EP0936845A1 - Dispositif d'amorçage et d'alimentation de tube fluorescent - Google Patents

Dispositif d'amorçage et d'alimentation de tube fluorescent Download PDF

Info

Publication number
EP0936845A1
EP0936845A1 EP98410008A EP98410008A EP0936845A1 EP 0936845 A1 EP0936845 A1 EP 0936845A1 EP 98410008 A EP98410008 A EP 98410008A EP 98410008 A EP98410008 A EP 98410008A EP 0936845 A1 EP0936845 A1 EP 0936845A1
Authority
EP
European Patent Office
Prior art keywords
resonant
node
tube
switch
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98410008A
Other languages
German (de)
English (en)
Other versions
EP0936845B1 (fr
Inventor
Alain Bailly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA, SGS Thomson Microelectronics SA filed Critical STMicroelectronics SA
Priority to EP19980410008 priority Critical patent/EP0936845B1/fr
Priority to DE1998608043 priority patent/DE69808043T2/de
Publication of EP0936845A1 publication Critical patent/EP0936845A1/fr
Application granted granted Critical
Publication of EP0936845B1 publication Critical patent/EP0936845B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2824Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using control circuits for the switching element

Definitions

  • the present invention relates to ignition circuits and fluorescent tube supply.
  • a fluorescent tube must be powered at high frequency, for example at frequencies of the order from 10 to 100 kHz. In addition, it must receive alternating voltages. or in particularly intense pulses in the period initial to cause its priming. These impulses must reach voltages of the order of 1000 to 3000 volts.
  • the fluorescent tube is associated with a resonant network made up of inductors and capacitors, this network being connected to a continuous or alternative power rectified through of switches controlled so as to periodically energize the resonant network.
  • the cost of the elements is high, and in particular the cost of capacitors having to withstand very high voltages high and inductances caused to let a strong current pass all the more so as the value of these components is high.
  • switches For reasons of economy, understand the smallest number possible of switches and preferably all of these switches must be able to be realized on a silicon substrate monolithic. In practice, systems are often used in half bridge because they impose lower stresses of tensile strength but they have the disadvantage of requiring at least two sets of monolithic switches.
  • the presence invention provides a device for priming and feeding a tube fluorescent, comprising a resonant system connected to the tube, this system having a first resonant frequency when the tube is initiated and at least the second and third frequencies of resonance when the tube is not primed, the third frequency resonance being higher than the first and second resonance frequencies; a rectified supply circuit connected to the resonant system; a switch in series between the power supply and the resonant circuit; a first detector for control the switch on opening when the current supplied by the food exceeds a determined threshold; and a second detector to control the switch when closing each time zero crossing of the voltage on a node of the resonant system and at each pass through a minimum of this voltage.
  • the resonant system comprises a first capacitor and a first inductor connected in series across the tube, and a second capacitor and a second inductor connected in parallel to the terminals of the tube, the second capacitor having a lower capacity than the first capacitor.
  • the second detector includes a branch circuit whose output is connected to a zero crossing detector indicating zero crossings in a specific direction.
  • the second detector includes a transistor whose emitter is connected to the node of the resonant system via a capacitor and whose transmitter is connected to the base via resistance, the base being connected to ground by through a clean diode to allow a current of mass control to the node through the resistance to bias the transistor to the conduction, and the time constant is much less than the signal period of highest frequency resonance that one wishes to detect.
  • the switch includes a power MOS switch whose grid is controlled at opening and closing, in series with a bipolar transistor whose base is permanently polarized.
  • the circuit includes a supply node connected to ground via a storage capacitor, this node on the one hand connected to the high power through a high value resistor, else leaves at the base of said bipolar transistor to receive one load destocking current at each opening of this transistor, and to the capacitor of the second detector to receive the excess charge.
