EP0837984B1 - Method and device for controlling an internal combustion engine - Google Patents

Method and device for controlling an internal combustion engine Download PDF

Info

Publication number
EP0837984B1
EP0837984B1 EP97915336A EP97915336A EP0837984B1 EP 0837984 B1 EP0837984 B1 EP 0837984B1 EP 97915336 A EP97915336 A EP 97915336A EP 97915336 A EP97915336 A EP 97915336A EP 0837984 B1 EP0837984 B1 EP 0837984B1
Authority
EP
European Patent Office
Prior art keywords
value
torque
setpoint
setpoint value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97915336A
Other languages
German (de)
French (fr)
Other versions
EP0837984A1 (en
Inventor
Werner Hess
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0837984A1 publication Critical patent/EP0837984A1/en
Application granted granted Critical
Publication of EP0837984B1 publication Critical patent/EP0837984B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the Preambles of the independent claims.
  • Such a method or such Device is known from DE-A 42 39 711.
  • Control or regulating systems a setpoint for a torque the internal combustion engine specified.
  • This setpoint will on the one hand into a target filling value and then into one Setpoint for controlling the air supply to the internal combustion engine for example implemented via a throttle valve, on the other hand in an ignition angle setting and / or Number of cylinders to which the fuel supply is interrupted.
  • the actual torque is the performance parameter of the internal combustion engine the internal combustion engine the predetermined target torque value approximated.
  • Torque reduction in an internal combustion engine desired (if the target value is specified accordingly), see above is usually with the desired dynamics set because of the very quickly on the torque interventions in the ignition angle, in the Fuel supply to the cylinders and / or in the Mixture composition immediately reduces the engine torque can be.
  • the slower filling procedure is with the Torque reduction of this quick torque change overlaid.
  • an increase in torque is required, then so this can only be done by increasing the filling, if all cylinders are fired, the mixture composition stoichiometric and the ignition angle not late is moved.
  • the dynamic of this filling increase is however limited by the dynamics of the throttle valve actuator and / or the intake manifold dynamics.
  • the solution according to the invention is particularly advantageous in Operating states in which the torque change, especially the moment build-up, known in advance is.
  • This applies for example, to a change in torque by the driver using the pedal, during interventions a traction or engine drag torque controller, a driving dynamics controller or similar control systems, at the connection of loads such as air conditioning, in Start case and / or warm-up in connection with Catalyst heating measures too.
  • loads such as air conditioning, in Start case and / or warm-up in connection with Catalyst heating measures too.
  • In these operating conditions is achieved by splitting the torque setpoint to a Setpoint for the fill path and a setpoint for the quick interventions that take on different values can make the moment change dynamically correct.
  • Figure 1 shows the structure using an overview block diagram the torque control according to the invention.
  • FIG 2 and 3 are block diagrams showing a show preferred embodiment. Another one Exemplary embodiment is based on the block diagrams of Figures 4 and 5 shown.
  • Figure 6 finally shows based on time charts when using the invention Solution.
  • An electronic control unit 10 is shown in FIG Control of the torque of an internal combustion engine shown, the at least one, not shown Contains microcomputer.
  • the implemented in the microcomputer Programs are shown as blocks in FIG.
  • About the Output lines 12, 14 and 16 affect the control unit 10 the air supply to the internal combustion engine, the Fuel supply (blanking and / or Mixture composition) and the ignition angle of the Internal combustion engine.
  • Via input lines 20, 22 and 24 to 26 are the control unit 10 for Torque control processed operating quantities fed.
  • the Control unit 10 is supplied with a setpoint for a torque.
  • a measuring device 30 for detecting the Accelerator pedal actuation is via the control unit 10 Input line 22 an the degree of actuation ⁇ representing signal supplied. Furthermore, the Control unit 10 of measuring devices 32 to 34 via the Input lines 24 to 26 signals supplied, the further Operating variables of the internal combustion engine and / or the Vehicle, for example engine speed, engine load, Represent engine temperature, etc.
  • the operating variables supplied to the control unit 10 are separated in a first program block 36 in the manner described below into a target torque value MI target-L for the filling path and into a target value MI target for influencing the fuel metering and / or the ignition angle.
  • the torque setpoint MI Soll-L for the filling path is entered in a subsequent program block 38, taking into account selected operating variables which are supplied to the control unit 10 via the lines 24 to 26, or variables derived therefrom in the manner known from the prior art mentioned at the outset Filling setpoint rl setpoint converted.
  • This setpoint charge value is converted in program block 40, as described in the prior art mentioned at the beginning, in the context of control loops into a control signal for an electrically actuable throttle valve for adjusting the air supply.
  • the filling of the internal combustion engine is therefore set in such a way that it approximates the target value and thus the actual torque the target torque value.
  • the torque setpoint MI Soll for the rapid torque intervention is converted in the known manner in the program block 42 into control signals for the mixture supply (cylinder blanking and / or setting the mixture composition) and / or for setting the ignition angle and output via the lines 14 and 16 shown symbolically.
  • the basic idea of the solution according to the invention is that a Present torque setpoint into a setpoint for the Fill path and the ignition angle path is separated.
  • the two setpoints have at least one operating state different torque values and become parallel to each other by adjusting the filling or Fuel supply and / or ignition angle realized. It is provided in a preferred embodiment that the Separation only takes place when the future value the torque setpoint is greater than the current setpoint, i.e. with torque increases.
  • Figure 2 shows a first embodiment of the separation the torque setpoints. The solution shown is applied when the result of the actuation signal ⁇ derived driver request in the direction of increasing torques changes. It is assumed that only the Driver request determines the target torque and no further Interventions (e.g. from a traction control system) available.
  • the torque MI Ped set by the driver via the pedal actuation is determined from the actuation degree signal ⁇ and at least the engine speed N Mot .
  • This pedal torque is interpolated between a minimum and a maximum torque value in the subsequent interpolation program 102. These values are predetermined and are preferably at least speed-dependent.
  • the driver's desired torque MIFAR formed by the interpolation is then filtered in the filter element 104 in accordance with a predetermined filter function (eg first-order low-pass filter). In the described operating situation, the filtered value is considered as the target torque MI target and is supplied to the block 42 for determining the influencing of the fuel supply and / or the ignition angle.
  • a predetermined filter function eg first-order low-pass filter
  • block 42 calculates from the supplied setpoint torque value setpoints for the number of cylinders to be blanked (RED setpoint ) a setpoint value for the mixture composition ⁇ setpoint and a setpoint value for the ignition angle setting (ZW setpoint ). These are set via the symbolic output lines 14 and 16.
  • the filtered target torque value MI Soll is, in a preferred embodiment, also the target torque value evaluated to determine the target filling.
  • the setpoints which are separate for filling path and quick interventions, assume different values.
  • the determination of the target filling value is then based not on the filtered target torque value but on the unfiltered target torque value MIFAR.
  • This setpoint torque value is fed to program block 38 for determining setpoint charge rl setpoint , which in turn is converted in program block 40 into control signals for a throttle valve and possibly a turbocharger for influencing the cylinder charge.
  • the target torque value is only achieved by adjusting the filling and the ignition angle. It must be ensured that the target torque specified by the driver or other regulating or control systems can actually be set. Adjustable ignition angles must therefore be taken into account at the latest for the respective operating point.
  • This firing angle is a function of operating variables, preferably the engine speed and the engine load, and is determined by the running limit of the engine. According to the broken line in FIG. 2, in this case the target torque specified for the air path is limited on the basis of the target torque MI target to be set and at least the latest possible ignition angle. In this way, the torque change specified by the driver can be implemented by adjusting the filling and quickly adjusting the ignition angle. The actual torque is then quickly brought to the target torque.
  • the target torque for the air path MI target-L is determined on the basis of a minimum value selection 200 from the target torque value MI target corrected in accordance with the ignition angle conditions and an unlimited target value MI target-L * predefined for the filling path.
  • Three maps 202, 204 and 206 are provided in which, depending on the engine speed and engine load, the optimal ignition angle ZW Opt , at which the internal combustion engine has the highest efficiency, the basic ignition angle at the current operating point ZW Base , which adjusts the ignition angle without external intervention (for example by traction control) and the ignition angle ZWM that can be set as late as possible at the current operating point is stored.
  • the basic ignition angle describes the ignition angle that is set at the current operating point of the internal combustion engine without external intervention.
  • the difference between the optimum ignition angle and the basic ignition angle is formed in a first connection point 208, while the difference between the optimum and the latest possible ignition angle is formed in a second connection point 210.
  • correction moments etazwbase, etazwm
  • efficiency curves 212 and 214 These correction torques represent the change in efficiency or the change in torque that would occur when the respective ignition angle was set due to the deviation from the optimum value.
  • the correction values are used to correct the target torque value MI target .
  • the ignition angle set in the current operating point is the basic ignition angle. The greatest change in torque can be achieved by setting the latest possible ignition angle.
  • the target torque for the filling must therefore be limited down to a predetermined minimum value in order to ensure that the desired target torque can be achieved by changing the filling and adjusting the ignition angle. This lower limit forms the corrected target torque MI target for the ignition angle intervention.
  • the correction takes into account the latest possible setting of the ignition angle by dividing the setpoint by the efficiency etazwm (division point 216). The result sets the target torque value when setting the latest possible ignition angle.
  • the corrected target torque value is multiplied in the multiplication point 218 by the efficiency of the basic ignition angle in order to obtain the optimal torque to be set.
  • the result is the target torque value, which can be adjusted from the basic ignition angle using the largest possible ignition angle adjustment.
  • the target torque for the filling must not fall below this value, since otherwise the target torque MI target cannot be realized.
  • a minimum value selection between the two values is therefore carried out in the minimum value selection stage 200 and the smaller desired value is fed into the conversion into the desired filling value.
  • a second embodiment is the increase in Setpoints for the filling path in certain Operating situations, which automatically leads to an adjustment of the ignition angle leads to late. These operating situations occur especially with active idle control active catalyst heating and / or during the Startup process. These operating states have in common that a quick adjustment of the moment towards larger moments must be possible. A quick adjustment however, is only about changing the ignition angle, the Fuel supply and / or the mixture composition possible. In the preferred embodiment, therefore, in a reserve torque in these operating states set which by increasing the over the Filling set moments with simultaneous opposite change in the ignition angle, the Fuel supply and / or the mixture composition is pictured. The total moment is not changed. in the preferred embodiment is only the Ignition angle considered.
  • the reserve torque is different Can have reference points. In particular, it can optimal moment (moment with highest efficiency) or on the currently effective moment.
  • FIG. 4 shows a first embodiment for the specification in the filling path, which is used in particular by an idle control or in catalyst heating functions.
  • the torque setpoint MI Soll which is specified by the driver or other control systems and is used to set the ignition angle and the other output variables that bring about a rapid change in torque, is led to a link point 300.
  • the torque reserve value DMROPT stored in the memory location 302 is added in this connection point.
  • the torque reserve is either fixed or stored in a characteristic curve depending on the operating parameters. Operating variables are, for example, engine speed, engine temperature, the equipment in the vehicle, the time after starting, etc.
  • the sum of the torque setpoint and the torque reserve is multiplied in a multiplication point 302 by the basic ignition angle efficiency, which is also the basis for the calculation of the target fill value.
  • the result is compared in a maximum value selection stage 304 with the target torque value MI target and the respectively larger of the two values is output as target torque for the air path MI target-L .
  • the reserve torque is on the optimal values (optimal torque, optimal ignition angle) based. This allows a defined firing angle to be stationary to adjust.
  • the multiplication by the basic ignition angle efficiency is used to calculate the reference point for the Conversion of the target torque value for the filling path into one Target filling value.
  • the target torque value for the Fill path is a limitation of the target torque value for the Fill path necessary.
  • the limitation is made to the maximum Firing angle. Assuming that the base firing angle is the earliest possible ignition angle is (the ignition angle is optimal in terms of moment or at the knock limit), so is by the Maximum value selection ensures that never too little filling is specified. Will the moment go through additionally Mixture influencing and / or cylinder blanking controlled, this limitation can be dispensed with.
  • the torque reserve value is related to the momentarily effective torque, this limitation can be omitted and the much simpler structure according to FIG. 5 results.
  • the torque setpoint for the filling path is obtained by adding the torque setpoint MI setpoint for the quick intervention and the reserve torque DMR.
  • the rapid intervention is set in the exemplary embodiments according to FIGS. 4 and 5 in accordance with the target torque value MI target .
  • FIG. 6 The effect of the solution according to the invention, in particular according to the first exemplary embodiment, is illustrated using the example in FIG. 6.
  • the time course of the target torque value MI target and of the torque contribution through the filling (dashed) is shown in FIG. 6a.
  • FIG. 6b shows the time course of the torque contribution by adjusting the ignition angle and
  • FIG. 6c shows the time course of the actual torque.
  • the target torque is reduced at a time T0.
  • the The target torque value is determined by adjusting the ignition angle and Filling adjustment implemented. As a result of the faster The ignition angle adjustment (see FIG. 6b) takes Fill proportion only slowly. The actual moment changes 4c according to the setpoint. At time T1 the target torque is increased again. Through the separation according to the invention between the filling path and Ignition angle path is largely due to this torque increase the ignition angle correction is carried out.
  • the beneficial Effect is that the actual moment also in torque increasing direction follows the setpoint almost exactly.
  • the calculations performed on the basis of performance values, being moment and power are related to engine speed.
  • the mixture composition or the fuel supply to a cylinder or a any combination of these three sizes are to be applied accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

