EP0937886B1 - Method for controlling the power of a vehicle - Google Patents

Method for controlling the power of a vehicle Download PDF

Info

Publication number
EP0937886B1
EP0937886B1 EP99101945A EP99101945A EP0937886B1 EP 0937886 B1 EP0937886 B1 EP 0937886B1 EP 99101945 A EP99101945 A EP 99101945A EP 99101945 A EP99101945 A EP 99101945A EP 0937886 B1 EP0937886 B1 EP 0937886B1
Authority
EP
European Patent Office
Prior art keywords
torque
ignition angle
load
correction factor
angle correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99101945A
Other languages
German (de)
French (fr)
Other versions
EP0937886A3 (en
EP0937886A2 (en
Inventor
Christian Heiselbetz
Dieter Kalweit
Thomas Klaiber
Uwe Kleinecke
Kurt Maute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0937886A2 publication Critical patent/EP0937886A2/en
Publication of EP0937886A3 publication Critical patent/EP0937886A3/en
Application granted granted Critical
Publication of EP0937886B1 publication Critical patent/EP0937886B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1411Introducing closed-loop corrections characterised by the control or regulation method using a finite or infinite state machine, automaton or state graph for controlling or modelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a method for adjusting the drive power of a motor vehicle with a spark-ignited internal combustion engine according to the preamble of patent claim 1.
  • a generic method for adjusting the drive power of a motor vehicle is known from DE 44 07 475 A1.
  • the firing angle and the air / fuel ratio are influenced on the basis of a desired value for the torque to be output by the drive unit in addition to the load.
  • the coordination of the various requirements for the vehicle drive is decoupled from the functions for adjusting the internal combustion engine in the engine control.
  • the torque interface is only a target torque and information about the dynamics with which this torque request is to be set, to the control of the internal combustion engine.
  • the starting point for the method described in the drawing is a desired setpoint torque M_setpoint and information about how the desired setpoint torque M_setpoint is set.
  • a driver desired torque determined from a driver specification and optionally further desired torque M_i is processed to a resulting target torque M_soll.
  • This is preferably a so-called torque interface, in which the driver's desired torque with other desired moments M_i, which are passed, for example, from the transmission control, from a vehicle dynamics control or other subsystems of the drive control to a resulting target torque M_soll is processed.
  • Such a torque interface is known in principle from the prior art and is therefore not explained here in detail.
  • torque interface in block 1 in the form of two so-called dynamic bits MDYN0, MDYN1.
  • torque requests can be realized in a known manner via the air path and / or via an ignition intervention.
  • the respectively desired type of torque adjustment is defined by operating states Z1 to Z3 via the two dynamic bits MDYN0, MDYN1: torque adjustment MDYN1 MDYN0 Status Efficiency optimal torque adjustment via the air path 0 0 Z1 Fastest possible torque adjustment via ignition angle adjustment and air path 0 1 Z2 Torque setpoint for the air path is frozen, torque reduction takes place via ignition angle adjustment 1 0 Z3 Invalid combination 1 1 -
  • an optimum torque adjustment efficiency is also predetermined. In certain operating conditions, however, can for The adaptive cruise control can be switched to a fastest possible setpoint torque setting. In the driving dynamics control systems, a fastest possible setpoint torque setting is specified during normal operation. In certain operating conditions, however, can be switched to a torque setting with Vorhalt. The transmission control also usually wishes a fastest possible torque setting. Of course, the above specifications only show examples.
  • the setpoint torque M_setpoint is then divided into a filling moment M_filling and a resulting moment M_zünd depending on the current operating state Z1 to Z3.
  • the filling moment M_Füll is set via the load control, while the resulting torque M_Zünd is contributed by a Zündwinkelver ein.
  • operating state Z4 is a transitional state, which will be explained below with reference to FIG. 2.
  • the filling moment M_Füll is fixed. This means that when entering the operating state Z3 is the Filling moment M_Füll set to the momentary setpoint torque M_soll. Subsequently, for each determination, the current setpoint torque M_setpoint is compared with the filling momentum M_filling (k-1) of the last pass, and the larger of the two values is stored and passed on as the actual filling moment M_fill. This means that in the operating state Z3, the filling torque M_Füll not decrease, but can only increase.
  • a residual torque M_Rest is determined, which is composed of the friction torque and the torque required for the drive of auxiliary units.
  • the friction torque can be determined from the current engine speed, the oil temperature and possibly other operating parameters.
  • This residual moment M_Rest is added in blocks 4 and 5 to determine the indicated filling moment M_Füll_Ind and the indicated resultant moment M_Zünd_Ind to the effective filling moment M_Füll or to the effective resulting moment M_Zünd.
  • an idling torque M_Leer is determined in block 6 for idle control and compared in block 7 with the indexed filling torque M_Füll-Ind, wherein in each case the larger of the two values is passed as indicated torque M_Ind to the load control.
  • the load control is known ansich and therefore will be explained here only briefly.
  • a load reference value TL_setpoint is determined from the indicated torque M_Ind on the basis of the current engine speed and possibly further operating parameters.
  • the actual load value TL_act is determined, for example with the aid of an air mass meter, continuously compared with the load setpoint TL_soll and a difference value is calculated. This difference value is then regulated by a control of the throttle as possible to zero.
  • a first ignition angle correction factor ⁇ dyn is determined from the quotient of indexed resulting moment M_initial_ind and indicated filling moment M_fill_ind, and in block 9 multiplied by a second ignition angle correction factor ⁇ MK for calculating the resulting ignition angle correction factor ⁇ . From the resulting ignition angle correction factor ⁇ , a retard angle for the ignition angle calculation can then be determined with the aid of a characteristic diagram.
  • the calculation of the second ignition angle correction factor ⁇ MK takes place starting from block 10. There, a correction factor ⁇ TL is calculated from the quotient of the load setpoint TL_setpoint and the actual load value TL_ist and limited to the maximum value 1 in block 11 by a MIN comparison. This limited correction factor ⁇ TL is passed both to block 2 and to block 12. In block 12, the second ignition angle correction factor ⁇ MK is subsequently determined as a function of the control bit MDYN_MK, which is transferred from block 2 to block 12, and the limited correction factor ⁇ TL .
  • the second ignition angle correction factor ⁇ MK is then multiplied in block 9 by the first ignition angle correction factor ⁇ dyn for calculating the resulting ignition angle correction factor ⁇ .
  • a torque adjustment is performed with Vorhalt.
  • the filling momentum M_fill is retained at the original value M_fill (k-1).
  • the torque reduction takes place in this case exclusively via the ignition timing.
  • the filling moment M_Füll is correspondingly increased and thus the load control is carried out accordingly.
  • the determination of the second Zündwinkelkorrekturf actuator ⁇ MK is analogous to the method according to operating condition Z2.
  • the resulting moment M_Zünd can differ from the filling moment M_Füll, so that one of 1 different first Zündwinkelkorrekturcons ⁇ dyn results.
  • the operating state Z1 When starting, the operating state Z1 is selected as part of an initialization. Depending on the dynamic demand MDYN0, MDYN1 respectively currently determined in block 1, a new operating state Zi is then selected.
  • the possible transitions between the operating states Zi are each shown as arrows with associated conditions. As can be seen from FIG. 2, starting from the operating state Z1, only a transition to the operating states Z2 or Z3 is possible. A direct transition from the operating state Z1 to the transitional operating state Z4 is not provided. Accordingly, although any changes between the operating conditions Z2, Z3 and Z4 are possible, a direct change from the operating conditions Z2 or Z3 to the operating state Z1 is again not provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Einstellung der Antriebsleistung eines Kraftfahrzeuges mit einer fremdgezündeten Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for adjusting the drive power of a motor vehicle with a spark-ignited internal combustion engine according to the preamble of patent claim 1.

