EP0937198B1 - Method and device for controlling a drive unit of a vehicle - Google Patents

Method and device for controlling a drive unit of a vehicle Download PDF

Info

Publication number
EP0937198B1
EP0937198B1 EP98948681A EP98948681A EP0937198B1 EP 0937198 B1 EP0937198 B1 EP 0937198B1 EP 98948681 A EP98948681 A EP 98948681A EP 98948681 A EP98948681 A EP 98948681A EP 0937198 B1 EP0937198 B1 EP 0937198B1
Authority
EP
European Patent Office
Prior art keywords
value
torque
maximum permissible
drive unit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98948681A
Other languages
German (de)
French (fr)
Other versions
EP0937198A1 (en
Inventor
Torsten Bauer
Martin Streib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0937198A1 publication Critical patent/EP0937198A1/en
Application granted granted Critical
Publication of EP0937198B1 publication Critical patent/EP0937198B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit

Definitions

  • the invention relates to a method and a device for controlling a drive unit of a vehicle the preambles of the independent claims.
  • Such a method and such an apparatus are known from DE-A 195 36 038.
  • the torque or the power of the drive unit on electrically at least depending on the Position of a control element actuated by the driver is set.
  • Based on the position of the control element as well at least the engine speed becomes a maximum allowable torque or determines a maximum allowable power that the Torque or the power of the drive unit in the current Operating state must not exceed.
  • From company sizes like the engine speed and the intake air mass becomes the currently set torque or the current one set power of the drive unit is determined with the maximum permissible value compared and an error response initiated when the calculated torque or the calculated Power the maximum allowable torque or the maximum permissible power exceeds.
  • DE-A 196 19 320 is a control system for a Internal combustion engine based on a torque-oriented Functional architecture known. Thereby the Position of a control element that can be actuated by the driver Taking into account at least the engine speed, a driver target torque educated. This is done by the coordinators for filling adjustment and for crankshaft synchronous Interventions (e.g. ignition angle) with external and internal torque requirements connected. The resulting target moments are then e.g. in target ignition angle and target throttle valve position implemented.
  • Such an engine control system is shown in Figure 1 and 2 shown.
  • MSR engine drag torque control
  • the ignition angle intervention can be switched off triggering the limit depending on the to make torque to be set via the ignition angle, while turning off the limit depending on the below other torque calculated based on the accelerator pedal position is specified for the fuel metering. Because when switched off Ignition angle intervention is the target torque for the Ignition angle at the moment without intervention, from pre-programmed Maps based on the base torque to be set, is on this way a limitation of the actual torque to the base value reached. This contributes to operational security in an advantageous manner at.
  • Figure 1 is an overview block diagram of a control device for an internal combustion engine
  • Figure 2 a Overview block diagram of a torque-oriented Functional architecture of a control system for a drive unit
  • Figure 3 shows a block diagram for the determination the maximum permissible torque and the torque on it established surveillance measure.
  • Figure 4 the limitation of the nominal torque value for the filling path represented by the maximum permissible moment
  • Figures 5 and 6 two embodiments to limit the Target torque in the fast engagement path to the maximum permissible Moment are shown.
  • FIG. 1 is a control device for a multi-cylinder Internal combustion engine 10 shown.
  • the control device comprises an electronic control unit 12, which consists of at least a microcomputer 14, an input 16 and one Output unit 18 exists.
  • Input unit 16, output unit 18 and microcomputer 14 are via a communication bus 20 linked for mutual data exchange.
  • the Input unit 16 are the input lines 22, 24, 28 and 30 fed.
  • the line 22 comes from a measuring device 32 for detecting the accelerator pedal position ⁇ , the line 24 from a measuring device 34 for detecting the engine speed nmot, the line 28 from a measuring device 38 to record the supplied air mass hfm and the line 30 from at least one further control device 40, for example a control device for traction control ASR, for Gearbox control GS and / or for engine drag torque control MSR.
  • a control device for traction control ASR for Gearbox control GS and / or for engine drag torque control MSR.
  • Air mass air flow meter or pressure sensors to record the intake manifold or combustion chamber pressure intended.
  • the Control unit other sizes essential for engine control like the engine temperature, driving speed, etc.
  • Output unit 18 is connected to an output line 42, the on an electrically actuated throttle valve 44, which in Air intake system 46 of the internal combustion engine is arranged leads. Furthermore, output lines 48, 50, 52, 54, etc. shown, which with control devices for fuel metering connected to the cylinders of the internal combustion engine 10 are or for setting the ignition angle in each cylinder serve.
  • FIG. 2 The basic features are shown in FIG. 2 on the basis of a block diagram a torque-oriented functional architecture of a Internal combustion engine control set out.
  • the ones in the block diagrams elements shown are in a preferred Realization parts of the program of the microcomputer, being the blocks special program parts with tables, characteristic curves, Represent characteristic maps and / or calculation steps.
  • the input lines 22, 24 and 28 are on one element 100 led to determine the driver's desired torque miped. This becomes elements 104 and 106 via a line 102 out, which are also each fed to line 30.
  • the elements 104 and 106 are used to select the motor control specified target torque value milsol and misol according to the supplied target torque values of the driver's request as well as external miext (e.g. ASR, GS, MSR) and internal Interventions miint (e.g. speed, driving speed limitation).
  • the selected setpoints are via lines 108 and 110 led to calculation units 112 and 114.
  • the calculation unit 112 calculates from the supplied Setpoint according to at least engine speed and air mass (Actual fresh gas filling) the correction of the ignition angle and / or the injection suppression and / or the influencing the mixture composition.
  • the Calculation unit 114 from the supplied setpoint Providing at least engine speed and air mass (actual fresh gas filling) the filling by driving the Throttle valve is set via line 42. In return of data is in a preferred embodiment the calculation elements 112 and 114 via the line 116 connected.
  • the control system shown in Figure 1 calculates from its Input variables, output variables of the internal combustion engine, so that an error in the area of calculations to excessive Drive power of the internal combustion engine and thus too can lead to a dangerous driving situation. Therefore, according to Figure 3 provided the correctness of the power control check the calculations used. This takes place in accordance with the prior art mentioned at the outset by that a maximum permissible moment is determined mizul is, this with a calculated actual torque Internal combustion engine is compared and when the maximum permissible torque due to the actual torque e.g. in a shutdown of the fuel supply SKA lie to be executed.
  • the to determine the maximum allowable torque and Torque monitoring chosen procedure is in a preferred Embodiment shown in Figure 3. Also there, as in the following figures, was the block diagram chosen for clarity.
  • the addressed Functions are in the preferred embodiment as programs of the microcomputer that controls the engine Control unit realized.
  • In at least one map 200 is based on the input variables accelerator position ⁇ and engine speed nmot the maximum permissible torque read out mizul. In the preferred embodiment this takes place on the basis of a predetermined map.
  • the maximum torque requirement of the Pedals which is permissible at a certain speed, under Consideration of torque-increasing functions such as for example the idle control.
  • the from The characteristic value read out is as in the aforementioned State of the art represented by a not shown here Filtered low pass filter. This is only for negative ones Slope of the value coming from the map is active.
  • the permissible moment determined in this way becomes mizul a maximum value selection MAX, in which there is a predetermined fixed value mdimax is compared.
  • the value represents the maximum adjustable torque.
  • the value mdimax is output when the vehicle speed controller is active is (FGR_ein).
  • FGR_ein When the cruise control is deactivated lies at the corresponding input of the maximum value selection of Value 0.
  • the larger of the torque values supplied (mizul, mdimax or 0) is considered the maximum allowable moment processed by mizul. This ensures that in driving speed control mode when released Accelerator pedal the maximum permissible torque is not too low is and does not respond to the error response.
  • the maximum permissible torque is used to limit the target torques provided ("Exit A") as it is in the Figure 4 to 6 is described.
  • This permissible moment is calculated in a similar way and Way like the allowable target torque.
  • An example of a such calculation is in the prior art mentioned at the beginning described. It is carried out in calculation step 203.
  • the maximum permissible torque mimax is usually greater than the allowable torque used for the limitation mizul.
  • Filtering (in 203) here is the intake manifold time constant, Position controller delay and torque increasing functions (e.g. dashpot).
  • If the actual torque exceeds the maximum permissible torque mimax (comparator 204) may be after a delay time the SKA fuel supply is switched off, in order to master the detected fault.
  • the actual moment miist is at 205 based at least on engine speed nmot and air mass hfm calculated.
  • the limitation of the target torque value is milsol shown for the fill path.
  • This is preferred Exemplary embodiment carried out in the coordinator 104, in which the pedal torque derived from the driver is miped in a maximum value selection MAX with external and / or torque increasing internal interventions such as an MSR. The The largest value is then selected in a minimum value selection MIN torque-reducing external and / or internal interventions like an ASR, a speed and driving speed limit, etc. compared. This minimum value selection will be MIN in addition, the maximum permissible torque mizul supplied. It the smallest of these nominal torques is selected and as the target torque value milsol for the filling path. If all torque requirements exceed the maximum permissible Wait, this is the setpoint for the filling path output. In this way, the target torque value becomes milsol for the filling path to the maximum permissible torque limited.
  • Figure 5 shows a first embodiment of the coordinator 106. First of all, it is comparable a maximum and / or a minimum value selection MIN, MAX from the pedal torque miped, the external miext and / or internal target torques miint a target torque misolv for the crankshaft synchronous Engagement path. The determined target torque becomes misolv then in a comparator 300 with the allowable moment compared to mizul. Exceeds the calculated target torque misolv the maximum permissible value mizul, the comparator gives 300 a logic 1 signal, which is applied to an AND gate 302 is performed.
  • MIN maximum and / or a minimum value selection
  • the target torque becomes misolv fed to a comparator 304, in which it with one of the maximum permissible moment mizul formed value (mizul-mihyst) is compared.
  • This value represents the maximum allowable Moment reduced by a predetermined hysteresis moment mihyst. Is the target torque value below this Value, becomes a logic 1 signal to an OR gate 306 output.
  • the output of the OR gate is on the reset input of an RS flip-flop 308 and on the negated ones Input of the AND gate 302 out.
  • the OR gate 306 a signal B_msr is also supplied, which has a positive Signal level when a motor torque control is active.
  • the output of AND gate 302 is switched to Set input S of the RS flip-flop 308 performed.
  • the output signal Q of the flip-flop 308 leads to a switching element 310, which switches to a switching state with a corresponding signal passes in which instead of the target torque value misolv the maximum permissible torque mizul as target torque misolv is passed on for the fast intervention path.
  • the flip-flop 308 is over the AND gate 302 set.
  • the output Q goes to "high" level, so that the Switch 310 switches to the dashed switch position.
  • the comparator 304 a signal is formed which resets the flip-flop 308, at the same time a level change to logic 0 am Set input takes place via the AND gate 302. This has to Consequence that the output Q of the flip-flop 308 of the switch 310 switched back to its solid position becomes.
  • a target torque value was mistaken for the ignition angle intervention derived.
  • additive correction components ⁇ mi of an idle control LLR and an anti-jerk function ARF considered.
  • the ignition angle setpoint is included switchable designed (switch 400), so that in certain Operating situations not the target torque value misolv, but a base moment value mibas as the basis for the Setpoint torque value formation for the ignition angle is used.
  • the base moment mibas corresponds to the moment in the current Operating state of the internal combustion engine taking into account the pre-programmed firing angle and ⁇ settings would be taken.
  • the basic moment is based on the air mass hfm, the engine speed nmot and the torque efficiencies of the basic ignition angle and the ⁇ basic setting.
  • the limitation procedure of both nominal torque values corresponds to that in FIG. 5 described procedure.
  • the target torque value for the Ignition angle intervention is supplied to the comparator 300 and thus becomes the decision whether to limit used.
  • the target torque value misolv for the fuel path fed to the comparator 304 who decides to cancel the limitation. Is the limitation criterion or the termination criterion is met the switching element 310 operated accordingly.
  • both target torque values are misol and misolished by the maximum permissible torque mizul replaced.
  • the invention was for a torque-oriented functional structure described.
  • a corresponding procedure is used for an engine control based on Power values. Thereby the torque value given above through the corresponding power level that with the moment related to the speed, replaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The invention relates to a method and a device for controlling a drive unit of a vehicle. A nominal torque value or nominal power value is produced on the basis of a driver request and then used to control the drive unit. A maximum allowable torque or a maximum allowable power is determined and the nominal value limited to said maximum allowable value if it exceeds the same.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention relates to a method and a device for controlling a drive unit of a vehicle the preambles of the independent claims.