The invention concerns a method and device for controlling a motor vehicle internal combustion engine, according to which a desired torque value is predetermined and divided into at least two desired values, which are used to adjust the filling of the internal combustion engine, and at least one further performance parameter which brings about a rapid variation in torque, the at least two desired values having different values in at least one operating state.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a method and a device for controlling an internal combustion engine according to the Preambles of the independent claims.

Ein derartiges Verfahren beziehungsweise eine derartige Vorrichtung ist aus der DE-A 42 39 711 bekannt. Dort wird vom Fahrer oder in Sonderbetriebszuständen von anderen Steuer- oder Regelsystemen ein Sollwert für ein Drehmoment der Brennkraftmaschine vorgegeben. Dieser Sollwert wird einerseits in einen Soll-Füllungswert und dann in einen Sollwert zur Steuerung der Luftzufuhr zur Brennkraftmaschine beispielsweise über eine Drosselklappe umgesetzt, andererseits in eine Zündwinkeleinstellung und/oder eine Anzahl von Zylindern, zu denen die Kraftstoffzufuhr unterbrochen wird. Durch diese Steuerung der Leistungsparameter der Brennkraftmaschine wird das Istmoment der Brennkraftmaschine dem vorgegebenen Sollmomentenwert angenähert.Such a method or such Device is known from DE-A 42 39 711. There will by the driver or in special operating conditions by others Control or regulating systems a setpoint for a torque the internal combustion engine specified. This setpoint will on the one hand into a target filling value and then into one Setpoint for controlling the air supply to the internal combustion engine for example implemented via a throttle valve, on the other hand in an ignition angle setting and / or Number of cylinders to which the fuel supply is interrupted. By controlling the The actual torque is the performance parameter of the internal combustion engine the internal combustion engine the predetermined target torque value approximated.

Ergänzend dazu ist aus der WO-A 95/24550 bekannt, neben der Zündwinkeleinstellung und/oder der Zylinderausblendung eine Beeinflussung der Gemischzusammensetzung der Brennkraftmaschine vorzunehmen.In addition to this, it is known from WO-A 95/24550, in addition to Ignition angle adjustment and / or cylinder blanking Influencing the mixture composition of the Make internal combustion engine.