Ein gattungsgemäßes Verfahren zur Einstellung der Antriebsleistung eines Kraftfahrzeuges ist aus der DE 44 07 475 A1 bekannt. Hierbei wird auf der Basis eines Sollwertes für das von der Antriebseinheit abzugebende Drehmoment neben der Last auch der Zündwinkel und das Luft-/Kraftstoffverhältnis beeinflußt.A generic method for adjusting the drive power of a motor vehicle is known from DE 44 07 475 A1. In this case, the firing angle and the air / fuel ratio are influenced on the basis of a desired value for the torque to be output by the drive unit in addition to the load.

Es ist die Aufgabe der Erfindung, ein Verfahren zur Einstellung der Antriebsleistung eines Kraftfahrzeuges mit einer fremdgezündeten Brennkraftmaschine derart zu verbessern, das ein zentral vorgegebenes Sollmoment bei unterschiedlichen Dynamikanforderungen einfach und zuverlässig eingestellt werden kann.It is the object of the invention to improve a method for adjusting the drive power of a motor vehicle with a spark-ignited internal combustion engine such that a centrally predetermined desired torque can be adjusted easily and reliably with different dynamic requirements.

Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 gelöstThis object is achieved by a device having the features of patent claim 1

Durch das erfindungsgemäße Verfahren wird bei der Motorsteuerung die Koordination der verschiedenen Anforderungen an den Fahrzeugantrieb von den Funktionen zur Einstellung der Brennkraftmaschine entkoppelt. Die Momentenschnittstelle gibt lediglich ein Sollmoment und eine Information darüber, mit welcher Dynamik diese Momentenanforderung eingestellt werden soll, an die Steuerung der Brennkraftmaschine. Hierbei ist es völlig unerheblich, wieviele Teilsysteme an der Momentenschnitttelle beteiligt sind und wie die eigentliche Koordination vollzogen wird. Durch die Einrichtung dreier Betriebszustände, in denen die Anforderungen mit unterschiedlicher Dynamik und mit unterschiedlicher Zielsetzung erfüllt werden, kann dennoch den unterschiedlichen Anforderungen aller Teilsysteme Rechnung getragen werden.By the method according to the invention, the coordination of the various requirements for the vehicle drive is decoupled from the functions for adjusting the internal combustion engine in the engine control. The torque interface is only a target torque and information about the dynamics with which this torque request is to be set, to the control of the internal combustion engine. Here it is It is completely irrelevant how many subsystems are involved in the momentum slice and how the actual coordination is accomplished. By setting up three operating states in which the requirements are fulfilled with different dynamics and with different objectives, the different requirements of all subsystems can nevertheless be taken into account.

Durch die Einrichtung eines Übergangsbetriebszustandes mit einem zugehörigen Schwellwert für einen Zündwinkelkorrekturfaktor kann ein schlagartiges Zurücknehmen einer großen Zündwinkelverstellung und damit einer spürbaren Momentenänderung, wie sie durch ein direktes Springen von einem Betriebszustand mit Zündwinkelverstellung in einen Betriebszustand ohne Zündwinkelverstellung entstehen könnte, verhindert werden.The establishment of a transitional operating state with an associated threshold for a Zündwinkelkorrekturfaktor can be a sudden withdrawal of a large Zündwinkelverstellung and thus a noticeable torque change, which could be caused by a jump directly from an operating condition with Zündwinkelverstellung in an operating condition without Zündwinkelverstellung.