Ein derartiges Verfahren und eine derartige Vorrichtung sind aus der DE-A 195 36 038 bekannt. Dort wird zur Steuerung der Antriebseinheit das Drehmoment oder die Leistung der Antriebseinheit auf elektrisch wenigstens in Abhängigkeit der Stellung eines vom Fahrer betätigbaren Bedienelements eingestellt. Auf der Basis der Stellung des Bedienelements sowie zumindest der Motordrehzahl wird ein maximal zulässiges Moment oder eine maximal zulässige Leistung ermittelt, die das Drehmoment oder die Leistung der Antriebseinheit im aktuellen Betriebszustand nicht überschreiten darf. Aus Betriebsgrößen wie der Motordrehzahl und der angesaugten Luftmasse wird das aktuell eingestellte Drehmoment oder die aktuell eingestellte Leistung der Antriebseinheit ermittelt, mit dem maximal zulässigen Wert verglichen und eine Fehlerreaktion eingeleitet, wenn das berechnete Drehmoment oder die berechnete Leistung das maximal zulässige Moment oder die maximal zulässige Leistung überschreitet. Durch diese Überwachungsmaßnähme wird die Betriebssicherheit der Antriebseinheit sichergestellt, da in zuverlässiger Weise eine gegenüber den Fahrerwunsch erhöhte Momentenerzeugung der Antriebseinheit verhindert wird. Das Ansprechen der dargestellten Überwachung ist nur im tatsächlichen Fehlerfall erwünscht. Daneben sind Betriebssituationen vorstellbar, beispielsweise in Übergangszuständen, in denen die Überwachung bei eng vorgegebenen Toleranzen anspricht, ohne daß ein Fehler vorliegt. Ein solches Verhalten ist unerwünscht.Such a method and such an apparatus are known from DE-A 195 36 038. There is used to control the Drive unit the torque or the power of the drive unit on electrically at least depending on the Position of a control element actuated by the driver is set. Based on the position of the control element as well at least the engine speed becomes a maximum allowable torque or determines a maximum allowable power that the Torque or the power of the drive unit in the current Operating state must not exceed. From company sizes like the engine speed and the intake air mass becomes the currently set torque or the current one set power of the drive unit is determined with the maximum permissible value compared and an error response initiated when the calculated torque or the calculated Power the maximum allowable torque or the maximum permissible power exceeds. Through these surveillance measures the operational safety of the drive unit is ensured, because in a reliable way against the Driver request increased torque generation of the drive unit is prevented. The response of the monitoring shown is only desired in the event of an actual error. Besides operating situations are conceivable, for example in Transitional states in which the monitoring at tightly specified Tolerances respond without an error. Such behavior is undesirable.

Es ist daher Aufgabe der Erfindung, Maßnahmen anzugeben, die ein unerwünschtes Ansprechen der geschilderten Überwachung vermeiden.It is therefore an object of the invention to provide measures that an undesired response of the surveillance described avoid.

Dies wird durch die kennzeichnenden Merkmale der unabhängigen Patentansprüche erreicht.This is due to the distinctive features of the independent Claims reached.