  • the present invention also provides a method of initiation and supplying a fluorescent tube comprising the steps of providing a resonant system connected to tube terminals, this system having a first resonant frequency when the tube is primed and at least second and third resonance frequencies when the tube is not primed, the third resonant frequency being higher than the first and second resonant frequencies; connect this resonant system to a supply circuit rectified by through a controlled switch; detect current into the switch and open the switch whenever this current exceeds a determined threshold; and detect the voltage on a node of the resonant system and automatically adapt the closure from the switch to the highest resonant frequencies of the resonant circuit.
  • the highest frequency detection step of the circuit resonant consists in detecting the minima of the voltage present on a node of the resonant circuit and the zero crossings of this voltage.
  • the network resonant associated with the fluorescent tube according to the present invention has a first resonant frequency when the tube is passing, and has several resonant frequencies including one at least is higher than the first resonant frequency when the tube is not yet primed (and it is substantially equivalent to an open circuit).
  • Figure 1 shows a tube fluorescent 1 in which it was assumed that there was no preheating of electrodes.
  • This fluorescent tube is associated with a resonant network comprising capacitors C1 and C2 and inductors L1 and L2.
  • the inductance L1 and the capacitor C1 are connected in series to the tube terminals.
  • Inductance L2 and the capacitor C2 are connected in parallel to the terminals of the tube.
  • a terminal of a continuous power source for example a rectified alternating supply Vdd, is connected to the terminal of the tube connected to a terminal of capacitors C1 and C2 and of inductance L2.
  • the connection point of capacitor C1 and inductance L1 constitutes a node N1 of the circuit.
  • a tube once a tube is primed, it has a low impedance, for example a resistance of the order of 500 ⁇ . Since the tube of figure 1 is arranged in parallel with the capacitor C2 and the impedance L2, these latter elements are amortized and no longer have any influence on the resonant system once the tube is primed.
  • the network resonant then reduces substantially to capacitor C1 and to inductance L1 which then define the oscillation frequency (of the order of 90 kHz in the case of the particular example above).
  • a first resonant circuit consists of inductors L1 and L2 in series with capacitor C1. This first resonant circuit will have a resonance frequency of the order of 28 kHz in the case of the particular example above.
  • a second resonant circuit includes inductance L1 in series with capacitors C1 and C2. The resonant frequency of this second resonant circuit will be of the order of 126 kHz in the case of the particular example above.
  • the network will have at least two frequencies resonance when the tube is not primed and gives approximate orders of magnitude of the resonant frequencies for indicate that there will be a clearly high resonant frequency higher than the resonant frequency in the primed state and a low resonant frequency. So we get, when the circuit oscillates, a wave of complex shape comprising at least the superimposition of a high frequency signal and a frequency signal low.
  • Node N1 is connected to the second power supply terminal GND (commonly ground) via a switch SW and is connected directly to the GND terminal by a diode in reverse D1.
  • the SW switch is controlled by the Q output of a flip-flop 10 set to 1 by a starting circuit 11.
  • Flip 10 reset input is connected to a current detection circuit 12 in the switch SW, this detection circuit providing an output signal when the current exceeds a determined threshold, for example a value of 200 milliamps.
  • the clock input of flip-flop 10 is controlled by a detector circuit 14 which provides an active signal on the input CLOCK, i.e. a signal passing from a low state to a state high when the voltage on node N1 remains at zero after having been positive or when this tension goes through a minimum. This allows, as will be seen below, to control the switch on the highest frequency among the resonant frequencies mentioned above.
  • Figure 2 shows by way of example the voltage on the node N1.
  • the switch SW is closed. It opens as soon as the current flowing through it exceeds a threshold and the voltage at node N1 increases and has a waveform relatively complex illustrated between instants t1 and t2, consisting in particular of the superposition of resonance frequencies above and below.
  • this tension goes through zero and detector 14 provides a signal on CLK input of flip-flop 10 to close the SW switch.
  • the switch opens again.
  • Figure 1 also shows an embodiment simplified detector 14.
  • This detector comprises, between the node N1 and ground (GND), a capacitor C3 and a resistor R3 whose connection point N2 is connected to an input of a comparator 16.
  • the other input of the comparator is connected to a negative reference voltage.