Weitere Vorteile und Ausgestaltungen der Erfindung gehen aus den Unteransprüchen und der Beschreibung hervor. Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, wobei

Fig. 1
einen Strukturplan eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens und
Fig. 2
eine Prinzipdarstellung der möglichen Übergänge zwischen den einzelnen Betriebszuständen zeigt.
Further advantages and embodiments of the invention will become apparent from the dependent claims and the description. The invention is described below with reference to a drawing, wherein
Fig. 1
a structural plan of an embodiment of the method according to the invention and
Fig. 2
shows a schematic diagram of the possible transitions between the individual operating states.

Ausgangspunkt für das in der Zeichnung beschriebene Verfahren ist ein gewünschtes Sollmoment M_soll und eine Information darüber, auf welche Art und Weise das gewünschte Sollmoment M_soll eingestellt wird. Hierzu wird in Block 1 ein aus einer Fahrervorgabe ermitteltes Fahrerwunschmoment und gegebenenfalls weiterer Wunschmomente M_i zu einem resultierenden Sollmoment M_soll verarbeitet. Hierbei handelt es sich vorzugsweise um eine sogenannte Momentenschnittstelle, in der das Fahrerwunschmoment mit anderen Wunschmomenten M_i, die beispielsweise aus der Getriebesteuerung, aus einer Fahrdynamikregelung oder anderen Teilsystemen der Antriebsregelung übergeben werden, zu einem resultierenden Sollmoment M_soll verarbeitet wird. Eine solche Momentenschnittstellen ist prinzipiell aus dem Stand der Technik bekannt und wird daher hier auch nicht näher erläutert.The starting point for the method described in the drawing is a desired setpoint torque M_setpoint and information about how the desired setpoint torque M_setpoint is set. For this purpose, in block 1, a driver desired torque determined from a driver specification and optionally further desired torque M_i is processed to a resulting target torque M_soll. This is preferably a so-called torque interface, in which the driver's desired torque with other desired moments M_i, which are passed, for example, from the transmission control, from a vehicle dynamics control or other subsystems of the drive control to a resulting target torque M_soll is processed. Such a torque interface is known in principle from the prior art and is therefore not explained here in detail.

Zusätzlich wird von der Momentenschnittstelle in Block 1 eine Information darüber, mit welcher Dynamik die Momenteneinstellung erfolgen soll, in Form von zwei sogenannten Dynamikbits MDYN0, MDYN1 bereitgestellt. Bei Ottomotoren lassen sich Momentenanforderungen in bekannter Weise über den Luftpfad und/oder über einen Zündungseingriff realisieren. Die jeweils gewünschte Art der Momenteneinstellung wird über die zwei Dynamikbits MDYN0, MDYN1 durch Betriebszustände Z1 bis Z3 definiert: Momenteneinstellung MDYN1 MDYN0 Zustand Wirkungsgrad optimale Momenteneinstellung über den Luftpfad 0 0 Z1 Schnellst mögliche Momenteneinstellung über Zündwinkelverstellung und Luftpfad 0 1 Z2 Momentensollwert für den Luftpfad wird eingefroren, Momentenreduktion erfolgt über Zündwinkelverstellung 1 0 Z3 Ungültige Kombination 1 1 - In addition, information about the dynamics with which the torque adjustment should take place is provided by the torque interface in block 1 in the form of two so-called dynamic bits MDYN0, MDYN1. In gasoline engines, torque requests can be realized in a known manner via the air path and / or via an ignition intervention. The respectively desired type of torque adjustment is defined by operating states Z1 to Z3 via the two dynamic bits MDYN0, MDYN1: torque adjustment MDYN1 MDYN0 Status Efficiency optimal torque adjustment via the air path 0 0 Z1 Fastest possible torque adjustment via ignition angle adjustment and air path 0 1 Z2 Torque setpoint for the air path is frozen, torque reduction takes place via ignition angle adjustment 1 0 Z3 Invalid combination 1 1 -

Soll beispielsweise das Sollmoment M_soll durch eine Wirkungsgrad optimale Momenteneinstellung erfolgen, das heißt der Betriebszustand Z1 liegt vor, so werden von Block 1 folgende Dynamikbits an Block 2 übergeben: MDYN 0 : = 0     MDYN 1 : = 0

Figure imgb0001
If, for example, the setpoint torque M_setpoint is to be achieved by an optimum torque setting efficiency, that is to say the operating state Z1 is present, the following dynamic bits are transferred from block 1 to block 2: mdyn 0 : = 0 mdyn 1 : = 0
Figure imgb0001

Werden in der Momentenschnittstelle 1 die Wunschmomente M_i mehrerer Teilsysteme koordiniert, so müssen dort auch die unterschiedlichen Dynamikanforderungen der Teilsysteme koordiniert werden. Im Normalbetrieb eines Abstandsregeltempomaten ist ebenfalls eine Wirkungsgrad optimale Momenteneinstellung vorgegeben. In bestimmten Betriebsbedingungen kann jedoch für den Abstandsregeltempomaten auf eine schnellst mögliche Sollmomenteneinstellung umgestellt werden. Bei den Fahrdynamikregelsystemen wird im Normalbetrieb eine schnellst mögliche Sollmomenteneinstellung vorgegeben. In bestimmten Betriebsbedingungen kann jedoch auf eine Momenteneinstellung mit Vorhalt umgestellt werden. Die Getriebesteuerung wünscht ebenfalls üblicherweise eine schnellst mögliche Momenteneinstellung. Selbstverständlich zeigen die genannten Vorgaben nur Ausführungsbeispiele. Die Verarbeitung der einzelnen Momentenvorgaben M_i und der zugehörigen Dynamikanforderungen zu einem Sollmoment M_soll und einer Dynamikanforderung MDYN0, MDYN1 ist nicht Gegenstand dieser Patentanmeldung und wird daher auch nicht weiter erläutert. Gegenstand dieser Anmeldung ist ein Verfahren, mit dem man ein vorgegebendes Sollmoment M_soll bei unterschiedlichen Dynamikanforderungen effektiv einstellen kann.If the desired moments M_i of several subsystems are coordinated in the torque interface 1, then the different dynamic requirements of the subsystems must also be coordinated there. In normal operation of an adaptive cruise control, an optimum torque adjustment efficiency is also predetermined. In certain operating conditions, however, can for The adaptive cruise control can be switched to a fastest possible setpoint torque setting. In the driving dynamics control systems, a fastest possible setpoint torque setting is specified during normal operation. In certain operating conditions, however, can be switched to a torque setting with Vorhalt. The transmission control also usually wishes a fastest possible torque setting. Of course, the above specifications only show examples. The processing of the individual torque specifications M_i and the associated dynamic requirements to a desired torque M_soll and a dynamic request MDYN0, MDYN1 is not the subject of this patent application and is therefore not further explained. Subject of this application is a method by which you can effectively set a predetermined target torque M_soll at different dynamic requirements.