Aus der DE-A 196 19 320 ist ein Steuerungssystem für eine Brennkraftmaschine auf der Basis einer drehmomentenorientierten Funktionsarchitektur bekannt. Dabei wird aus der Stellung eines vom Fahrer betätigbaren Bedienelements unter Berücksichtigung wenigstens der Motordrehzahl ein Fahrersollmoment gebildet. Dieses wird im Rahmen vom Koordinatoren für die Füllungseinstellung und für kurbelwellensynchrone Eingriffe (z.B. Zündwinkel) mit externen und internen Momentenanforderungen verknüpft. Die resultierenden Sollmomenten werden dann z.B. in Sollzündwinkel und Solldrosselklappenstellung umgesetzt. Ein solches Motorsteuersystem ist in Figur 1 und 2 dargestellt.DE-A 196 19 320 is a control system for a Internal combustion engine based on a torque-oriented Functional architecture known. Thereby the Position of a control element that can be actuated by the driver Taking into account at least the engine speed, a driver target torque educated. This is done by the coordinators for filling adjustment and for crankshaft synchronous Interventions (e.g. ignition angle) with external and internal torque requirements connected. The resulting target moments are then e.g. in target ignition angle and target throttle valve position implemented. Such an engine control system is shown in Figure 1 and 2 shown.

Vorteile der ErfindungAdvantages of the invention

Durch die Begrenzung wenigstens eines Sollwertes für ein Drehmoment der Antriebseinheit auf das maximal zulässige Drehmoment bzw. durch eine entsprechende Maßnahme, wenn die Motorsteuerung anstelle vom Drehmomentenwerten Motorleistungswerte berechnet, wird sichergestellt, daß die Überwachung auf der Basis von berechnetem und maximal zulässigem Moment oder Leistung nur dann anspricht und eine Fehlerreaktion einleitet, wenn tatsächlich ein Fehler vorliegt. Dadurch wird der Fahrkomfort und die Verfügbarkeit der Antriebseinheit erheblich erhöht. Besonders vorteilhaft ist, daß die Toleranzen bei der Überwachung der Antriebseinheit auf der Basis von berechnetem und maximal zulässigem Moment oder Leistung sehr eng vorgegeben werden können, so daß bei einem tatsächlichen Fehlerzustand im Bereich der Motorsteuerung dieser Fehlerzustand sehr schnell erkannt und sehr schnell Gegenmaßnahmen eingeleitet werden können.By limiting at least one setpoint for a Torque of the drive unit to the maximum permissible Torque or by an appropriate measure if the Motor control instead of torque values calculated, it ensures that monitoring based on the calculated and maximum allowable Torque or power only responds and an error response initiates when there is actually an error. Thereby the driving comfort and the availability of the drive unit significantly increased. It is particularly advantageous that the tolerances in monitoring the drive unit on the basis of the calculated and maximum permissible torque or performance can be specified very closely, so that at an actual fault condition in the area of the motor control this fault condition was recognized very quickly and very countermeasures can be initiated quickly.

Von besonderem Vorteil ist ferner, daß bei einem Motorsteuerungssystem mit einer drehmomentenorientierten Funktionsarchitektur die Drehmomentensollwerte sowohl für den Füllungspfad als auch für den schnellen Eingriffspfad über Einspritzausblendung, Beeinflussung der Kraftstoffzumessung und/oder des Zündwinkels auf das maximal zulässige Moment begrenzt sind. Dadurch wird auch in Übergangs- und Sondersituationen ein Überschreiten des maximal zulässigen Moments und damit ein Ansprechen der Momentenüberwachung wirksam vermieden. Entsprechendes gilt auch für eine leistungsorientierte Funktionsarchitektur.It is also of particular advantage that in an engine control system with a torque-oriented functional architecture the torque setpoints for both the filling path as well as for the quick intervention path via injection suppression, Influencing fuel metering and / or the ignition angle to the maximum permissible torque are limited. This is also in transitional and special situations exceeding the maximum permissible torque and thus a response of the torque monitoring is effective avoided. The same applies to a defined benefit plan Functional architecture.

Besonders vorteilhaft ist, daß einer Hysterese zwischen Einschalten der Begrenzung und Abschalten der Begrenzung, vorzugsweise bei den schnellen Eingriffsgrößen, vorgesehen ist.It is particularly advantageous that a hysteresis between switching on the limitation and deactivation of the limitation, preferably for fast intervention sizes.

In vorteilhafter Weise wird der Einfluß einer Motorschleppmomentenregelung (MSR) berücksichtigt. Da die Motorschleppmomentenregelung die Leistung erhöhen kann, wird die Begrenzung bei aktiver Schleppmomentenregelung ausgesetzt. Dadurch wird eine Beeinträchtigung der Motorschleppmomentenfunktion verhindert. Besonders vorteilhaft ist, daß dies nur im schnellen Pfad wirkt und die MSR kurzfristig das Moment erhöhen kann.The influence of engine drag torque control is advantageous (MSR) considered. Because the engine drag torque control the performance can increase, the limit suspended when drag torque control is active. Thereby becomes an impairment of the engine drag torque function prevented. It is particularly advantageous that this is only in fast path works and the MSR increase the moment in the short term can.

Besonders vorteilhaft ist bei einem abschaltbaren Zündwinkeleingriff das Auslösen der Begrenzung abhängig von dem über den Zündwinkel einzustellenden Drehmoment zu machen, während das Abschalten der Begrenzung abhängig von dem unter anderem auf Basis der Fahrpedalstellung berechneten Drehmoment für die Kraftstoffzumessung vorgegeben wird. Da bei abgeschalteten Zündwinkeleingriff sich das Sollmoment für den Zündwinkel am Moment ohne Eingriff, aus vorprogrammierten Kennfeldern einzustellenden Basismoment orientiert, wird auf diese Weise eine Begrenzung des Istmoments auf den Basiswert erreicht. Dies trägt in vorteilhafter Weise zur Betriebssicherheit bei.It is particularly advantageous when the ignition angle intervention can be switched off triggering the limit depending on the to make torque to be set via the ignition angle, while turning off the limit depending on the below other torque calculated based on the accelerator pedal position is specified for the fuel metering. Because when switched off Ignition angle intervention is the target torque for the Ignition angle at the moment without intervention, from pre-programmed Maps based on the base torque to be set, is on this way a limitation of the actual torque to the base value reached. This contributes to operational security in an advantageous manner at.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Further advantages result from the description below from exemplary embodiments or from the dependent ones Claims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Dabei zeigt Figur 1 ein Übersichtsblockschaltbild einer Steuervorrichtung für eine Brennkraftmaschine, während in Figur 2 ein Übersichtsblockschaltbild einer drehmomentenorientierten Funktionsarchitektur eines Steuersystems für eine Antriebseinheit. Figur 3 zeigt ein Blockschaltbild für die Bestimmung des maximal zulässigen Drehmoments sowie der darauf aufgebauten Überwachungsmaßnahme. In Figur 4 wird die Begrenzung des Sollmomentenwerts für den Füllungspfad abhängig vom maximal zulässigen Moment dargestellt, während in den Figuren 5 und 6 zwei Ausführungsbeispiele zur Begrenzung des Sollmoments im schnellen Eingriffspfad auf das maximal zulässige Moment dargestellt sind.The invention is described below with reference to the drawing illustrated embodiments explained in more detail. It shows Figure 1 is an overview block diagram of a control device for an internal combustion engine, while in Figure 2 a Overview block diagram of a torque-oriented Functional architecture of a control system for a drive unit. Figure 3 shows a block diagram for the determination the maximum permissible torque and the torque on it established surveillance measure. In Figure 4 the limitation of the nominal torque value for the filling path represented by the maximum permissible moment, while in the Figures 5 and 6 two embodiments to limit the Target torque in the fast engagement path to the maximum permissible Moment are shown.