Wird bei einer Brennkraftmaschine eine Momentenreduzierung gewünscht (bei entsprechender Vorgabe des Sollwertes), so wird diese in der Regel mit der gewünschten Dynamik eingestellt, da durch die sehr schnell auf das Drehmoment wirkenden Eingriffe in den Zündwinkel, in die Kraftstoffzufuhr zu den Zylindern und/oder in die Gemischzusammensetzung das Motormoment sofort reduziert werden kann. Der langsamere Füllungseingriff ist bei der Momentenreduzierung dieser schnellen Momentenänderung überlagert. Wird jedoch eine Momentenerhöhung gefordert, so läßt sich diese nur durch eine Füllungserhöhung ausführen, sofern alle Zylinder befeuert, die Gemischzusammensetzung stöchiometrisch und der Zündwinkel nicht nach spät verschoben ist. Die Dynamik dieser Füllungserhöhung ist jedoch begrenzt durch die Dynamik des Drosselklappenstellers und/oder die Saugrohrdynamik.Torque reduction in an internal combustion engine desired (if the target value is specified accordingly), see above is usually with the desired dynamics set because of the very quickly on the torque interventions in the ignition angle, in the Fuel supply to the cylinders and / or in the Mixture composition immediately reduces the engine torque can be. The slower filling procedure is with the Torque reduction of this quick torque change overlaid. However, if an increase in torque is required, then so this can only be done by increasing the filling, if all cylinders are fired, the mixture composition stoichiometric and the ignition angle not late is moved. The dynamic of this filling increase is however limited by the dynamics of the throttle valve actuator and / or the intake manifold dynamics.

Es ist Aufgabe der Erfindung, die Dynamik der Steuerung des Drehmoments einer Brennkraftmaschine zumindest in einigen Betriebszuständen zu optimieren.It is an object of the invention to control the dynamics of the Torque of an internal combustion engine, at least in some Optimize operating conditions.

Dies wird durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche erreicht.This is due to the distinctive features of the independent claims achieved.

Vorteile der ErfindungAdvantages of the invention

Die Dynamik der Momentenänderung, insbesondere bei einer Momentenerhöhung, wird optimiert. Besonders vorteilhaft ist, daß auch in solchen Betriebszuständen das Istmoment der Brennkraftmaschine im wesentlichen dem Sollmoment mit der geforderten Dynamik folgt. The dynamics of the change in torque, especially with one Torque increase is optimized. It is particularly advantageous that even in such operating conditions, the actual torque Internal combustion engine essentially the target torque with the required dynamics follows.

Besonders vorteilhaft ist die erfindungsgemäße Lösung in Betriebszuständen, in denen die Momentenänderung, insbesondere der Momentenaufbau, schon im voraus bekannt ist. Dies trifft beispielsweise bei einer Momentenänderung durch den Fahrer mittels Pedalbetätigung, bei Eingriffen eines Antriebsschlupf- oder Motorschleppmomentenreglers, eines Fahrdynamikreglers bzw. ähnlicher Regelsysteme, bei der Aufschaltung von Lasten wie einer Klimaanlage, im Startfall und/oder im Warmlauf im Zusammenhang mit Katalysatorheizmaßnahmen zu. In diesen Betriebszuständen wird durch die Auftrennung des Momentensollwertes auf einen Sollwert für den Füllungspfad und einen Sollwert für die schnellen Eingriffe, die unterschiedliche Werte annehmen können, die Momentenänderung dynamisch richtig vorgenommen.The solution according to the invention is particularly advantageous in Operating states in which the torque change, especially the moment build-up, known in advance is. This applies, for example, to a change in torque by the driver using the pedal, during interventions a traction or engine drag torque controller, a driving dynamics controller or similar control systems, at the connection of loads such as air conditioning, in Start case and / or warm-up in connection with Catalyst heating measures too. In these operating conditions is achieved by splitting the torque setpoint to a Setpoint for the fill path and a setpoint for the quick interventions that take on different values can make the moment change dynamically correct.

Besonders vorteilhaft ist, daß durch die Bildung von sogenannten Reservemomenten der Arbeitspunkt der Brennkraftmaschine stationär verschoben werden kann, so daß alle Momentenanforderungen mit der geforderten Dynamik realisiert werden können.It is particularly advantageous that through the formation of so-called reserve moments the working point of the Internal combustion engine can be moved stationary, so that all torque requirements with the required dynamics can be realized.

Besonders vorteilhaft ist, daß durch die Einführung geeigneter Begrenzungen sichergestellt ist, daß das angeforderte Moment, insbesondere im Füllungspfad, tatsächlich realisierbar ist.It is particularly advantageous that through the introduction appropriate limits ensure that requested moment, especially in the fill path, is actually feasible.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Further advantages result from the following Description of exemplary embodiments or from the dependent claims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Figur 1 zeigt anhand eines Übersichtsblockschaltbildes die Struktur der erfindungsgemäßen Drehmomentensteuerung. In den Figuren 2 und 3 sind Blockschaltbilder dargestellt, die ein bevorzugtes Ausführungsbeispiel zeigen. Ein weiteres Ausführungsbeispiel ist anhand der Blockschaltbilder der Figuren 4 und 5 dargestellt. Figur 6 schließlich zeigt anhand von Zeitdiagrammen bei Einsatz der erfindungsgemäßen Lösung.The invention is described below with reference to the drawing illustrated embodiments explained in more detail. Figure 1 shows the structure using an overview block diagram the torque control according to the invention. In the figures 2 and 3 are block diagrams showing a show preferred embodiment. Another one Exemplary embodiment is based on the block diagrams of Figures 4 and 5 shown. Figure 6 finally shows based on time charts when using the invention Solution.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

In Figur 1 ist eine elektronische Steuereinheit 10 zur Steuerung des Drehmoments einer Brennkraftmaschine dargestellt, die wenigstens einen, nicht dargestellten Mikrocomputer enthält. Die im Mikrocomputer implementierten Programme sind in Figur 3 als Blöcke dargestellt. Über die Ausgangsleitungen 12, 14 und 16 beeinflußt die Steuereinheit 10 die Luftzufuhr zur Brennkraftmaschine, die Kraftstoffzufuhr (Ausblendung und/oder Gemischzusammensetzung) und den Zündwinkel der Brennkraftmaschine. Über Eingangsleitungen 20, 22 und 24 bis 26 werden der Steuereinheit 10 die zur Drehmomentensteuerung verarbeiteten Betriebsgrößen zugeführt. Von wenigstens einer weiteren Steuereinheit 28, beispielsweise einer Antriebsschlupfregeleinheit, wird der Steuereinheit 10 ein Sollwert für ein Drehmoment zugeführt. Von einer Meßeinrichtung 30 zur Erfassung der Fahrpedalbetätigung wird der Steuereinheit 10 über die Eingangsleitung 22 ein den Betätigungsgrad β repräsentierendes Signal zugeführt. Ferner werden der Steuereinheit 10 von Meßeinrichtungen 32 bis 34 über die Eingangsleitungen 24 bis 26 Signale zugeführt, die weitere Betriebsgrößen der Brennkraftmaschine und/oder des Fahrzeugs, beispielsweise Motordrehzahl, Motorlast, Motortemperatur, etc., repräsentieren. An electronic control unit 10 is shown in FIG Control of the torque of an internal combustion engine shown, the at least one, not shown Contains microcomputer. The implemented in the microcomputer Programs are shown as blocks in FIG. About the Output lines 12, 14 and 16 affect the control unit 10 the air supply to the internal combustion engine, the Fuel supply (blanking and / or Mixture composition) and the ignition angle of the Internal combustion engine. Via input lines 20, 22 and 24 to 26 are the control unit 10 for Torque control processed operating quantities fed. From at least one further control unit 28, for example, a traction control unit, the Control unit 10 is supplied with a setpoint for a torque. From a measuring device 30 for detecting the Accelerator pedal actuation is via the control unit 10 Input line 22 an the degree of actuation β representing signal supplied. Furthermore, the Control unit 10 of measuring devices 32 to 34 via the Input lines 24 to 26 signals supplied, the further Operating variables of the internal combustion engine and / or the Vehicle, for example engine speed, engine load, Represent engine temperature, etc.