In Block 2 wird anschließend das Sollmoment M_soll in Abhängigkeit vom momentanen Betriebszustand Z1 bis Z3 in ein Füllungsmoment M_Füll und ein resultierendes Moment M_Zünd aufgeteilt. Das Füllungsmoment M_Füll wird über die Lastregelung eingestellt, während das resultierende Moment M_Zünd durch eine Zündwinkelverstellung beigesteuert wird. Außerdem wird in Block 2 ein weiteres Steuerbit MDYN_MK, dessen Funktion weiter unten näher erläutert wird, nach folgender Tabelle bereitgestellt: Betriebszustand M Füll M Zünd MDYN MK Z1 := M soll M soll 0 Z2 := M soll M soll 1 Z3 := Max(M Füll (k-1), M soll) M soll 1 Z4 := M soll M soll 1 In block 2, the setpoint torque M_setpoint is then divided into a filling moment M_filling and a resulting moment M_zünd depending on the current operating state Z1 to Z3. The filling moment M_Füll is set via the load control, while the resulting torque M_Zünd is contributed by a Zündwinkelverstellung. In addition, in block 2, another control bit MDYN_MK, the function of which is explained in more detail below, is provided according to the following table: operating condition M filling M ignition MDYN MK Z1 : = M shall M shall 0 Z2 : = M shall M shall 1 Z3 : = Max (M fill (k-1), M soll) M shall 1 Z4 : = M shall M shall 1

Beim Betriebszustand Z4 handelt es sich um einen Übergangszustand, der weiter unten anhand von Fig. 2 näher erläutert wird. Im Betriebszustand Z3 wird das Füllmoment M_Füll fixiert. Das bedeutet, beim Eintritt in den Betriebszustand Z3 wird das Füllmoment M_Füll auf das momentane Sollmoment M_soll gesetzt. Anschließend wird bei jeder Ermittlung das aktuelle Sollmoment M_soll mit dem Füllmoment M_Füll(k-1) des letzten Durchganges verglichen und der größere der beiden Werte als aktuelles Füllmoment M_Füll abgelegt und weitergeben. Das bedeutet, daß sich im Betriebszustand Z3 das Füllmoment M_Füll nicht verringern, sondern lediglich vergrößern kann.When operating state Z4 is a transitional state, which will be explained below with reference to FIG. 2. In operating state Z3, the filling moment M_Füll is fixed. This means that when entering the operating state Z3 is the Filling moment M_Füll set to the momentary setpoint torque M_soll. Subsequently, for each determination, the current setpoint torque M_setpoint is compared with the filling momentum M_filling (k-1) of the last pass, and the larger of the two values is stored and passed on as the actual filling moment M_fill. This means that in the operating state Z3, the filling torque M_Füll not decrease, but can only increase.

In Block 3 wird ein Restmoment M_Rest ermittelt, das sich zusammensetzt aus dem Reibmoment und dem für den Antrieb von Nebenaggregaten benötigten Moment. Das Reibmoment kann aus der aktuellen Motordrehzahl, der Öltemperatur und gegebenenfalls weiteren Betriebsparametern ermittelt werden. Dieses Restmoment M_Rest wird in den Blöcken 4 und 5 zur Ermittlung des indizierten Füllmoments M_Füll_Ind und des indizierten resultierenden Moments M_Zünd_Ind zum effektiven Füllmoment M_Füll beziehungsweise zum effektiven resultierenden Moment M_Zünd addiert.In block 3, a residual torque M_Rest is determined, which is composed of the friction torque and the torque required for the drive of auxiliary units. The friction torque can be determined from the current engine speed, the oil temperature and possibly other operating parameters. This residual moment M_Rest is added in blocks 4 and 5 to determine the indicated filling moment M_Füll_Ind and the indicated resultant moment M_Zünd_Ind to the effective filling moment M_Füll or to the effective resulting moment M_Zünd.

Weiterhin wird in Block 6 zur Leerlaufregelung ein Leerlaufmoment M_Leer ermittelt und in Block 7 mit dem indizierten Füllmoment M_Füll-Ind verglichen, wobei jeweils der größere der beiden Werte als indiziertes Moment M_Ind an die Lastregelung übergeben wird. Die Lastregelung ist ansich bekannt und wird daher hier nur noch kurz erläutert. In der Lastregelung wird anhand der aktuellen Motordrehzahl und gegebenenfalls weiterer Betriebsparameter aus dem indizierten Moment M_Ind ein Lastsollwert TL_soll ermittelt. Gleichzeitig wird der Lastistwert TL_ist, beispielsweise mit Hilfe eines Luftmassenmessers, ermittelt, laufend mit dem Lastsollwert TL_soll verglichen und ein Differenzwert berechnet. Dieser Differenzwert wird dann durch eine Ansteuerung der Drosselklappe möglichst auf Null geregelt.Furthermore, an idling torque M_Leer is determined in block 6 for idle control and compared in block 7 with the indexed filling torque M_Füll-Ind, wherein in each case the larger of the two values is passed as indicated torque M_Ind to the load control. The load control is known ansich and therefore will be explained here only briefly. In the load control, a load reference value TL_setpoint is determined from the indicated torque M_Ind on the basis of the current engine speed and possibly further operating parameters. At the same time, the actual load value TL_act is determined, for example with the aid of an air mass meter, continuously compared with the load setpoint TL_soll and a difference value is calculated. This difference value is then regulated by a control of the throttle as possible to zero.