Beschreibung von AusführungsbeispielenDescription of exemplary embodiments

In Figur 1 ist eine Steuervorrichtung für eine mehrzylindrige Brennkraftmaschine 10 dargestellt. Die Steuervorrichtung umfaßt ein elektronisches Steuergerät 12, welches aus wenigstens einem Mikrocomputer 14, einer Eingabe- 16 und einer Ausgabeeinheit 18 besteht. Eingabeeinheit 16, Ausgabeeinheit 18 und Mikrocomputer 14 sind über einen Kommunikationsbus 20 zum gegenseitigen Datenaustausch miteinander verknüpft. Der Eingabeeinheit 16 sind die Eingangsleitungen 22, 24, 28 und 30 zugeführt. Die Leitung 22 stammt dabei von einer Meßeinrichtung 32 zur Erfassung der Fahrpedalstellung β, die Leitung 24 von einer Meßeinrichtung 34 zur Erfassung der Motordrehzahl nmot, die Leitung 28 von einer Meßeinrichtung 38 zur Erfassung der zugeführten Luftmasse hfm und die Leitung 30 von wenigstens einem weiteren Steuergerät 40, beispielsweise einem Steuergerät zur Antriebsschlupfregelung ASR, zur Getriebesteuerung GS und/oder zur Motorschleppmomentenregelung MSR. Zur Erfassung der Luftmasse sind je nach Ausführungsbeispiel Luftmassen-, Luftmengenmesser oder Drucksensoren zur Erfassung des Saugrohr- oder des Brennraumdrucks vorgesehen. Neben der dargestellten Betriebsgröße erfaßt die Steuereinheit weitere zur Motorsteuerung wesentliche Größen wie die Motortemperatur, Fahrgeschwindigkeit, etc. An der Ausgabeeinheit 18 ist eine Ausgangsleitung 42 angeschlossen, die auf eine elektrisch betätigbare Drosselklappe 44, die im Luftansaugsystem 46 der Brennkraftmaschine angeordnet ist, führt. Ferner sind Ausgangsleitungen 48, 50, 52, 54, usw. dargestellt, welche mit Stelleinrichtungen zur Kraftstoffzumessung in die Zylinder der Brennkraftmaschine 10 verbunden sind bzw. zur Einstellung des Zündwinkels in jedem Zylinder dienen. In Figure 1 is a control device for a multi-cylinder Internal combustion engine 10 shown. The control device comprises an electronic control unit 12, which consists of at least a microcomputer 14, an input 16 and one Output unit 18 exists. Input unit 16, output unit 18 and microcomputer 14 are via a communication bus 20 linked for mutual data exchange. The Input unit 16 are the input lines 22, 24, 28 and 30 fed. The line 22 comes from a measuring device 32 for detecting the accelerator pedal position β, the line 24 from a measuring device 34 for detecting the engine speed nmot, the line 28 from a measuring device 38 to record the supplied air mass hfm and the line 30 from at least one further control device 40, for example a control device for traction control ASR, for Gearbox control GS and / or for engine drag torque control MSR. To detect the air mass are depending on the embodiment Air mass, air flow meter or pressure sensors to record the intake manifold or combustion chamber pressure intended. In addition to the farm size shown, the Control unit other sizes essential for engine control like the engine temperature, driving speed, etc. At the Output unit 18 is connected to an output line 42, the on an electrically actuated throttle valve 44, which in Air intake system 46 of the internal combustion engine is arranged leads. Furthermore, output lines 48, 50, 52, 54, etc. shown, which with control devices for fuel metering connected to the cylinders of the internal combustion engine 10 are or for setting the ignition angle in each cylinder serve.

In Figur 2 ist anhand eines Blockschaltbildes die Grundzüge einer drehmomentenorientierte Funktionsarchitektur einer Brennkraftmaschinensteuerung dargelegt. Die in den Blockschaltbildern dargestellten Elemente sind in einer bevorzugten Realisierung Teile des Programms des Mikrocomputers, wobei die Blöcke spezielle Programmteile mit Tabellen, Kennlinien, Kennfelder und/oder Berechnungsschritte repräsentieren.The basic features are shown in FIG. 2 on the basis of a block diagram a torque-oriented functional architecture of a Internal combustion engine control set out. The ones in the block diagrams elements shown are in a preferred Realization parts of the program of the microcomputer, being the blocks special program parts with tables, characteristic curves, Represent characteristic maps and / or calculation steps.

Die Eingangsleitungen 22, 24 und 28 werden auf ein Element 100 zur Ermittlung des Fahrerwunschmomentes miped geführt. Dieses wird über eine Leitung 102 zu Elementen 104 und 106 geführt, denen ferner jeweils die Leitung 30 zugeführt ist. Die Elemente 104 und 106 dienen zur Auswahl des zur Motorsteuerung vorzugebenden Sollmomentenwerts milsol und misol nach Maßgabe der zugeführten Sollmomentenwerte des Fahrerwunschs sowie externer miext (z.B. ASR, GS, MSR) und internen Eingriffe miint (z.B. Drehzahl-, Fahrgeschwindigkeitsbegrenzung). Die ausgewählten Sollwerte werden über Leitungen 108 bzw. 110 zu Berechnungseinheiten 112 und 114 geführt. Die Berechnungseinheit 112 berechnet aus dem zugeführten Sollwert nach Maßgabe von wenigstens Motordrehzahl und Luftmasse (Ist-Frischgasfüllung) die Korrektur des Zündwinkels und/oder die Einspritzausblendung und/oder die Beeinflussung der Gemischzusammensetzung. In analoger Weise berechnet die Berechnungseinheit 114 aus dem zugeführten Sollwert nach Maßgabe von wenigstens Motordrehzahl und Luftmasse (Ist-Frischgasfüllung) die Füllung, die durch Ansteuerung der Drosselklappe über die Leitung 42 eingestellt wird. Zum Austausch von Daten sind in einem bevorzugten Ausführungsbeispiel die Berechnungselemente 112 und 114 über die Leitung 116 verbunden. The input lines 22, 24 and 28 are on one element 100 led to determine the driver's desired torque miped. This becomes elements 104 and 106 via a line 102 out, which are also each fed to line 30. The elements 104 and 106 are used to select the motor control specified target torque value milsol and misol according to the supplied target torque values of the driver's request as well as external miext (e.g. ASR, GS, MSR) and internal Interventions miint (e.g. speed, driving speed limitation). The selected setpoints are via lines 108 and 110 led to calculation units 112 and 114. The calculation unit 112 calculates from the supplied Setpoint according to at least engine speed and air mass (Actual fresh gas filling) the correction of the ignition angle and / or the injection suppression and / or the influencing the mixture composition. The Calculation unit 114 from the supplied setpoint Providing at least engine speed and air mass (actual fresh gas filling) the filling by driving the Throttle valve is set via line 42. In return of data is in a preferred embodiment the calculation elements 112 and 114 via the line 116 connected.

Durch die in Figur 2 skizzierte Vorgehensweise werden die verschiedenen Eingriffe auf das Drehmoment der Brennkraftmaschine (Eingriff von einer ASR, von einer MSR, von einer Getriebesteuerung, vom Fahrer, etc.) durch Einstellung der Füllung (langsamer Eingriff) über eine Drosselklappe im Luftansaugrohr und/oder durch Einstellen der Kraftstoffzumessung und des Zündwinkels (schneller Eingriff) koordiniert.The procedure outlined in FIG various interventions on the torque of the internal combustion engine (Intervention from an ASR, from an MSR, from a transmission control, by the driver, etc.) by setting the Filling (slow intervention) via a throttle valve in the Air intake pipe and / or by adjusting the fuel metering and coordinated the ignition angle (rapid intervention).

Das in Figur 1 dargestellte Steuersystem berechnet aus seinen Eingangsgrößen Leistungsgrößen der Brennkraftmaschine, so daß ein Fehler im Bereich der Berechnungen zu einer überhöhten Antriebsleistung der Brennkraftmaschine und somit zu einer gefährlichen Fahrsituation führen kann. Daher ist gemäß Figur 3 vorgesehen, die Richtigkeit der zur Leistungssteuerung herangezogenen Berechnungen zu überprüfen. Dies erfolgt gemäß dem eingangs genannten Stand der Technik dadurch, daß ein maximal zulässiges Moment mizul ermittelt wird, dieses mit einem errechneten Istmoment miist der Brennkraftmaschine verglichen wird und bei Überschreiten des maximal zulässigen Moments durch das Istmoment Fehlerreaktionsmaßnahmen, die z.B. in einer Abschaltung der Kraftstoffzufuhr SKA liegen, ausgeführt werden.The control system shown in Figure 1 calculates from its Input variables, output variables of the internal combustion engine, so that an error in the area of calculations to excessive Drive power of the internal combustion engine and thus too can lead to a dangerous driving situation. Therefore, according to Figure 3 provided the correctness of the power control check the calculations used. This takes place in accordance with the prior art mentioned at the outset by that a maximum permissible moment is determined mizul is, this with a calculated actual torque Internal combustion engine is compared and when the maximum permissible torque due to the actual torque e.g. in a shutdown of the fuel supply SKA lie to be executed.