Die der Steuereinheit 10 zugeführten Betriebsgrößen werden in einem ersten Programmblock 36 in nachfolgend beschriebener Weise in einen Sollmomentenwert MISoll-L für den Füllungspfad und in einen Sollwert MISoll zur Beeinflussung der Kraftstoffzumessung und/oder des Zündwinkels aufgetrennt. Der Momentensollwert MISoll-L für den Füllungspfad wird in einem nachfolgenden Programmblock 38 unter Berücksichtigung ausgewählter Betriebsgrößen, die der Steuereinheit 10 über die Leitungen 24 bis 26 zugeführt werden, bzw. daraus abgeleiteter Größen in der aus dem eingangs genannten Stand der Technik bekannten Weise ein Füllungssollwert rlSoll umgewandelt. Dieser Füllungssollwert wird im Programmblock 40 wie im eingangs genannten Stand der Technik beschrieben im Rahmen von Regelkreisen in ein Ansteuersignal für eine elektrisch betätigbare Drosselklappe zur Einstellung der Luftzufuhr umgesetzt. Die Füllung der Brennkraftmaschine wird daher derart eingestellt, daß sie sich dem Sollwert und damit das Istmoment dem Sollmomentenwert annähert. Parallel dazu wird der Momentensollwert MISoll für den schnellen Momenteneingriff in der bekannten Weise im Programmblock 42 in Ansteuersignale für die Gemischzufuhr (Zylinderausblendung und/oder Einstellen der Gemischzusammensetzung) und/oder zur Zündwinkeleinstellung umgesetzt und über die symbolisch dargestellten Leitungen 14 und 16 ausgegeben.The operating variables supplied to the control unit 10 are separated in a first program block 36 in the manner described below into a target torque value MI target-L for the filling path and into a target value MI target for influencing the fuel metering and / or the ignition angle. The torque setpoint MI Soll-L for the filling path is entered in a subsequent program block 38, taking into account selected operating variables which are supplied to the control unit 10 via the lines 24 to 26, or variables derived therefrom in the manner known from the prior art mentioned at the outset Filling setpoint rl setpoint converted. This setpoint charge value is converted in program block 40, as described in the prior art mentioned at the beginning, in the context of control loops into a control signal for an electrically actuable throttle valve for adjusting the air supply. The filling of the internal combustion engine is therefore set in such a way that it approximates the target value and thus the actual torque the target torque value. In parallel, the torque setpoint MI Soll for the rapid torque intervention is converted in the known manner in the program block 42 into control signals for the mixture supply (cylinder blanking and / or setting the mixture composition) and / or for setting the ignition angle and output via the lines 14 and 16 shown symbolically.

Grundgedanke der erfindungsgemäßen Lösung ist, daß ein vorliegender Momentensollwert in einen Sollwert für den Füllungspfad und den Zündwinkelpfad aufgetrennt wird. In wenistens einem Betriebszustand weisen die beiden Sollwerte dabei unterschiedliche Momentenwerte auf und werden parallel zueinander durch Einstellung von Füllung bzw. Kraftstoffzufuhr und/oder Zündwinkel realisiert. Dabei ist in einem bevorzugten Ausführungsbeispiel vorgesehen, daß die Auftrennung nur dann stattfindet, wenn der zukünftige Wert des Momentensollwertes größer als der aktuelle Sollwert, d.h. bei Momentenerhöhungen.The basic idea of the solution according to the invention is that a Present torque setpoint into a setpoint for the Fill path and the ignition angle path is separated. In the two setpoints have at least one operating state different torque values and become parallel to each other by adjusting the filling or Fuel supply and / or ignition angle realized. It is provided in a preferred embodiment that the Separation only takes place when the future value the torque setpoint is greater than the current setpoint, i.e. with torque increases.

Figur 2 zeigt ein erstes Ausführungsbeispiel der Auftrennung der Momentensollwerte. Die dargestellte Lösung wird angewendet, wenn sich der aus dem Betätigungssignal β abgeleitete Fahrerwunsch in Richtung steigender Drehmomente ändert. Dabei wird davon ausgegangen, daß allein der Fahrerwunsch das Sollmoment bestimmt und keine weiteren Eingriffe (beispielsweise von einer Antriebsschlupfregelung) vorliegen.Figure 2 shows a first embodiment of the separation the torque setpoints. The solution shown is applied when the result of the actuation signal β derived driver request in the direction of increasing torques changes. It is assumed that only the Driver request determines the target torque and no further Interventions (e.g. from a traction control system) available.

In einem ersten Kennfeld 100 wird aus dem Betätigungsgradsignal β und wenigstens der Motordrehzahl NMot das vom Fahrer über die Pedalbetätigung eingestellte Moment MIPed bestimmt. Dieses Pedalmoment wird im darauffolgenden Interpolationsprogramm 102 zwischen einem minimalen und einem maximalen Momentenwert interpoliert. Diese Werte sind vorgegeben und vorzugsweise zumindest drehzahlabhängig. Das durch die Interpolation gebildete Fahrerwunschmoment MIFAR wird dann im Filterelement 104 nach Maßgabe einer vorgegebenen Filterfunktion (z.B. Tiefpaß 1. Ordnung) gefiltert. Der gefilterte Wert wird in der beschriebenen Betriebssituation als Sollmoment MISoll betrachtet und dem Block 42 zur Bestimmung der Beeinflussung der Kraftstoffzufuhr und/oder des Zündwinkels zugeführt. In bekannter Weise berechnet der Block 42 dabei aus dem zugeführten Sollmomentenwert Sollwerte für die Anzahl auszublendender Zylinder (REDSoll) einen Sollwert für die Gemischzusammensetzung λ-Soll sowie einen Sollwert für die Zündwinkeleinstellung (ZWSoll). Diese werden über die symbolischen Ausgangsleitungen 14 und 16 eingestellt.In a first map 100, the torque MI Ped set by the driver via the pedal actuation is determined from the actuation degree signal β and at least the engine speed N Mot . This pedal torque is interpolated between a minimum and a maximum torque value in the subsequent interpolation program 102. These values are predetermined and are preferably at least speed-dependent. The driver's desired torque MIFAR formed by the interpolation is then filtered in the filter element 104 in accordance with a predetermined filter function (eg first-order low-pass filter). In the described operating situation, the filtered value is considered as the target torque MI target and is supplied to the block 42 for determining the influencing of the fuel supply and / or the ignition angle. In a known manner, block 42 calculates from the supplied setpoint torque value setpoints for the number of cylinders to be blanked (RED setpoint ) a setpoint value for the mixture composition λ setpoint and a setpoint value for the ignition angle setting (ZW setpoint ). These are set via the symbolic output lines 14 and 16.