In Block 8 wird aus dem Quotient von indiziertem resultierenden Moment M_Zünd_Ind und indiziertem Füllmoment M_Füll_Ind ein erster Zündwinkelkorrekturfaktor ηdyn ermittelt und im Block 9 mit einem zweiten Zündwinkelkorrekturfaktor ηMK zur Berechnung des resultierenden Zündwinkelkorrekturfaktors η multipliziert. Aus dem resultierenden Zündwinkelkorrekturfaktor η kann dann mit Hilfe eines Kennfeldes ein Spätverstellwinkel für die Zündwinkelberechnung ermittelt werden.In block 8, a first ignition angle correction factor η dyn is determined from the quotient of indexed resulting moment M_initial_ind and indicated filling moment M_fill_ind, and in block 9 multiplied by a second ignition angle correction factor η MK for calculating the resulting ignition angle correction factor η. From the resulting ignition angle correction factor η, a retard angle for the ignition angle calculation can then be determined with the aid of a characteristic diagram.

Die Berechnung des zweiten Zündwinkelkorrekturfaktors ηMK erfolgt ausgehend von Block 10. Dort wird aus dem Quotient von Lastsollwert TL_soll und Lastistwert TL_ist ein Korrekturfaktor ηTL berechnet und in Block 11 durch einen MIN-Vergleich auf den Maximalwert 1 begrenzt. Dieser begrenzte Korrekturfaktor ηTL wird sowohl an Block 2 als auch an Block 12 weitergegeben. In Block 12 wird anschließend in Abhängigkeit vom Steuerbit MDYN_MK, welches vom Block 2 an den Block 12 übergeben wird, und vom begrenzten Korrekturfaktor ηTL der zweite Zündwinkelkorrekturfaktor ηMK ermittelt. Und zwar wird der zweite Zündwinkelkorrekturfaktor ηMK=1, falls das Steuerbit MDYN_MK=O, beziehungsweise ηMKTL, falls das Steuerbit MDYN_MK=1 ist. Wie bereits weiter oben beschrieben wird dann der zweite Zündwinkelkorrekturfaktor ηMK in Block 9 mit dem ersten Zündwinkelkorrekturfaktor ηdyn zur Berechnung des resultierenden Zündwinkelkorrekturfaktors η multipliziert.The calculation of the second ignition angle correction factor η MK takes place starting from block 10. There, a correction factor η TL is calculated from the quotient of the load setpoint TL_setpoint and the actual load value TL_ist and limited to the maximum value 1 in block 11 by a MIN comparison. This limited correction factor η TL is passed both to block 2 and to block 12. In block 12, the second ignition angle correction factor η MK is subsequently determined as a function of the control bit MDYN_MK, which is transferred from block 2 to block 12, and the limited correction factor η TL . Namely, the second firing angle correction factor η MK = 1, if the control bit MDYN_MK = O, or η MK = η TL , if the control bit MDYN_MK = 1. As already described above, the second ignition angle correction factor η MK is then multiplied in block 9 by the first ignition angle correction factor η dyn for calculating the resulting ignition angle correction factor η.

Wie aus der ersten Tabelle zu entnehmen ist, wird im ersten Betriebszustand Z1 das Füllmoment M_Füll=M_soll und auch das resultierende Moment M_Zünd=M_soll gesetzt. Somit ergibt sich bei der Quotientenbildung in Block 8 ein erster Zündwinkelkorrekturfaktor ηdyn=1. Da außerdem das Steuerbit MDYN_MK=0 ist, wird der zweite Zündwinkelkorrekturfaktor ηMK in Block 12 ebenfalls auf den Wert 1 gesetzt. Somit ergibt sich ein resultierender Zündwinkelkorrekturfaktor η=1, das heißt der Zündwinkel wird nicht korrigiert. Somit wird die gesamte Momenteneinstellung Wirkungsgrad optimal über das Füllmoment M_Füll=M_soll, das heißt über die Lastregelung vorgenommen.As can be seen from the first table, in the first operating state Z1 the filling moment M_Full = M_setpoint and also the resulting moment M_start = M_setpoint are set. Thus, in the quotient formation in block 8, a first ignition angle correction factor η dyn = 1 results. In addition, since the control bit MDYN_MK = 0, the second firing angle correction factor η MK is also set to the value 1 in block 12. This results in a resulting ignition angle correction factor η = 1, that is, the ignition angle is not corrected. Thus, the entire torque setting efficiency is optimally made on the filling torque M_Füll = M_soll, that is on the load control.