Die zur Bestimmung des maximal zulässigen Moments und zur Momentenüberwachung gewählte Vorgehensweise ist in einem bevorzugten Ausführungsbeispiel in Figur 3 dargestellt. Auch dort wie auch in den nachfolgenden Figuren wurde das Blockschaltbild aus Übersichtlichkeitsgründen gewählt. Die angesprochenen Funktionen werden im bevorzugten Ausführungsbeispiel als Programme des Mikrocomputers der den Motor steuernden Steuereinheit realisiert. In wenigstens einem Kennfeld 200 wird auf der Basis der Eingangsgrößen Fahrpedalstellung β und Motordrehzahl nmot das maximal zulässige Moment mizul ausgelesen. Im bevorzugten Ausführungsbeispiel erfolgt dies auf der Basis eines vorbestimmten Kennfeldes. In dem Kennfeld sind die maximale Momentenanforderung des Pedals, die bei einer bestimmten Drehzahl zulässig ist, unter Berücksichtigung von momentenerhöhenden Funktionen wie beispielsweise der Leerlaufregelung, abgespeichert. Der vom Kennfeld ausgelesene Wert wird wie im eingangs genannten Stand der Technik dargestellt durch ein hier nicht dargestelltes Tiefpaßfilter gefiltert. Diese ist nur bei negativer Steigung des aus dem Kennfeld kommenden Wertes aktiv.The to determine the maximum allowable torque and Torque monitoring chosen procedure is in a preferred Embodiment shown in Figure 3. Also there, as in the following figures, was the block diagram chosen for clarity. The addressed Functions are in the preferred embodiment as programs of the microcomputer that controls the engine Control unit realized. In at least one map 200 is based on the input variables accelerator position β and engine speed nmot the maximum permissible torque read out mizul. In the preferred embodiment this takes place on the basis of a predetermined map. The maximum torque requirement of the Pedals, which is permissible at a certain speed, under Consideration of torque-increasing functions such as for example the idle control. The from The characteristic value read out is as in the aforementioned State of the art represented by a not shown here Filtered low pass filter. This is only for negative ones Slope of the value coming from the map is active.

In einem anderen vorteilhaften Ausführungsbeispiel sind zwei Kennfelder abhängig von Motordrehzahl und Fahrpedalstellung vorgesehen, wobei das maximal zulässige Moment als Summenwert der beiden Kennfelder gebildet wird. Dabei werden in einem Kennfeld der Start und die Leerlaufregelung bei Drehzahlen unter der Solldrehzahl, die das maximal zulässige Moment erhöhen, berücksichtigt. Die Filterung findet dann lediglich für die Werte des anderen Kennfelds statt.In another advantageous embodiment, there are two Maps depending on engine speed and accelerator pedal position provided, the maximum permissible torque as a total value of the two maps is formed. Thereby in a map of the start and the idle speed control below the target speed, which is the maximum allowable torque increase, taken into account. The filtering then only takes place for the values of the other map instead.

Das auf diese Weise ermittelte zulässige Moment mizul wird einer Maximalwertauswahl MAX zugeführt, in der es mit einem vorgegebenen Festwert mdimax verglichen wird. Die Wert stellt das maximal einstellbare Moment dar. Der Wert mdimax wird ausgegeben, wenn der Fahrgeschwindigkeitsregler aktiv ist (FGR_ein). Bei deaktiviertem Fahrgeschwindigkeitsregler liegt am entsprechenden Eingang der Maximalwertauswahl der Wert 0 an. Der größere der zugeführten Momentenwerte (mizul, mdimax oder 0) wird als maximal zulässiges Moment mizul weiterverarbeitet. Auf diese Weise wird sichergestellt, daß im Fahrgeschwindigkeitsregelbetrieb bei losgelassenem Fahrpedal das maximal zulässige Moment nicht zu gering ist und auf die Fehlerreaktion nicht anspricht. Das maximal zulässige Moment mizul wird zur Begrenzung der Sollmomente zur Verfügung gestellt ("Ausgang A"), wie es in den Figur 4 bis 6 beschrieben ist. The permissible moment determined in this way becomes mizul a maximum value selection MAX, in which there is a predetermined fixed value mdimax is compared. The value represents the maximum adjustable torque. The value mdimax is output when the vehicle speed controller is active is (FGR_ein). When the cruise control is deactivated lies at the corresponding input of the maximum value selection of Value 0. The larger of the torque values supplied (mizul, mdimax or 0) is considered the maximum allowable moment processed by mizul. This ensures that in driving speed control mode when released Accelerator pedal the maximum permissible torque is not too low is and does not respond to the error response. The maximum permissible torque is used to limit the target torques provided ("Exit A") as it is in the Figure 4 to 6 is described.

Aus diesem maximal zulässigen Sollmoment resultiert ein Istmoment. In einer übergeordneten Überwachungsebene wird das Istmoment miist mit einem zulässigen Moment mimax verglichen.An actual torque results from this maximum permissible setpoint torque. At a higher monitoring level, that is Actual torque mi is compared with a permissible torque mimax.

Dieses zulässige Moment berechnet sich auf ähnliche Art und Weise wie das zulässige Sollmoment. Ein Beispiel für eine solche Berechnung ist im eingangs genannten Stand der Technik beschrieben. Sie wird im Berechnungsschritt 203 durchgeführt. Das maximal zulässige Moment mimax ist in der Regel größer als das zur Begrenzung verwendete zulässige Moment mizul. Eine Filterung (in 203) soll hier die Saugrohrzeitkonstante, Lagereglerverzögerung und momenterhöhende Funktionen (z.B. Dashpot) berücksichtigen.This permissible moment is calculated in a similar way and Way like the allowable target torque. An example of a such calculation is in the prior art mentioned at the beginning described. It is carried out in calculation step 203. The maximum permissible torque mimax is usually greater than the allowable torque used for the limitation mizul. Filtering (in 203) here is the intake manifold time constant, Position controller delay and torque increasing functions (e.g. dashpot).

Überschreitet das Istmoment miist das maximal zulässige Moment mimax (Vergleicher 204) wird ggf. nach einer Verzögerungszeit die Abschaltung der Kraftstoffzufuhr SKA ausgelöst, um den erkannten Fehlerfall zu beherrschen. Das Istmoment miist wird in 205 wenigstens auf der Basis von Motordrehzahl nmot und Luftmasse hfm berechnet.If the actual torque exceeds the maximum permissible torque mimax (comparator 204) may be after a delay time the SKA fuel supply is switched off, in order to master the detected fault. The actual moment miist is at 205 based at least on engine speed nmot and air mass hfm calculated.

In Figur 4 ist die Begrenzung des Sollmomentenwertes milsol für den Füllungspfad dargestellt. Dies wird im bevorzugten Ausführungsbeispiel im Koordinator 104 durchgeführt, in dem das vom Fahrer abgeleitete Pedalmoment miped in einer Maximalwertauswahl MAX mit momentenerhöhenden externen und/oder internen Eingriffe wie z.B. einer MSR, verglichen wird. Der größte Wert wird dann in einer Mimimalwertauswahl MIN mit momentenerniedrigenden externen und/oder internen Eingriffen wie eine ASR, eine Drehzahl- und Fahrgeschwindigkeitsbegrenzung, etc. verglichen. Dieser Minimalwertauswahl MIN wird ergänzend das maximal zulässige Moment mizul zugeführt. Es wird das jeweils kleinste dieser Sollmomente ausgewählt und als Sollmomentenwert milsol für den Füllungspfad abgegeben. Übersteigen alle Momentenanforderungen das maximal zulässige Moment, so wird dieses als Sollwert für den Füllungspfad ausgegeben. Auf diese Weise wird der Sollmomentenwert milsol für den Füllungspfad auf das maximal zulässige Moment mizul begrenzt.In Figure 4, the limitation of the target torque value is milsol shown for the fill path. This is preferred Exemplary embodiment carried out in the coordinator 104, in which the pedal torque derived from the driver is miped in a maximum value selection MAX with external and / or torque increasing internal interventions such as an MSR. The The largest value is then selected in a minimum value selection MIN torque-reducing external and / or internal interventions like an ASR, a speed and driving speed limit, etc. compared. This minimum value selection will be MIN in addition, the maximum permissible torque mizul supplied. It the smallest of these nominal torques is selected and as the target torque value milsol for the filling path. If all torque requirements exceed the maximum permissible Wait, this is the setpoint for the filling path output. In this way, the target torque value becomes milsol for the filling path to the maximum permissible torque limited.

