机构
US11325695B2 (en) * 2020-04-16 2022-05-10 Lockheed Martin Corporation Rotor blade internal structure for trailing edge actuation
US20230348075A1 (en) * 2020-05-12 2023-11-02 Singapore University Of Technology And Design Autorotating aerial device, method of forming the autorotating aerial device and an autorotating aerial system
JP2021187327A (ja) * 2020-06-01 2021-12-13 株式会社Subaru 複合ヘリコプタにおける振動抑制システム
US20240002049A1 (en) * 2020-11-23 2024-01-04 Overair, Inc. Cable Tilt Actuator for an Aircraft
US11794887B1 (en) 2022-04-06 2023-10-24 Lockheed Martin Corporation Removable trailing edge assembly and system for rotor blade trailing edge actuation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2025561A (en) * 1931-10-30 1935-12-24 Wilford Edward Burke Gyroplane
US2369049A (en) * 1943-09-28 1945-02-06 Russell R Hays Rotary wing aircraft
US2716460A (en) * 1952-02-28 1955-08-30 Raymond A Young Blade and control mechanism for helicopters
US2776718A (en) * 1952-09-20 1957-01-08 Daniel R Zuck Helicopter rotor
FR1392727A (fr) * 1964-02-25 1965-03-19 Rotorcraft S A Proprietary Ltd Aéronef à aile tournante
DE2804254C2 (de) * 1978-02-01 1985-02-07 Grob, Burkhart, Dipl.-Ing. ETH, 8023 Großhesselohe Tragflügel mit Klappe
IT1129034B (it) * 1979-10-19 1986-06-04 British Aerospace Perfezionamento nelle ali a curvatura variabile per aeromobili
US4351502A (en) * 1980-05-21 1982-09-28 The Boeing Company Continuous skin, variable camber airfoil edge actuating mechanism
US5224826A (en) * 1989-07-26 1993-07-06 Massachusetts Institute Of Technology Piezoelectric helicopter blade flap actuator
DE4243203A1 (de) * 1992-12-19 1994-06-23 Schempp Hirth Flugzeugbau Gmbh Tragflügel- oder Leitwerkprofil für Flugzeuge, insbesondere Segelflugzeuge
US5387083A (en) 1992-12-23 1995-02-07 Alliedsignal Inc. Helicopter servoflap actuator having mechanical stop and oil pump
US5588800B1 (en) 1994-05-31 2000-12-19 Mcdonell Douglas Helicopter Co Blade vortex interaction noise reduction techniques for a rotorcraft
JP2617281B2 (ja) 1995-03-27 1997-06-04 株式会社コミュータヘリコプタ先進技術研究所 フラップ付きヘリコプタロータ
DE19653851C2 (de) * 1996-12-21 1999-09-02 Daimler Chrysler Ag Aerodynamischer Körper mit innenliegenden Stellantrieben
US6079672A (en) * 1997-12-18 2000-06-27 Lam; Lawrence Y. Aileron for fixed wing aircraft

Also Published As

Publication number Publication date
EP0939029A3 (fr) 2001-04-11
EP0939029A2 (fr) 1999-09-01
DE59909214D1 (de) 2004-05-27
DE19808196C2 (de) 2003-06-05
US6168379B1 (en) 2001-01-02
DE19808196A1 (de) 1999-09-09

Similar Documents

Publication Publication Date Title
EP0939029B1 (fr) Pale de rotor pour hélicoptère
DE102007013289B4 (de) Profilverformung am Beispiel Rotorblatt
EP1205383B1 (fr) Mécanisme pour modifier la courbure d'au moins une partie d'une aile d'aéronef
DE102005016639B4 (de) Tragflügel mit ausfahrbaren aerodynamischen Flügelklappen, insbesondere Auftriebsklappen
DE102004062998B4 (de) Flügel, insbesondere Tragflügel eines Flugzeugs, mit veränderlicher Profilform
DE19741490C2 (de) Anströmprofil mit variabler Profiladaption
DE19643222C2 (de) Auftriebskörper mit veränderbarer Wölbung
DE19741326C2 (de) Anströmprofil mit variabler Profiladaption
DE60212303T2 (de) Betätigungssystem für ein aerodynamisches Ruder
DE102008025414B4 (de) Aerodynamisches Profil mit reversibel verformbarer Kontur für Luftfahrzeuge, insbesondere für Drehflügelflugzeuge
EP1636086B1 (fr) Aile, notamment aile porteuse d'un avion, ayant un profil modifiable
DE60311659T2 (de) Aerodynamisch wirksame Flügelspitzenvorrichtung
DE3013774C2 (fr)
DE102008007469A1 (de) Verlängerungsteil für eine Einlaufklappe, Einlaufklappe mit einem solchen Verlängerungsteil und Triebwerk mit einer Einlaufklappe
DE102011105912A1 (de) Tragflügel mit einem Hauptflügel und einem Hochauftriebskörper sowie Verfahren zur Ausführung von Verstellbewegungen eines Hochauftriebskörpers gegenüber einem Hauptflügel
DE102007009060A1 (de) Spoiler für eine aerodynamisch wirksame Fläche eines Luftfahrzeugs
EP0503158A1 (fr) Système d'entraînement et de guide pour un volet d'aile d'avion
EP2733063B1 (fr) Structure de morphing pour un bord d'attaque d'une aile d'avion
DE4446031A1 (de) Tragflügel mit Mitteln zum Verändern des Profils
DE2758086C2 (de) Rotor für ein Drehflügelflugzeug mit gelenklosem Blattanschluß
EP2505493B1 (fr) Volet avant adaptatif
DE2638148B2 (de) Rotor für ein Drehflügelflugzeug
DE102012102746B4 (de) Rotorblatt mit adaptivem Vorflügel für eine Windenergieanlage
DE19709917C1 (de) Vorrichtung zur gesteuerten Verformung einer Schalenstruktur
DE19936721B4 (de) Tragflügelprofil mit adaptiver Verwölbung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010516

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20021212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUER, KARL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59909214

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040729

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110207

Year of fee payment: 13

Ref country code: FR

Payment date: 20110311

Year of fee payment: 13

Ref country code: IT

Payment date: 20110122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110128

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909214

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120203

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901