Im zweiten Betriebszustand wird, wie bereits im ersten Betriebszustand Z1 auch, das Füllmoment M_Füll=M_soll und das resultierende Moment M_Zünd=M_soll gesetzt. Somit ergibt sich bei der Quotientenbildung in Block 8 wiederum ein erster Zündwinkelkorrekturfaktor ηdyn=1. Im Gegensatz zum Betriebszustand Z1 ist aber das Steuerbit MDYN_MK=1. Somit wird in Block 12 der begrenzte Korrekturfaktor ηTL aus Block 11 als zweiter Zündwinkelkorrekturfaktor ηMK an Block 9 übergeben. Die Berechnung des Korrekturfaktors ηTL erfolgt, wie bereits weiter oben beschrieben, in Block 10 durch Quotientenbildung aus dem Lastsollwert TL_soll und dem Lastistwert TL_ist. Ist hierbei der Lastsollwert größer als der Lastistwert TL_soll>TL_ist, so ergibt sich ein Korrekturfaktor ηTL1>. Dieser wird dann anschließend in Block 11 auf den Wert ηTL=1 begrenzt. Dadurch wird der Tatsache Rechnung getragen, daß der Lastistwert durch eine Zündspätverstellung zwar reduziert, nicht jedoch erhöht werden kann. Ist hingegen in Block 10 der Lastsollwert kleiner als der Lastistwert TL_soll<TL_ist, so ergibt sich ein Korrekturfaktor ηTL<1. Dieser wird dann als zweiter Zündwinkelkorrekturfaktor ηMK an Block 9 und nach der Multiplikation mit dem ersten Zündwinkelkorrekturfaktor ηdyn=1 als resultierender Zündwinkelkorrekturfaktor η an die Zündwinkelberechnung übereben. In diesem Fall wird also zusätzlich zur Lastregelung über eine Zündspätverstellung eine schnellst mögliche Momentenreduzierung ausgelöst.In the second operating state, as in the first operating state Z1 also, the filling moment M_Füll = M_soll and the resulting moment M_zünd = M_soll set. This results in the quotient formation in block 8, in turn, a first ignition angle correction factor η dyn = 1. In contrast to the operating state Z1, however, the control bit MDYN_MK = 1. Thus, in block 12, the limited correction factor η TL is passed from block 11 as second ignition angle correction factor η MK to block 9. The calculation of the correction factor η TL takes place, as already described above, in block 10 by quotient formation from the load setpoint TL_soll and the actual load value TL_ist. If in this case the load setpoint is greater than the actual load value TL_set> TL_act, the result is a correction factor η TL 1>. This is then limited in block 11 to the value η TL = 1. This takes into account the fact that the actual load value can be reduced, but not increased, by an ignition retard adjustment. If, in contrast, the load setpoint is smaller than the actual load value TL_set <TL_ist in block 10, a correction factor η TL <1 results. This is then used as the second ignition angle correction factor η MK at block 9 and after the multiplication by the first ignition angle correction factor η dyn = 1 as the resulting ignition angle correction factor η to the ignition angle calculation. In this case, a fastest possible torque reduction is therefore triggered in addition to the load control via a Zündspätverstellung.

Im dritten Betriebszustand Z3 wird eine Momenteneinstellung mit Vorhalt durchgeführt. Dies bedeutet, daß bei einer Reduzierung des Sollmomentes M_soll das Füllmoment M_Füll auf dem ursprünglichen Wert M_Füll(k-1) festgehalten wird. Die Momentenreduzierung erfolgt in diesem Fall ausschließlich über die Zündzeitpunktverstellung. Bei einer Erhöhung des Sollmomentes M_soll wird allerdings auch das Füllmoment M_Füll entsprechend erhöht und somit die Lastregelung entsprechend durchgeführt. Die Ermittlung des zweiten Zündwinkelkorrekturf aktors ηMK erfolgt analog dem Verfahren gemäß Betriebszustand Z2. Zusätzlich kann sich aber in Block 8 das resultierende Moment M_Zünd vom Füllmoment M_Füll unterscheiden, so daß sich ein von 1 verschiedener erster Zündwinkelkorrekturfaktors ηdyn ergibt. Da das resultierende Moment M_Zünd=M_soll gesetzt wird und das Füllmoment nur Werte M_Füll>=M_soll annehmen kann, ergibt sich somit ein erster Zündwinkelkorrekturfaktor von ηdyn<=1. In diesem Betriebszustand Z3 können somit beide Zündwinkelkorrekturfaktoren ηdyn, ηMK zur Zündwinkelverstellung beitragen.In the third operating state Z3, a torque adjustment is performed with Vorhalt. This means that when the setpoint torque M_setpoint is reduced, the filling momentum M_fill is retained at the original value M_fill (k-1). The torque reduction takes place in this case exclusively via the ignition timing. With an increase of the setpoint torque M_soll, however, the filling moment M_Füll is correspondingly increased and thus the load control is carried out accordingly. The determination of the second Zündwinkelkorrekturf actuator η MK is analogous to the method according to operating condition Z2. In addition, however, in block 8, the resulting moment M_Zünd can differ from the filling moment M_Füll, so that one of 1 different first Zündwinkelkorrekturfaktors η dyn results. Since the resulting torque M_Zünd = M_soll is set and the filling torque can only assume values M_Füll> = M_soll, this results in a first ignition angle correction factor of η dyn <= 1. In this operating state Z3, both ignition angle correction factors η dyn , η MK can thus contribute to the ignition angle adjustment.

Abschließend soll nun anhand von Fig. 2 noch kurz erklärt werden, wie der Übergang zwischen den einzelnen Betriebszuständen Z1 bis Z4 erfolgt. Neben den bereits oben beschriebenen Betriebszuständen Z1 bis Z3 ist hier noch ein zusätzlicher Übergangsbetriebszustand Z4 vorgesehen, dessen Funktion im folgenden beschrieben wird. Das Verfahren zur Ermittlung des indizierten Momentes M_Ind und des resultierenden Zündwinkelkorrekturfaktors η entspricht hierbei vollkommen dem Verfahren im Betriebszustand Z2.Finally, it will now be explained briefly with reference to FIG. 2 how the transition between the individual operating states Z1 to Z4 takes place. In addition to the operating states Z1 to Z3 already described above, an additional transitional operating state Z4 is provided here, the function of which will be described below. The method for determining the indicated torque M_Ind and the resulting ignition angle correction factor η in this case corresponds completely to the method in the operating state Z2.