Eine Begrenzung wird auch im kurbelwellensynchronen Eingriffspfad durchgeführt. Figur 5 zeigt ein erstes Ausführungsbeispiel des Koordinators 106. Zunächst bildet der vergleichbar zur Vorgehensweise gemäß Figur 4 eine Maximalund/oder einer Minimalwertauswahl MIN, MAX aus dem Pedalmoment miped, den externen miext und/oder internen Sollmomenten miint ein Sollmoment misolv für den kurbelwellensynchronen Eingriffspfad. Das ermittelte Sollmoment misolv wird dann in einem Vergleicher 300 mit dem zulässigen Moment mizul verglichen. Überschreitet das berechnete Sollmoment misolv den maximal zulässigen Wert mizul, gibt der Vergleicher 300 ein logisches 1-Signal aus, welches auf ein UND-Gatter 302 geführt wird. Ferner wird das Sollmoment misolv einem Vergleicher 304 zugeführt, in dem es mit einem aus dem maximal zulässigen Moment mizul gebildeten Wert (mizul-mihyst) verglichen wird. Dieser Wert stellt das maximal zulässige Moment vermindert um einen vorgegebenen Hysteresemoment mihyst dar. Unterschreitet der Sollmomentenwert diesen Wert, wird ein logisches 1-Signal an ein ODER-Gatter 306 ausgegeben. Der Ausgang des ODER-Gatters wird auf den Rücksetzeingang eines RS-Flip-Flops 308 und auf den negierten Eingang des UND-Gatters 302 geführt. Dem ODER-Gatter 306 wird ferner ein Signal B_msr zugeführt, das einen positiven Signalpegel aufweist, wenn eine Motorschleppmomentenregelung aktiv ist. Der Ausgang des UND-Gatters 302 wird auf den Setzeingang S des RS-Flip-Flops 308 geführt. Das Ausgangssignal Q des Flip-Flops 308 führt auf ein Schaltelement 310, welches bei einem entsprechenden Signal in einen Schaltzustand übergeht, in welchem anstelle des Sollmomentenwerts misolv das maximal zulässige Moment mizul als Sollmoment misol für den schnellen Eingriffspfad weitergegeben wird.There is also a limitation in the crankshaft-synchronous intervention path carried out. Figure 5 shows a first embodiment of the coordinator 106. First of all, it is comparable a maximum and / or a minimum value selection MIN, MAX from the pedal torque miped, the external miext and / or internal target torques miint a target torque misolv for the crankshaft synchronous Engagement path. The determined target torque becomes misolv then in a comparator 300 with the allowable moment compared to mizul. Exceeds the calculated target torque misolv the maximum permissible value mizul, the comparator gives 300 a logic 1 signal, which is applied to an AND gate 302 is performed. Furthermore, the target torque becomes misolv fed to a comparator 304, in which it with one of the maximum permissible moment mizul formed value (mizul-mihyst) is compared. This value represents the maximum allowable Moment reduced by a predetermined hysteresis moment mihyst. Is the target torque value below this Value, becomes a logic 1 signal to an OR gate 306 output. The output of the OR gate is on the reset input of an RS flip-flop 308 and on the negated ones Input of the AND gate 302 out. The OR gate 306 a signal B_msr is also supplied, which has a positive Signal level when a motor torque control is active. The output of AND gate 302 is switched to Set input S of the RS flip-flop 308 performed. The output signal Q of the flip-flop 308 leads to a switching element 310, which switches to a switching state with a corresponding signal passes in which instead of the target torque value misolv the maximum permissible torque mizul as target torque misolv is passed on for the fast intervention path.

Überschreitet das Sollmoment misolv das maximal zulässige Moment mizul bei nicht aktiver Motorschleppmomentenregelung (B_msr = 0), so wird das Flip-Flop 308 über das UND-Gatter 302 gesetzt. Der Ausgang Q geht auf "high"-Pegel, so daß der Schalter 310 in die gestrichelte Schaltstellung umschaltet. Unterschreitet der Sollmomentenwert das um den Hysteresewert reduzierte maximal zulässige Moment, so wird vom Vergleicher 304 ein Signal gebildet, welches das Flip-Flop 308 zurücksetzt, wobei gleichzeitig ein Pegelwechsel auf logisch 0 am Setz-Eingang über das UND-Gatter 302 erfolgt. Dies hat zur Folge, daß über den Ausgang Q des Flip-Flops 308 der Schalter 310 wieder in seine durchgezogene Stellung umgeschaltet wird. Ist eine Motorschleppmomentenregelung aktiv (B_msr = 1), wird über das ODER-Gatter 306 der Rücksetzeingang des Flip-Flops 308 auf logisch 1-Pegel geführt, während am Setzeingang dauerhaft der Pegel 0 anliegt. Auf diese Weise wird der Schalter 310 in seiner durchgezogenen Stellung gehalten, so daß bei aktiver Motorschleppmomentenregelung das Sollmoment misol für den schnellen Eingriffspfad gegebenenfalls über das maximal zulässige Moment mizul hinaus angehoben werden kann.If the target torque misolv exceeds the maximum permissible Moment is not possible when the engine drag torque control is not active (B_msr = 0), the flip-flop 308 is over the AND gate 302 set. The output Q goes to "high" level, so that the Switch 310 switches to the dashed switch position. If the target torque falls below the hysteresis value reduced maximum allowable torque, so the comparator 304 a signal is formed which resets the flip-flop 308, at the same time a level change to logic 0 am Set input takes place via the AND gate 302. This has to Consequence that the output Q of the flip-flop 308 of the switch 310 switched back to its solid position becomes. If engine drag torque control is active (B_msr = 1), the reset input of the Flip-Flops 308 to logic 1 level, while on Set input permanently level 0 is present. In this way the switch 310 is held in its solid position, so that when the engine drag torque control is active Target torque misol for the fast intervention path if necessary mizul raised beyond the maximum permissible torque can be.