Im stationären Betriebszustand bzw. bei einer Reduktion des Moments ist der gefilterte Sollmomentenwert MISoll in einem bevorzugten Ausführungsbeispiel auch der zur Bestimmung der Sollfüllung ausgewertete Sollmomentenwert. Ändert der Fahrer die Pedalstellung jedoch in einer Weise, die zu einer Momentenerhöhung führt, nehmen die für Füllungspfad und schnelle Eingriffe getrennten Sollwerte unterschiedliche Werte an. Im Ausführungsbeispiel nach Figur 2 wird der Bestimmung des Sollfüllungswertes dann nicht der gefilterte Sollmomentenwert, sondern der ungefilterte Sollmomentenwert MIFAR zugrundegelegt. Dieser Sollmomentenwert wird dem Programmblock 38 zur Bestimmung der Sollfüllung rlSoll zugeführt, die wiederum im Programmblock 40 in Ansteuersignale für eine Drosselklappe und gegebenenfalls einem Turbolader zur Beeinflussung der Zylinderfüllung umgesetzt wird.In a steady operating state or when the torque is reduced, the filtered target torque value MI Soll is, in a preferred embodiment, also the target torque value evaluated to determine the target filling. However, if the driver changes the pedal position in a way that leads to an increase in torque, the setpoints, which are separate for filling path and quick interventions, assume different values. In the exemplary embodiment according to FIG. 2, the determination of the target filling value is then based not on the filtered target torque value but on the unfiltered target torque value MIFAR. This setpoint torque value is fed to program block 38 for determining setpoint charge rl setpoint , which in turn is converted in program block 40 into control signals for a throttle valve and possibly a turbocharger for influencing the cylinder charge.

In bestimmten Betriebssituationen wird aus Komfort- und/oder Abgasgründen der Sollmomentenwert nur durch Einstellung der Füllung und des Zündwinkels realisiert. Dabei muß sichergestellt sein, daß das vom Fahrer oder anderen Regel- bzw. Steuersystemen vorgegebene Sollmoment auch tatsächlich einstellbar ist. Für den jeweiligen Betriebspunkt ist daher spätest möglich einstellbare Zündwinkel zu berücksichtigen. Dieser Zündwinkel ist abhängig von Betriebsgrößen, vorzugsweise der Motordrehzahl und der Motorlast, in einem Kennfeld abgelegt und wird bestimmt durch die Laufgrenze des Motors. Gemäß der strichlierten Darstellung in Figur 2 wird in diesem Fall das für den Luftpfad vorgegebene Sollmoment auf der Basis des einzustellenden Sollmoments MISoll und wenigstens des spätestmöglichen Zündwinkels begrenzt. Auf diese Weise kann die vom Fahrer vorgegebene Momentenänderung durch Einstellung der Füllung und schneller Zündwinkeleinstellung realisiert werden. Das Istmoment wird dann schnell auf das Sollmoment geführt. In certain operating situations, for comfort and / or exhaust gas reasons, the target torque value is only achieved by adjusting the filling and the ignition angle. It must be ensured that the target torque specified by the driver or other regulating or control systems can actually be set. Adjustable ignition angles must therefore be taken into account at the latest for the respective operating point. This firing angle is a function of operating variables, preferably the engine speed and the engine load, and is determined by the running limit of the engine. According to the broken line in FIG. 2, in this case the target torque specified for the air path is limited on the basis of the target torque MI target to be set and at least the latest possible ignition angle. In this way, the torque change specified by the driver can be implemented by adjusting the filling and quickly adjusting the ignition angle. The actual torque is then quickly brought to the target torque.

Diese Begrenzung wird im Blockschaltbild nach Figur 3 dargestellt. Dabei wird das Sollmoment für den Luftpfad MISoll-L auf der Basis einer Minimalwertauswahl 200 aus dem nach Maßgabe der Zündwinkelverhältnisse korrigierten Sollmomentenwert MISoll und einem, für den Füllungspfad vorgegebenen unbegrenzten Sollwert MISoll-L* bestimmt.This limitation is shown in the block diagram of Figure 3. The target torque for the air path MI target-L is determined on the basis of a minimum value selection 200 from the target torque value MI target corrected in accordance with the ignition angle conditions and an unlimited target value MI target-L * predefined for the filling path.

Es sind drei Kennfelder 202, 204 und 206 vorgesehen, in denen abhängig von Motordrehzahl und Motorlast der optimale Zündwinkel ZWOpt, bei dem die Brennkraftmaschine den höchsten Wirkungsgrad aufweist, der Basiszündwinkel im aktuellen Arbeitspunkt ZWBase, der die Zündwinkeleinstellung ohne externen Eingriff (zum Beispiel durch eine Antriebsschlupfregelung) beschreibt, und der im aktuellen Arbeitspunkt spätmöglichst einstellbare Zündwinkel ZWM abgelegt ist. Der Basiszündwinkel beschreibt dabei den Zündwinkel, der im aktuellen Arbeitspunkt der Brennkraftmaschine ohne externen Eingriff eingestellt wird. In einer ersten Verknüpfungsstelle 208 wird die Differenz zwischen optimalem Zündwinkel und Basiszündwinkel gebildet, während in einer zweiten Verknüpfungsstelle 210 die Differenz zwischen optimalem und spätmöglichstem Zündwinkel gebildet wird. Die beiden Differenzwerte werden in Wirkungsgradkennlinien 212 und 214 in Korrekturmomente (etazwbase, etazwm) umgesetzt. Diese Korrekturmomente stellen die Wirkungsgradänderung bzw. die Momentenänderung dar, die beim Einstellung des jeweiligen Zündwinkels durch die Abweichung zum optimalen Wert auftreten würde.Three maps 202, 204 and 206 are provided in which, depending on the engine speed and engine load, the optimal ignition angle ZW Opt , at which the internal combustion engine has the highest efficiency, the basic ignition angle at the current operating point ZW Base , which adjusts the ignition angle without external intervention (for example by traction control) and the ignition angle ZWM that can be set as late as possible at the current operating point is stored. The basic ignition angle describes the ignition angle that is set at the current operating point of the internal combustion engine without external intervention. The difference between the optimum ignition angle and the basic ignition angle is formed in a first connection point 208, while the difference between the optimum and the latest possible ignition angle is formed in a second connection point 210. The two difference values are converted into correction moments (etazwbase, etazwm) in efficiency curves 212 and 214. These correction torques represent the change in efficiency or the change in torque that would occur when the respective ignition angle was set due to the deviation from the optimum value.

Die Korrekturwerte dienen zur Korrektur des Sollmomentenwerts MISoll. Der im aktuelle Arbeitpunkt eingestellte Zündwinkel ist der Basiszündwinkel. Die größte Momentenänderung kann durch Einstellung des spätmöglichsten Zündwinkel erreicht werden. Das Sollmoment für die Füllung muß daher nach unten auf einen vorgegebenen Minimalwert begrenzt werden, um sicherzustellen, daß das gewünschte Sollmoment durch Füllungsänderung und Zündwinkeleinstellung realisierbar ist. Diese untere Grenze bildet das korrigierte Sollmoment MISoll für den Zündwinkeleingriff. Die Korrektur berücksichtigt dabei die spätmöglichste Einstellung des Zündwinkels durch Division des Sollwertes durch den Wirkungsgrad etazwm (Divisionsstelle 216). Das Ergebnis stellt den Sollmomentenwert bei Einstellung des spätmöglichsten Zündwinkels. Da ferner die spätere Umrechnung des Sollmoments in einen Sollfüllungswert auf der Basis des Basiszündwinkels erfolgt (vgl. Gleichung 2), wird der korrigierte Sollmomentenwert in der Multiplikationsstelle 218 mit dem Wirkungsgrad des Basiszündwinkels multipliziert, um das einszustellende optimale Moment zu erhalten.The correction values are used to correct the target torque value MI target . The ignition angle set in the current operating point is the basic ignition angle. The greatest change in torque can be achieved by setting the latest possible ignition angle. The target torque for the filling must therefore be limited down to a predetermined minimum value in order to ensure that the desired target torque can be achieved by changing the filling and adjusting the ignition angle. This lower limit forms the corrected target torque MI target for the ignition angle intervention. The correction takes into account the latest possible setting of the ignition angle by dividing the setpoint by the efficiency etazwm (division point 216). The result sets the target torque value when setting the latest possible ignition angle. Furthermore, since the subsequent conversion of the target torque into a target charge value takes place on the basis of the basic ignition angle (see equation 2), the corrected target torque value is multiplied in the multiplication point 218 by the efficiency of the basic ignition angle in order to obtain the optimal torque to be set.