Beim Start wird im Rahmen einer Initialisierung der Betriebszustand Z1 ausgewählt. In Abhängigkeit von der in Block 1 jeweils aktuell ermittelten Dynamikanforderung MDYN0, MDYN1 wird dann ein neuer Betriebszustand Zi ausgewählt. Die möglichen Übergänge zwischen den Betriebszuständen Zi sind jeweils als Pfeile mit zugehörigen Bedingungen dargestellt. Wie aus Fig. 2 zu entnehmen ist, ist ausgehend vom Betriebszustand Z1 nur ein Übergang auf die Betriebszustände Z2 oder Z3 möglich. Ein direkter Übergang vom Betriebszustand Z1 auf den Übergangsbetriebszustand Z4 ist nicht vorgesehen. Entsprechend sind zwar beliebige Wechsel zwischen den Betriebszuständen Z2, Z3 und Z4 möglich, ein direkter Wechsel von den Betriebszuständen Z2 beziehungsweise Z3 in den Betriebszustand Z1 ist wiederum nicht vorgesehen. Zurück zum Betriebszustand Z1 gelangt man nur über den Übergangsbetriebszustand Z4, falls zusätzlich der begrenzte Korrekturfaktor ηTL größer als ein vorgegebener Schwellwert s ist. Durch diese Bedingung wird ein schlagartiges Zurücknehmen einer großen Zündwinkelverstellung und damit einer spürbaren Momentenänderung, wie sie durch ein direktes Springen vom Betriebszustand Z2 oder Z3 in Z1 entstehen könnte, verhindert.When starting, the operating state Z1 is selected as part of an initialization. Depending on the dynamic demand MDYN0, MDYN1 respectively currently determined in block 1, a new operating state Zi is then selected. The possible transitions between the operating states Zi are each shown as arrows with associated conditions. As can be seen from FIG. 2, starting from the operating state Z1, only a transition to the operating states Z2 or Z3 is possible. A direct transition from the operating state Z1 to the transitional operating state Z4 is not provided. Accordingly, although any changes between the operating conditions Z2, Z3 and Z4 are possible, a direct change from the operating conditions Z2 or Z3 to the operating state Z1 is again not provided. Back to the operating state Z1 can only be reached via the transitional operating state Z4, if in addition the limited correction factor η TL is greater than a predetermined threshold value s. By this condition, a sudden retraction of a large ignition angle and thus a noticeable change in torque, as could occur by a direct jump from the operating state Z2 or Z3 in Z1, prevented.

Claims (5)

  1. Method of adjusting the driving power of a motor vehicle having an internal combustion engine with spark ignition, comprising means for pre-setting a desired torque on the basis of a driver's desired torque and optionally other desired torques and means for adjusting this desired torque by influencing the load and/or the ignition angle, whereby a distinction is made between three states (Z1, Z2, Z3) associated with the operating conditions,
    characterised in that
    - the torque adjustment is implemented at optimum efficiency on the basis of a load regulation in a first operating state (Z1),
    - the torque adjustment is implemented as quickly as possible on the basis of an additional ignition angle adjustment in a second operating state (Z2) and
    - the torque setting is fixed for the load control and the residual torque adjustment is effected on the basis of an additional ignition angle adjustment in a third operating state (Z3),
    - the desired torque (M_desired) is divided into a charging torque (M_charge) and a resultant torque (M_ign) depending on the instantaneous state (Z1, Z2, Z3),
    - a load desired value (TL_desired) is determined from the charging torque (M_charge).
  2. Method as claimed in claim 1,
    characterised in that
    - the load actual value (TL_actual) is set to this load desired value (TL_desired) with the aid of a load control system,
    - a first ignition angle correction factor (ηdyn) is determined from the quotient of the resultant torque (M_ign) and the charging torque (M_charge),
    - a second ignition angle correction factor (ηMK) is determined from the quotient of the load desired value (TL_desired) and the load actual value (TL_desired)
    - the second ignition angle correction factor (ηMK) is set at 1 in the first state (Z1) and
    - a resultant ignition angle correction factor (η) is determined from the product of the first and second ignition angle correction factors (ηdynMK,) from which a delay adjustment angle is determined for the ignition angle calculation.
  3. Method as claimed in claim 2,
    characterised in that
    the second ignition angle correction factor (ηMK) is limited to values smaller than or equal to 1.
  4. Method as claimed in claim 1 or 2,
    characterised in that
    the charging torque (M_charge) is limited to values greater than or equal to an idling torque (M_LLR).
  5. Method as claimed in claim 2,
    characterised in that
    a transition from the second state (Z2) respectively the third state (Z3) to the first state (Z1) does not take place unless the second ignition angle correction factor (ηMK) exceeds a pre-set threshold value (s).
EP99101945A 1998-02-20 1999-01-30 Method for controlling the power of a vehicle Expired - Lifetime EP0937886B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19807126A DE19807126C2 (en) 1998-02-20 1998-02-20 Method for adjusting the drive power of a motor vehicle
DE19807126 1998-02-20

Publications (3)

Publication Number Publication Date
EP0937886A2 EP0937886A2 (en) 1999-08-25
EP0937886A3 EP0937886A3 (en) 2001-04-25
EP0937886B1 true EP0937886B1 (en) 2006-01-04

Family

ID=7858383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99101945A Expired - Lifetime EP0937886B1 (en) 1998-02-20 1999-01-30 Method for controlling the power of a vehicle

Country Status (5)