In einem bevorzugten Ausführungsbeispiel, welches in Figur 6 dargestellt ist, wird aus dem von der Minimal-/Maximalauswahl MINMAX ermittelten Sollmomentenwert misolv ein Sollmomentenwert misolz für den Zündwinkeleingriff abgeleitet. Dabei werden insbesondere additive Korrekturanteile Δmi einer Leerlaufregelung LLR und einer Antiruckelfunktion ARF berücksichtigt. Der Zündwinkelsollwert ist dabei umschaltbar ausgelegt (Schalter 400), so daß in bestimmten Betriebssituationen nicht der Sollmomentenwert misolv, sondern ein Basismomentenwert mibas als Grundlage für die Sollmomentenwertbildung für den Zündwinkel dient. Das Basismoment mibas entspricht dabei dem Moment, welches im aktuellen Betriebszustand von der Brennkraftmaschine unter Berücksichtigung der vorprogrammierten Zündwinkel- und λ-Einstellungen eingenommen werden würde. Das Basismoment wird auf der Basis der Luftmasse hfm, der Motordrehzahl nmot sowie den Momentenwirkungsgraden des Basiszündwinkels und der λ-Basiseinstellung gebildet. Die Vorgehensweise zur Begrenzung beider Sollmomentenwerte entspricht der in Figur 5 dargestellten Vorgehensweise. Der Sollmomentenwert für den Zündwinkeleingriff wird dabei dem Vergleicher 300 zugeführt und wird somit zur Entscheidung, ob begrenzt werden soll, herangezogen. Im Gegensatz dazu wird der Sollmomentenwert misolv für den Kraftstoffpfad dem Vergleicher 304 zugeführt, der über den Abbruch der Begrenzung entscheidet. Ist das Begrenzungskriterium oder das Abbruchkriterium erfüllt, wird das Schaltelement 310 entsprechend betätigt. Zur Begrenzung werden beide Sollmomentenwerte misol und misolz durch das maximal zulässige Moment mizul ersetzt.In a preferred exemplary embodiment, which is shown in FIG is shown, is from that of the minimum / maximum selection MINMAX determined target torque value misolv a target torque value was mistaken for the ignition angle intervention derived. In particular additive correction components Δmi of an idle control LLR and an anti-jerk function ARF considered. The ignition angle setpoint is included switchable designed (switch 400), so that in certain Operating situations not the target torque value misolv, but a base moment value mibas as the basis for the Setpoint torque value formation for the ignition angle is used. The base moment mibas corresponds to the moment in the current Operating state of the internal combustion engine taking into account the pre-programmed firing angle and λ settings would be taken. The basic moment is based on the air mass hfm, the engine speed nmot and the torque efficiencies of the basic ignition angle and the λ basic setting. The limitation procedure of both nominal torque values corresponds to that in FIG. 5 described procedure. The target torque value for the Ignition angle intervention is supplied to the comparator 300 and thus becomes the decision whether to limit used. In contrast, the target torque value misolv for the fuel path fed to the comparator 304, who decides to cancel the limitation. Is the limitation criterion or the termination criterion is met the switching element 310 operated accordingly. For limitation both target torque values are misol and misolished by the maximum permissible torque mizul replaced.

Die Erfindung wurde für eine drehmomentenorientierte Funktionsstruktur beschrieben. Eine entsprechende Vorgehensweise wird angewendet bei einer Motorsteuerung auf der Basis von Leistungswerten. Dabei werden die oben angegebene Momentenwert durch die entsprechende Leistungsgröße, die mit dem Moment über der Drehzahl zusammenhängt, ersetzt.The invention was for a torque-oriented functional structure described. A corresponding procedure is used for an engine control based on Power values. Thereby the torque value given above through the corresponding power level that with the moment related to the speed, replaced.

Claims (10)

  1. Method for controlling a drive unit of a vehicle, at least one desired value for a torque of the drive unit, or at least one desired value for the power of the drive unit being formed at least on the basis of the driver command, this at least one desired value being set by controlling the drive unit, a maximum permissible torque or a maximum permissible power being determined at least on the basis of the driver command, characterized in that the at least one desired value is limited to the maximum permissible torque or the maximum permissible power if it exceeds the maximum permissible value.
  2. Method according to Claim 1, characterized in that the at least one desired value is a desired torque value or a desired power value, which is set by influencing the charging of an internal combustion engine.
  3. Method according to Claim 2, characterized in that the desired value for the charge path is limited to the maximum permissible value by carrying out a minimum value selection between the quantities which form the desired value and the maximum permissible value.
  4. Method according to one of the preceding claims, characterized in that the at least one desired value is a desired torque value or a desired power value for crankshaft-synchronous interventions such as fuel metering and ignition angle.
  5. Method according to Claim 4, characterized in that the desired value is compared to the maximum permissible value, and the maximum permissible value is transmitted further as the desired value if the desired value exceeds the maximum permissible value.
  6. Method according to either of Claims 4 or 5, characterized in that limitation is switched off if the desired value drops below a specified value, which is derived from the maximum permissible value.
  7. Method according to one of Claims 4 to 6, characterized in that limitation is deactivated if engine drag torque control is active.
  8. Method according to one of the preceding claims, characterized in that a desired value for the fuel metering is determined and, while taking into account additional interventions, a desired value for the ignition angle path is determined, limitation being triggered if the desired value for the ignition angle exceeds the maximum permissible value and limitation being cancelled if the desired value for the fuel metering drops below a specified value.
  9. Method according to one of the preceding claims, characterized in that a further maximum permissible torque or a maximum permissible power is furthermore compared to a computed actual torque of the drive unit or to a computed actual power and a fault response is initiated if the actual value exceeds the maximum permissible value.
  10. Apparatus for controlling a drive unit of a vehicle, with means which determine at least one desired torque value or at least one desired power value for controlling the drive unit at least in dependence upon the driver command, and which adjust the torque or the power of the drive unit to this at least one desired value, means being provided which determine a maximum permissible torque value or a maximum permissible power value at least in dependence upon the driver command, characterized by means which limit the at least one desired value to the maximum permissible value if it exceeds the maximum permissible value.
EP98948681A 1997-09-10 1998-07-28 Method and device for controlling a drive unit of a vehicle Expired - Lifetime EP0937198B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19739564 1997-09-10
DE19739564A DE19739564A1 (en) 1997-09-10 1997-09-10 Method and device for controlling a drive unit of a vehicle
PCT/DE1998/002130 WO1999013207A1 (en) 1997-09-10 1998-07-28 Method and device for controlling a drive unit of a vehicle

Publications (2)

Publication Number Publication Date
EP0937198A1 EP0937198A1 (en) 1999-08-25
EP0937198B1 true EP0937198B1 (en) 2003-01-15

Family

ID=7841764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98948681A Expired - Lifetime EP0937198B1 (en) 1997-09-10 1998-07-28 Method and device for controlling a drive unit of a vehicle

Country Status (7)