Das Ergebnis ist der Sollmomentenwert, der durch die größtmögliche Zündwinkelverstellung ausgehend vom Basiszündwinkel einstellbar ist. Unter diesen Wert darf das Sollmoment für die Füllung nicht fallen, da sonst das Sollmoment MISoll nicht realisiert werden kann. Daher wird in der Minimalwertauswahlstufe 200 eine Minimalwertauswahl zwischen den beiden Werten durchgeführt und der kleinere Sollwert der Umrechung in den Sollfüllungswert zugeführt.The result is the target torque value, which can be adjusted from the basic ignition angle using the largest possible ignition angle adjustment. The target torque for the filling must not fall below this value, since otherwise the target torque MI target cannot be realized. A minimum value selection between the two values is therefore carried out in the minimum value selection stage 200 and the smaller desired value is fed into the conversion into the desired filling value.

Ein zweites Ausführungsbeispiel ist die Erhöhung des Sollwertes für den Füllungspfad in bestimmten Betriebssituationen, was automatisch zu einer Verstellung des Zündwinkels nach spät führt. Diese Betriebssituationen treten insbesondere bei aktiver Leerlaufregelung, bei aktiver Katalysatorheizung und/oder während des Startvorgangs auf. Diesen Betriebszuständen ist gemeinsam, daß eine schnelle Verstellung des Moments in Richtung größerer Momente möglich sein muß. Eine schnelle Verstellung ist jedoch nur über die Änderung des Zündwinkels, der Kraftstoffzufuhr und/oder der Gemischzusammensetzung möglich. Im bevorzugten Ausführungsbeispiel wird daher in diesen Betriebszuständen ein sogenanntes Reservemoment eingestellt, welches durch eine Erhöhung des über die Füllung eingestellten Moments bei gleichzeitiger entgegensetzter Veränderung des des Zündwinkels, der Kraftstoffzufuhr und/oder der Gemischzusammensetzung dargestellt wird. Das Gesamtmoment wird nicht verändert. Im bevorzugten Ausführungsbeispiel wird lediglich der Zündwinkel betrachtet.A second embodiment is the increase in Setpoints for the filling path in certain Operating situations, which automatically leads to an adjustment of the ignition angle leads to late. These operating situations occur especially with active idle control active catalyst heating and / or during the Startup process. These operating states have in common that a quick adjustment of the moment towards larger moments must be possible. A quick adjustment however, is only about changing the ignition angle, the Fuel supply and / or the mixture composition possible. In the preferred embodiment, therefore, in a reserve torque in these operating states set which by increasing the over the Filling set moments with simultaneous opposite change in the ignition angle, the Fuel supply and / or the mixture composition is pictured. The total moment is not changed. in the preferred embodiment is only the Ignition angle considered.

Dabei ist zu beachten, daß das Reservemoment verschiedene Bezugspunkte haben kann. Insbesondere kann es auf das optimale Moment (Moment mit höchstem Wirkungsgrad) oder auf das aktuell wirksame Moment bezogen werden.It should be noted that the reserve torque is different Can have reference points. In particular, it can optimal moment (moment with highest efficiency) or on the currently effective moment.

In Figur 4 ist eine erste Ausführung für die Vorgabe im Füllungspfad dargestellt, welche insbesondere durch eine Leerlaufregelung oder bei Katalysatorheizfunktionen angewendet wird. Der Momentensollwert MISoll, der vom Fahrer oder anderen Steuer- bzw. Regelsystemen vorgegeben wird und zur Einstellung des Zündwinkels sowie der weiteren Leistungsgrößen, die eine schnelle Momentenänderung bewirken, dient, wird auf eine Verknüpfungsstelle 300 geführt. In dieser Verknüpfungsstelle wird der im Speicherplatz 302 gespeicherte Momentenreservewert DMROPT addiert. Die Momentenreserve ist dabei entweder fest vorgegeben oder in einer Kennlinie abhängig von Betriebsgrößen, abgelegt. Betriebsgrößen sind beispielsweise Motordrehzahl, Motortemperatur, die Ausstattung des Fahrzeugs, die Zeit nach Start, etc. Die Summe aus Momentensollwert und Momentenreserve wird in einer Multiplikationsstelle 302 mit dem Basiszündwinkelwirkungsgrad, der auch der Berechnung des SollFüllungswertes zugrundeliegt, multipliziert. Das Ergebnis wird im bevorzugten Ausführungsbeispiel in einer Maximalwertauswahlstufe 304 mit dem Sollmomentenwert MISoll verglichen und der jeweils größere der beiden Werte als Sollmoment für den Luftpfad MISoll-L abgegeben.FIG. 4 shows a first embodiment for the specification in the filling path, which is used in particular by an idle control or in catalyst heating functions. The torque setpoint MI Soll , which is specified by the driver or other control systems and is used to set the ignition angle and the other output variables that bring about a rapid change in torque, is led to a link point 300. The torque reserve value DMROPT stored in the memory location 302 is added in this connection point. The torque reserve is either fixed or stored in a characteristic curve depending on the operating parameters. Operating variables are, for example, engine speed, engine temperature, the equipment in the vehicle, the time after starting, etc. The sum of the torque setpoint and the torque reserve is multiplied in a multiplication point 302 by the basic ignition angle efficiency, which is also the basis for the calculation of the target fill value. In the preferred exemplary embodiment, the result is compared in a maximum value selection stage 304 with the target torque value MI target and the respectively larger of the two values is output as target torque for the air path MI target-L .

In diesem Ausführungsbeispiel ist das Reservemoment auf die optimalen Werte (optimales Moment, optimalen Zündwinkel) bezogen. Dadurch läßt sich stationär ein definierter Zündwinkel einstellen. Die Multiplikation mit dem Basiszündwinkel-Wirkungsgrad dient zum Einrechnen des Bezugspunktes für die Umsetzung des Sollmomentenwerts für den Füllungspfad in einen Sollfüllungswert.In this embodiment, the reserve torque is on the optimal values (optimal torque, optimal ignition angle) based. This allows a defined firing angle to be stationary to adjust. The multiplication by the basic ignition angle efficiency is used to calculate the reference point for the Conversion of the target torque value for the filling path into one Target filling value.

Auch hier ist eine Begrenzung des Sollmomentenwerts für den Füllungspfad notwendig. Die Begrenzung erfolgt auf den maximalen Zündwinkel. Unter der Annahme, daß der Basiszündwinkel der frühestmögliche Zündwinkel ist (der Zündwinkel ist optimal bezüglich Moment oder an der Klopfgrenze), so ist durch die Maximalwertauswahl sichergestellt, daß niemals zu wenig Füllung vorgegeben wird. Wird das Moment zusätzlich durch Gemischbeeinflussung und/oder Zylinderausblendung gesteuert, kann auf diese Begrenzung vezichtet werden.Here, too, is a limitation of the target torque value for the Fill path necessary. The limitation is made to the maximum Firing angle. Assuming that the base firing angle is the earliest possible ignition angle is (the ignition angle is optimal in terms of moment or at the knock limit), so is by the Maximum value selection ensures that never too little filling is specified. Will the moment go through additionally Mixture influencing and / or cylinder blanking controlled, this limitation can be dispensed with.

Wird der Momentenreservewert auf das momentan wirksame Moment bezogen, so kann diese Begrenzung entfallen und es ergibt sich die wesentlich einfachere Struktur nach Figur 5. In diesem Falle ergibt sich der Momentensollwert für den Füllungspfad durch Addition des Momentensollwertes MISoll für den schnellen Eingriff und des Reservemoments DMR.If the torque reserve value is related to the momentarily effective torque, this limitation can be omitted and the much simpler structure according to FIG. 5 results. In this case, the torque setpoint for the filling path is obtained by adding the torque setpoint MI setpoint for the quick intervention and the reserve torque DMR.