Country Link
US (1) US6119654A (en)
EP (1) EP0937886B1 (en)
JP (1) JPH11315746A (en)
DE (2) DE19807126C2 (en)
ES (1) ES2255738T3 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2263810C2 (en) * 1999-12-18 2005-11-10 Роберт Бош Гмбх Method of and device to control vehicle engine unit
JP2003527518A (en) 1999-12-18 2003-09-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vehicle drive unit control method and control device
DE10058355A1 (en) 1999-12-18 2001-08-30 Bosch Gmbh Robert Method and device for controlling the drive unit of a vehicle
FR2816989B1 (en) 2000-11-20 2003-05-16 Saime Sarl METHOD FOR OPTIMIZING THE COMBUSTION OF AN INTERNAL COMBUSTION ENGINE OPERATING IN SELF-IGNITION
DE10061432B4 (en) * 2000-12-09 2007-04-26 Daimlerchrysler Ag Method for torque adjustment during operation of a motor vehicle by means of a temporal setpoint increase
DE60236815D1 (en) * 2001-08-17 2010-08-05 Tiax Llc METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH COMPRESSION IGNITION AND FUEL AIR PRE-MIXING
US6705285B2 (en) 2001-10-31 2004-03-16 Daimlerchrysler Corporation Air flow target determination
US6688282B1 (en) 2002-08-28 2004-02-10 Ford Global Technologies, Llc Power-based idle speed control
DE102004005450B4 (en) * 2004-02-04 2017-05-24 Robert Bosch Gmbh Method and device for controlling an internal combustion engine, in particular of a motor vehicle, by means of phase-leading signal paths

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933522A2 (en) * 1998-01-29 1999-08-04 DaimlerChrysler AG Method for adjusting the output power of an internal-combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564275B2 (en) * 1986-05-09 1996-12-18 株式会社日立製作所 State adaptive internal combustion engine control system
DE3728573C1 (en) * 1987-08-27 1988-11-24 Daimler Benz Ag Device for regulating at least one variable influencing the drive torque of an internal combustion engine of a motor vehicle
JP2832266B2 (en) * 1990-06-30 1998-12-09 マツダ株式会社 Engine throttle valve controller
JP3206224B2 (en) * 1993-06-30 2001-09-10 日産自動車株式会社 Traction control device for vehicles
DE4343353C2 (en) * 1993-12-18 2002-12-05 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE4407475C2 (en) * 1994-03-07 2002-11-14 Bosch Gmbh Robert Method and device for controlling a vehicle
US5479898A (en) * 1994-07-05 1996-01-02 Ford Motor Company Method and apparatus for controlling engine torque
JPH08218911A (en) * 1995-02-14 1996-08-27 Honda Motor Co Ltd Control device of internal combustion engine for vehicle
DE19517675B4 (en) * 1995-05-13 2006-07-13 Robert Bosch Gmbh Method and device for controlling the torque of an internal combustion engine
DE19545221B4 (en) * 1995-12-05 2005-08-25 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19618893A1 (en) * 1996-05-10 1997-11-13 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE19630213C1 (en) * 1996-07-26 1997-07-31 Daimler Benz Ag Method of adjusting engine torque of IC engine
DE19739567B4 (en) * 1997-09-10 2007-06-06 Robert Bosch Gmbh Method and device for controlling the torque of the drive unit of a motor vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933522A2 (en) * 1998-01-29 1999-08-04 DaimlerChrysler AG Method for adjusting the output power of an internal-combustion engine

Also Published As

Publication number Publication date
JPH11315746A (en) 1999-11-16
EP0937886A3 (en) 2001-04-25
DE19807126A1 (en) 1999-08-26
EP0937886A2 (en) 1999-08-25
US6119654A (en) 2000-09-19
ES2255738T3 (en) 2006-07-01
DE19807126C2 (en) 2000-11-16
DE59913003D1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
EP0853723B1 (en) Process and device for controlling an internal combustion engine
EP0837984B1 (en) Method and device for controlling an internal combustion engine
DE4239711B4 (en) Method and device for controlling a vehicle
EP0749524B1 (en) Vehicle control process and device
DE4304779B4 (en) Device for controlling the torque to be delivered by a drive unit of a vehicle
DE10029303B4 (en) Control unit and method for an internal combustion engine installed in a motor vehicle
EP0557299B1 (en) Method of controlling the operation of a propulsion unit consisting of an internal-combustion engine and an automatic gearbox
EP0938629B1 (en) Method for determining the advance ignition angle in internal combustion engine ignition systems
EP2798180B1 (en) Control method of an internal combustion to avoid a too frequent hunting between at least two combustion modes
DE10332231B4 (en) Device method, and computer readable storage medium for power-based idle speed control
DE19619320A1 (en) Method and device for controlling an internal combustion engine
EP0902863B1 (en) Method for controlling knocking in multicylinder internal combustion engines
DE19501299B4 (en) Method and device for controlling an internal combustion engine of a vehicle
EP0937886B1 (en) Method for controlling the power of a vehicle
WO2020114736A1 (en) Control unit and method for operating a hybrid drive having an internal combustion engine with reduced drag torque
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
DE3913191A1 (en) CONTROL SYSTEM FOR VEHICLE ENGINES COUPLED TO AN AUTOMATIC TRANSMISSION
EP0933522A2 (en) Method for adjusting the output power of an internal-combustion engine
EP1190167B1 (en) Method and device for operating an internal combustion engine with direct gas injection
DE102004021426B4 (en) Method and apparatus for providing safety for electronically controlled cylinder engagement and deactivation
EP0931217A1 (en) Method and device for regulating an internal combustion engine
DE3938257C2 (en)
DE4426972B4 (en) Method and device for controlling an internal combustion engine
DE10135143A1 (en) Method and device for operating a drive motor
DE10135077A1 (en) Method and device for operating a drive motor of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010327

AKX Designation fees paid

Free format text: DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060104

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59913003

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060504

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255738

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170126

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170131

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170331

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59913003

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131