Country Link
US (1) US6223721B1 (en)
EP (1) EP0937198B1 (en)
JP (1) JP4229474B2 (en)
KR (1) KR100624615B1 (en)
DE (2) DE19739564A1 (en)
RU (1) RU2212555C2 (en)
WO (1) WO1999013207A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741565B4 (en) * 1997-09-20 2007-11-08 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19814743A1 (en) * 1998-04-02 1999-10-07 Bosch Gmbh Robert Drive unit operating method for cars
DE19851457B4 (en) * 1998-08-14 2011-01-13 Robert Bosch Gmbh Method and device for controlling the torque of a drive unit
DE19900740A1 (en) * 1999-01-12 2000-07-13 Bosch Gmbh Robert Method and device for operating an internal combustion engine
DE19932309A1 (en) * 1999-07-10 2001-01-11 Bosch Gmbh Robert Control of vehicle drive unit involves increasing maximum permissible output value if component or additional function is switched on as determined from parameters representing status
DE19953767C2 (en) * 1999-11-09 2002-03-28 Mtu Friedrichshafen Gmbh Control system for protecting an internal combustion engine against overload
DE19963759B4 (en) * 1999-12-30 2012-06-06 Robert Bosch Gmbh Method and device for controlling the drive unit of a vehicle
ES2248313T3 (en) * 2000-04-04 2006-03-16 Robert Bosch Gmbh METHOD AND DEVICE FOR THE CONTROL OF THE TRANSMISSION UNIT OF A VEHICLE.
DE10048015A1 (en) * 2000-04-04 2001-10-11 Bosch Gmbh Robert Method and device for controlling the drive unit of a vehicle
JP3578044B2 (en) * 2000-04-21 2004-10-20 トヨタ自動車株式会社 Internal combustion engine control device for hybrid vehicle
DE10032110C2 (en) * 2000-07-01 2002-10-31 Mtu Friedrichshafen Gmbh Diagnostic system for an internal combustion engine
DE10036282A1 (en) * 2000-07-26 2002-02-07 Bosch Gmbh Robert Method and device for controlling a drive unit
DE10065516B4 (en) * 2000-12-28 2008-01-10 Siemens Ag Method and device for controlling an internal combustion engine
FR2819554B1 (en) * 2001-01-16 2003-07-18 Renault CONTROL SYSTEM FOR A MOTOR VEHICLE DRIVE GROUP
DE10129447B4 (en) * 2001-06-19 2012-02-16 Robert Bosch Gmbh Method and device for controlling a drive unit of a vehicle
DE10134124B4 (en) * 2001-07-13 2006-04-20 Siemens Ag System and method for generating a torque request in the context of a motor control
EP1409864B1 (en) * 2001-07-13 2004-12-01 Robert Bosch Gmbh Method and device for controlling a drive unit
DE10135078A1 (en) * 2001-07-19 2003-02-06 Bosch Gmbh Robert Method and device for operating a drive motor of a vehicle
DE10138493B4 (en) * 2001-08-04 2012-01-19 Robert Bosch Gmbh Method and device for controlling a drive unit of a vehicle
ITTO20011222A1 (en) 2001-12-27 2003-06-27 Gambro Lundia Ab BLOOD FLOW CONTROL EQUIPMENT IN A BLOOD CIRCUIT-EXTRA-BODY.
DE10210684B4 (en) * 2002-03-12 2005-04-14 Robert Bosch Gmbh Method and device for monitoring a moment of a drive unit of a vehicle
FR2838774B1 (en) * 2002-04-22 2005-04-08 Siemens Vdo Automotive METHOD AND DEVICE FOR CONTROLLING VEHICLE ENGINE
US6705286B1 (en) 2002-09-20 2004-03-16 Ford Global Technologies, Llc Method and system for minimizing torque intervention of an electronic throttle controlled engine
DE10246710B4 (en) * 2002-10-07 2016-08-11 Robert Bosch Gmbh Method for limiting an output variable of a drive unit of a vehicle
JP2004183480A (en) * 2002-11-29 2004-07-02 Denso Corp Torque control device for internal combustion engine
DE10315410A1 (en) * 2003-04-04 2004-10-14 Robert Bosch Gmbh Method for operating an internal combustion engine with torque monitoring
DE102004011599B4 (en) 2004-03-10 2006-03-02 Mtu Friedrichshafen Gmbh Method for torque-oriented control of an internal combustion engine
DE102004014368B4 (en) * 2004-03-24 2016-12-08 Robert Bosch Gmbh Method and device for controlling operations in a vehicle
FR2870888B1 (en) * 2004-05-26 2009-05-15 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE102004048008A1 (en) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Method for operating an internal combustion engine
JP2006307797A (en) * 2005-05-02 2006-11-09 Yamaha Motor Co Ltd Control device and method for controlling saddle-mounted vehicle engine
DE102005041663A1 (en) * 2005-09-02 2007-03-15 Robert Bosch Gmbh Moment monitoring for a hybrid drive
JP3927584B2 (en) * 2005-10-26 2007-06-13 三菱電機株式会社 Power control device for automobile
DE102005062870A1 (en) 2005-12-29 2007-07-05 Robert Bosch Gmbh Vehicle`s e.g. hybrid vehicle, drive unit controlling method, involves making verification to determine whether reference torques lie within torque regions of combustion engine and electric drive by torque testing region
DE102005062869A1 (en) 2005-12-29 2007-07-05 Robert Bosch Gmbh Motor vehicle`s hybrid drive controlling method, involves carrying out torque comparison between allowable torque and additional torque, and comparing allowable torque with reference torques for two individual drives of hybrid drive
DE102006037126A1 (en) * 2006-08-09 2008-02-14 Daimler Ag Drive system for a drive unit of a motor vehicle
DE102006057743B4 (en) * 2006-12-07 2015-07-30 Continental Automotive Gmbh Method for monitoring the functional software of control units in a control unit network
DE102006061561A1 (en) 2006-12-27 2008-07-03 Robert Bosch Gmbh Internal combustion engine operating method for motor vehicle, involves determining speed of internal combustion engine based on operating variable of engine, and modifying preset torque based on determined speed of engine
DE102007023553B3 (en) * 2007-05-21 2008-12-04 Continental Automotive Gmbh Device and method for controlling a drive unit
DE102007035097B4 (en) * 2007-07-26 2016-05-19 Robert Bosch Gmbh Method and device for operating a drive unit
JP2018009512A (en) * 2016-07-14 2018-01-18 日立オートモティブシステムズ株式会社 On-vehicle control device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601270A (en) * 1983-12-27 1986-07-22 United Technologies Diesel Systems, Inc. Method and apparatus for torque control of an internal combustion engine as a function of exhaust smoke level
JPS63124842A (en) * 1986-11-14 1988-05-28 Hitachi Ltd Electronic control fuel injection device
JP2861225B2 (en) * 1990-03-26 1999-02-24 株式会社デンソー Control device for vehicle internal combustion engine system
JPH04203250A (en) * 1990-11-29 1992-07-23 Mitsubishi Motors Corp Drive-by-wire type vehicle with travelling load compensating system speed control section
DE4239711B4 (en) * 1992-11-26 2005-03-31 Robert Bosch Gmbh Method and device for controlling a vehicle
DE4407475C2 (en) * 1994-03-07 2002-11-14 Bosch Gmbh Robert Method and device for controlling a vehicle
DE4435741C5 (en) * 1994-10-06 2007-05-31 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19536038B4 (en) 1995-09-28 2007-08-16 Robert Bosch Gmbh Method and device for controlling the drive unit of a motor vehicle
DE19619320A1 (en) 1995-10-07 1997-04-10 Bosch Gmbh Robert Method and device for controlling an internal combustion engine
DE19540061C1 (en) * 1995-10-27 1996-10-02 Daimler Benz Ag Controlling motor vehicle diesel engine with fuel injection amount limited
DE19612455C2 (en) * 1996-03-28 1999-11-11 Siemens Ag Method for determining a target torque on the clutch of a motor vehicle
JP3710073B2 (en) * 1997-03-31 2005-10-26 三菱自動車工業株式会社 Inlet throttle valve controller

Also Published As

Publication number Publication date
EP0937198A1 (en) 1999-08-25
RU2212555C2 (en) 2003-09-20
KR100624615B1 (en) 2006-09-18
JP2001504918A (en) 2001-04-10
DE19739564A1 (en) 1999-03-11
KR20000068943A (en) 2000-11-25
JP4229474B2 (en) 2009-02-25
DE59806931D1 (en) 2003-02-20
US6223721B1 (en) 2001-05-01
WO1999013207A1 (en) 1999-03-18

Similar Documents

Publication Publication Date Title
EP0937198B1 (en) Method and device for controlling a drive unit of a vehicle
DE4219791C2 (en) System for regulating the charging of an internal combustion engine
DE19536038B4 (en) Method and device for controlling the drive unit of a motor vehicle
DE69816387T2 (en) Control system for hybrid vehicles
EP0853723B1 (en) Process and device for controlling an internal combustion engine
DE112008001208B4 (en) Control unit and control method for a vehicle drive unit
DE69819837T2 (en) Control system for hybrid vehicles
DE19739567B4 (en) Method and device for controlling the torque of the drive unit of a motor vehicle
EP0950148B1 (en) Method and device for controlling a drive unit of a vehicle
DE102008030519B4 (en) Machine control system and method
DE19619320A1 (en) Method and device for controlling an internal combustion engine
DE19836845B4 (en) Method and device for controlling a drive unit of a motor vehicle
EP1272752B1 (en) Method and device for controlling the drive unit of a vehicle
DE3925877C2 (en) Method and device for controlling the fuel metering in a diesel internal combustion engine
DE19513370B4 (en) Method and device for controlling the power of an internal combustion engine
DE19644881A1 (en) Process for controlling vehicle drive train output torque
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
EP0768455B1 (en) Method and apparatus for controlling an internal combustion engine
EP1242733B1 (en) Method and device for controlling the drive unit of a vehicle
DE4223253C2 (en) Control device for a vehicle
DE19851457B4 (en) Method and device for controlling the torque of a drive unit
DE10114040A1 (en) Controlling vehicle drive unit involves increasing drive unit output parameter if revolution rate falls below predefined threshold revolution rate and drive unit is operating outside idling state
DE3919108C2 (en) Method for controlling an operating parameter of a motor vehicle in dynamic operating states
DE4426972B4 (en) Method and device for controlling an internal combustion engine
WO2001073281A1 (en) Method and device for controlling the drive unit of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 19990920

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020314

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59806931

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090730

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100728

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806931

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201