Der schnelle Eingriff wird in den Ausführungsbeispielen nach den Figuren 4 und 5 entsprechend dem Sollmomentenwert MISoll eingestellt. The rapid intervention is set in the exemplary embodiments according to FIGS. 4 and 5 in accordance with the target torque value MI target .

Die Wirkung der erfindungsgemäßen Lösung, insbesondere nach dem ersten Ausführungsbeispiel, ist am Beispiel von Figur 6 dargestellt. Dabei ist in Figur 6a der zeitliche Verlauf des Sollmomentenwertes MISoll sowie des Momentenbeitrages durch die Füllung (strichliert) dargestellt. In Figur 6b ist der Zeitverlauf des Momentenbeitrags durch Zündwinkelverstellung und in Figur 6c der zeitliche Verlauf des Istmoments dargestellt ist.The effect of the solution according to the invention, in particular according to the first exemplary embodiment, is illustrated using the example in FIG. 6. The time course of the target torque value MI target and of the torque contribution through the filling (dashed) is shown in FIG. 6a. FIG. 6b shows the time course of the torque contribution by adjusting the ignition angle and FIG. 6c shows the time course of the actual torque.

Zu einem Zeitpunkt T0 wird das Sollmoment reduziert. Der Sollmomentenwert wird dabei durch Zündwinkelverstellung und Füllungsverstellung realisiert. Infolge der schnelleren Zündwinkelverstellung (vgl. Figur 6b) nimmt der Füllungsanteil nur langsam ab. Das Istmoment ändert sich gemäß Figur 4c entsprechend dem Sollwert. Zum Zeitpunkt T1 wird das Sollmoment wieder erhöht. Durch die erfindungsgemäße Auftrennung zwischen Füllungspfad und Zündwinkelpfad wird diese Momentenerhöhung weitgehend durch die Korrektur des Zündwinkels durchgeführt. Die vorteilhafte Wirkung besteht darin, daß das Istmoment auch in momentenerhöhender Richtung dem Sollwert nahezu exakt folgt.The target torque is reduced at a time T0. The The target torque value is determined by adjusting the ignition angle and Filling adjustment implemented. As a result of the faster The ignition angle adjustment (see FIG. 6b) takes Fill proportion only slowly. The actual moment changes 4c according to the setpoint. At time T1 the target torque is increased again. Through the separation according to the invention between the filling path and Ignition angle path is largely due to this torque increase the ignition angle correction is carried out. The beneficial Effect is that the actual moment also in torque increasing direction follows the setpoint almost exactly.

Neben einer Berechnung auf der Basis von Momentenwerten wird in einem vorteilhaften Ausführungsbeispiel die Berechnungen auf der Basis von Leistungswerten durchgeführt, wobei Moment und Leistung über die Motordrehzahl zusammenhängen.In addition to a calculation based on torque values in an advantageous embodiment, the calculations performed on the basis of performance values, being moment and power are related to engine speed.

Anstelle der Zündwinkeleinstellung wird in einem anderen vorteilhaften Ausführungsbeispiel die Gemischzusammensetzung oder die Kraftstoffzufuhr zu einem Zylinder oder eine beliebigen Kombination aus diesen drei Größen. Die Momentenbestimmung auf der Basisgrößen, Einstellgrenzwerten, etc. sind entsprechend anzuwenden.Instead of the ignition angle setting is in another advantageous embodiment, the mixture composition or the fuel supply to a cylinder or a any combination of these three sizes. The Torque determination on the basis of parameters, setting limits, etc. are to be applied accordingly.

Claims (9)

  1. Method for controlling an internal combustion engine of a vehicle, a setpoint value for a torque or a power of the internal combustion engine being specified, said setpoint value being set at least by influencing the charging of the internal combustion engine and at least one parameter which brings about a rapid change in moment, the influencing of the charging and the influencing of the at least one parameter taking place in each case according to a separate setpoint value which is derived from the prescribed setpoint value, characterized in that the setpoint values assume different values at least in one operating state.
  2. Method according to Claim 1, characterized in that the at least one operating state is an operating state in which the moment or power is increased, in which the idling control is active and in which a catalytic converter heater is active, and/or during the starting phase.
  3. Method according to one of the preceding claims, characterized in that the setpoint value which is derived from the activation signal of an accelerator pedal is used in unfiltered form to set the charge and in filtered form to set the at least one power parameter.
  4. Method according to one of the preceding claims, characterized in that the setpoint value for the charge is limited on the basis of the parameter which can be set in order to generate a maximum change in moment or power, and on the basis of the setpoint value for this at least one parameter.
  5. Method according to one of the preceding claims, characterized in that the setpoint value for the charge path is the minimum of the unfiltered and filtered corrected driver's request.
  6. Method according to one of the preceding claims, characterized in that a standby value is formed for the moment or the power, which value is added to the setpoint value and forms the setpoint value for the charge path.
  7. Method according to Claim 6, characterized in that the standby value is referred to the optimum moment value or power value or to the current value.
  8. Method according to one of the preceding claims, characterized in that the setpoint value for the charge path is the maximum formed from the setpoint value and the setpoint value corrected with the standby value.
  9. Device for controlling an internal combustion engine of a vehicle, having an electronic control unit which determines a setpoint value for a torque or a power of the internal combustion engine, which value is made available by setting the charge and at least one further power parameter which brings about a rapid change, in each case a setpoint value which is derived from the setpoint value which is determined being used to calculate the charge setting and the at least one power parameter, characterized in that the setpoint values for the charge setting and the setting of the at least one power parameter have different values in at least one operating state.
EP97915336A 1996-05-10 1997-03-06 Method and device for controlling an internal combustion engine Expired - Lifetime EP0837984B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19618893A DE19618893A1 (en) 1996-05-10 1996-05-10 Method and device for controlling an internal combustion engine
DE19618893 1996-05-10
PCT/DE1997/000420 WO1997043531A1 (en) 1996-05-10 1997-03-06 Method and device for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0837984A1 EP0837984A1 (en) 1998-04-29
EP0837984B1 true EP0837984B1 (en) 2000-06-07

Family

ID=7793968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97915336A Expired - Lifetime EP0837984B1 (en) 1996-05-10 1997-03-06 Method and device for controlling an internal combustion engine

Country Status (6)

Country Link
US (1) US6000376A (en)
EP (1) EP0837984B1 (en)
JP (1) JP3995718B2 (en)
KR (1) KR100406809B1 (en)
DE (2) DE19618893A1 (en)
WO (1) WO1997043531A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803387C1 (en) * 1998-01-29 1999-03-18 Daimler Benz Ag Load output setting method for automobile i.c. engine
DE19803853C1 (en) 1998-01-31 1999-04-15 Bosch Gmbh Robert Intake air temperature regulation for internal combustion engine
DE19806665B4 (en) 1998-02-18 2008-05-15 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19807126C2 (en) * 1998-02-20 2000-11-16 Daimler Chrysler Ag Method for adjusting the drive power of a motor vehicle
DE19812485B4 (en) * 1998-03-21 2007-11-22 Robert Bosch Gmbh Method and device for operating an internal combustion engine
DE19859242B4 (en) * 1998-12-22 2011-06-22 Robert Bosch GmbH, 70469 Method and device for controlling an internal combustion engine
DE19907693B4 (en) * 1999-02-23 2009-10-22 Robert Bosch Gmbh Method and device for controlling a motor vehicle
FR2790516B1 (en) * 1999-03-01 2001-05-11 Renault METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
US6425373B1 (en) * 1999-08-04 2002-07-30 Ford Global Technologies, Inc. System and method for determining engine control parameters based on engine torque
US6305347B1 (en) * 2000-03-06 2001-10-23 Ford Global Technologies, Inc. Monitor for lean capable engine
DE10130360A1 (en) 2001-06-23 2003-01-02 Bosch Gmbh Robert Method and device for controlling an output variable of a drive unit in the starting phase
DE10156665A1 (en) * 2001-11-17 2002-09-19 Bayerische Motoren Werke Ag Electronic control of a spark-ignited internal combustion engine comprises an electronic spark control system and a momentum reserve which in selected operating points is activated on identification of a knocking combustion
US6671603B2 (en) 2001-12-21 2003-12-30 Daimlerchrysler Corporation Efficiency-based engine, powertrain and vehicle control
DE10232354A1 (en) * 2002-07-17 2004-01-29 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle
DE10241885A1 (en) * 2002-09-10 2004-03-11 Volkswagen Ag Drive and control system for direct fuel injection engine for road vehicle, has inputs from accelerator pedal and torque sensor to coordination circuit and outputs to fuel and ignition controls
DE10256360B4 (en) 2002-12-03 2018-03-29 Volkswagen Ag Method and device for monitoring positive torque interventions in an engine control unit
ITBO20030213A1 (en) * 2003-04-11 2004-10-12 Magneti Marelli Powertrain Spa METHOD FOR CHECKING THE ENGINE SPEED
US6871617B1 (en) 2004-01-09 2005-03-29 Ford Global Technologies, Llc Method of correcting valve timing in engine having electromechanical valve actuation
DE102004006880B4 (en) * 2004-02-12 2008-05-08 Robert Bosch Gmbh Method for controlling the engine of a motor vehicle with manual transmission
DE102004012522B3 (en) * 2004-03-16 2006-01-12 Bayerische Motoren Werke Ag Method for controlling an internal combustion engine
US7066121B2 (en) 2004-03-19 2006-06-27 Ford Global Technologies, Llc Cylinder and valve mode control for an engine with valves that may be deactivated
US7031821B2 (en) 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7194993B2 (en) 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7017539B2 (en) 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7032545B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7021289B2 (en) 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7055483B2 (en) 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7140355B2 (en) 2004-03-19 2006-11-28 Ford Global Technologies, Llc Valve control to reduce modal frequencies that may cause vibration
US7555896B2 (en) 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7559309B2 (en) 2004-03-19 2009-07-14 Ford Global Technologies, Llc Method to start electromechanical valves on an internal combustion engine
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7128687B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7240663B2 (en) 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7072758B2 (en) 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7107947B2 (en) 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7383820B2 (en) 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7028650B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7032581B2 (en) 2004-03-19 2006-04-25 Ford Global Technologies, Llc Engine air-fuel control for an engine with valves that may be deactivated
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7063062B2 (en) 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7079935B2 (en) 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US9429082B2 (en) * 2006-07-24 2016-08-30 Deere & Company Method and system for operating an internal combustion engine with multiple torque curves
JP4760626B2 (en) 2006-09-06 2011-08-31 トヨタ自動車株式会社 Torque control device for power system
JP2009041528A (en) 2007-08-10 2009-02-26 Toyota Motor Corp Control device for internal combustion engine
JP4862792B2 (en) * 2007-09-12 2012-01-25 トヨタ自動車株式会社 Control device for drive unit
DE102007062344A1 (en) * 2007-12-22 2009-06-25 GM Global Technology Operations, Inc., Detroit Control circuit for petrol engine of vehicle, has minimum value forming unit forming minimum value from desired value and upper limit value in operating mode of heating converter and providing correcting variable for sucked air mass
DE102008056972B4 (en) * 2008-11-13 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Method for prematurely initiating a start of an internal combustion engine in a vehicle with hybrid drive
US8550054B2 (en) * 2009-12-08 2013-10-08 GM Global Technology Operations LLC Linear tranformation engine torque control systems and methods for increasing torque requests
EP2570636B1 (en) * 2010-05-13 2016-10-26 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2016098786A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Internal combustion engine control device
DE102021104266A1 (en) 2021-02-23 2022-08-25 Volkswagen Aktiengesellschaft Process for optimizing the load build-up of an internal combustion engine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3408223A1 (en) * 1984-02-01 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart CONTROL AND REGULATING METHOD FOR THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
US4866618A (en) * 1986-07-03 1989-09-12 Nissan Motor Co., Ltd. Engine control system for automotive vehicle
DE4141947C2 (en) * 1991-12-19 2002-02-07 Bosch Gmbh Robert Control system for a propulsion unit in an aircraft
DE4304779B4 (en) * 1992-06-20 2005-11-24 Robert Bosch Gmbh Device for controlling the torque to be delivered by a drive unit of a vehicle
DE4232973C2 (en) * 1992-10-01 2002-03-21 Bosch Gmbh Robert Method and device for adjusting the torque of a gasoline engine during a switching operation
DE4239711B4 (en) * 1992-11-26 2005-03-31 Robert Bosch Gmbh Method and device for controlling a vehicle
DE4407475C2 (en) * 1994-03-07 2002-11-14 Bosch Gmbh Robert Method and device for controlling a vehicle
DE4435741C5 (en) * 1994-10-06 2007-05-31 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19517675B4 (en) * 1995-05-13 2006-07-13 Robert Bosch Gmbh Method and device for controlling the torque of an internal combustion engine
DE19518813C1 (en) * 1995-05-23 1996-12-19 Bosch Gmbh Robert Torque control for IC engine
DE19536038B4 (en) * 1995-09-28 2007-08-16 Robert Bosch Gmbh Method and device for controlling the drive unit of a motor vehicle
DE19545221B4 (en) * 1995-12-05 2005-08-25 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
US5623906A (en) * 1996-01-22 1997-04-29 Ford Motor Company Fixed throttle torque demand strategy

Also Published As

Publication number Publication date
WO1997043531A1 (en) 1997-11-20
EP0837984A1 (en) 1998-04-29
KR100406809B1 (en) 2004-02-18
JPH11509910A (en) 1999-08-31
JP3995718B2 (en) 2007-10-24
KR19990028837A (en) 1999-04-15
DE59701836D1 (en) 2000-07-13
DE19618893A1 (en) 1997-11-13
US6000376A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
EP0837984B1 (en) Method and device for controlling an internal combustion engine
EP0853723B1 (en) Process and device for controlling an internal combustion engine
DE19739567B4 (en) Method and device for controlling the torque of the drive unit of a motor vehicle
EP0828628B1 (en) Process and device for regulating the torque derived from a drive unit
DE19619320A1 (en) Method and device for controlling an internal combustion engine
EP1272752B1 (en) Method and device for controlling the drive unit of a vehicle
EP0931217B1 (en) Method and device for regulating an internal combustion engine
EP1242733B1 (en) Method and device for controlling the drive unit of a vehicle
DE19611502B4 (en) Method and device for controlling the driving speed of a vehicle
WO2001044644A2 (en) Method and device for controlling the drive unit of a vehicle
DE10241059A1 (en) Method and device for limiting the speed of a vehicle
EP1277940B1 (en) Method and device for the operation of a drive engine
EP1242732B1 (en) Method and device for controlling the drive unit of a vehicle
EP1190167A1 (en) Method and device for operating an internal combustion engine with direct gas injection
DE19741565B4 (en) Method and device for controlling an internal combustion engine
DE10251563A1 (en) Method for regulating the speed of a vehicle
DE10135077A1 (en) Method and device for operating a drive motor of a vehicle
EP1409864B1 (en) Method and device for controlling a drive unit
DE19618849B4 (en) Method and device for controlling an internal combustion engine of a vehicle
WO2003033289A1 (en) Method and device for controlling the speed of a vehicle
EP0779428B1 (en) Method and apparatus for controlling the torque of an engine
DE10060298A1 (en) Method and device for controlling the drive unit of a vehicle
DE4313173B4 (en) Method and device for controlling a variable size, especially in vehicles
DE10058355A1 (en) Method and device for controlling the drive unit of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19980520

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990915

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59701836

Country of ref document: DE

Date of ref document: 20000713

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000816

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030324

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040307

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050306

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160322

Year of fee payment: 20

Ref country code: GB

Payment date: 20160322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160525

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59701836

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170305