  • This negative reference allows cause a positive edge on the CLK input of flip-flop 10 when the voltage on node N1 remains at 0 (or at -0.6 volts at due to the presence of diode D1) after being positive.
  • the time constant R3C3 is chosen much less than the period of the signal corresponding to the most resonant frequency high. The fitting works like a diverter and the voltage at node N2 goes through zero with each change in slope of the voltage on node N1.
  • Comparator 16 provides a transition from a high state to a low state when the voltage on node N1 goes through a maximum and from a low state to a high state when it goes through a minimum.
  • Toggle 10 only provides a signal on its Q output only during transitions from a low state to a high state on its CLOCK entry. We therefore obtain the control signal for sought switching that automatically hooks onto the signal at the highest frequency among the components of resonant circuit signal.
  • capacitors C1 and C2 have a much lower capacity than the capacitor C1. If its capacity is, for example, three times lower, the voltage across it will be about three times as much strong, i.e. if the voltage across the capacitor C1 is of the order of 300 volts, the terminals of the capacitor C2 of peak-to-peak voltages of the order of a thousand volts, sufficient to trigger the fluorescent tube.
  • the fluorescent tube After a certain number of switch operations SW at the high frequency, the fluorescent tube will strike and, as as indicated above, only the capacitor C1 and the inductance L1 will then be active in the resonant circuit. Therefore the detector 14 will automatically adjust to the new frequency and provide SW switch switching pulses to each zero crossing of the alternating voltage corresponding to the resonant frequency of the L1-C1 network.
  • FIG. 3 represents an exemplary embodiment more detailed view of the circuit in figure 1.
  • the same elements as those in Figure 1 are designated by the same digital references.
  • the resonant system associated with tube 1 is identical to that of figure 1.
  • the SW switch is made by cascode mounting a bipolar transistor 20 and a MOS transistor 21.
  • Such components can be made in monolithic form in a single chip, for example in integration technologies bipolar-MOS developed by the company SGS-THOMSON.
  • the collector of transistor 20 is connected to node N1, its emitter to drain of transistor 21, and its base at a node N3 on which is available a low supply voltage (+ Vcc).
  • the drain of transistor 21 is connected to ground via a measuring resistance R4.
  • the gate of transistor 21 is connected to the output Q of the flip-flop 10.
  • the transistor 20 is permanently polarized in the passing state and a current does not cross it effectively only when the MOS transistor 21 turns on.
  • bipolar transistor 20 The role essential of bipolar transistor 20 is to limit the voltage across the MOS transistor 21 which sees only the voltage emitter of this transistor 20 (substantially equal to the voltage Vcc). Indeed, it is technologically easier to achieve a bipolar transistor supporting a high voltage than a transistor MOS supporting high voltage.
  • the current detector 12 includes a resistor R4 whose voltage (node N4) is applied to the base of a transistor NPN 23 whose transmitter is connected to ground and the collector to the supply node N3 via a resistor R5.
  • the collector voltage of transistor 23 is applied to the reset input R of flip-flop 10.
  • this transistor becomes passing and a low level appears on its collector.
  • the low level is applied via an inverter (a first entry of a NAND gate 25) at entry R. If you want that the MOS transistor 21 opens as soon as a current of the order of 200 milliamps crosses it, we will choose for resistance R4 a value of 3 ⁇ .
  • the circuit 14 for detecting passage through a minimum or by zero of the voltage on node N1 includes the capacitor C3, a first terminal of which is connected to this node N1 and the second terminal is connected to ground via a capacitor C4.
  • N5 node is connected to node N3 via a diode D2.
  • the circuit 14 includes a resistor R3 connected between base and emitter a transistor 27 whose emitter is connected to node N5 and whose the collector is connected to node N3 via a resistance R6.
  • Earth is connected to the base of transistor 27 by via a diode D3 and to the collector of this transistor via a diode D4.
  • node N5 is more positive as -1.2 V
  • transistor 27 is blocked. If node N5 becomes more negative than -1.2 V, i.e. a current flows through capacitor C3 from node N5 to node N1, this current flows from ground through diode D3 and the resistance R3 towards node N5 and the voltage which develops at resistance R3 causes the conduction of the transistor 27. Its collector then passes from the voltage level of the node N3 (high level) at the voltage level of node N5 (level low). This transition causes the appearance of a signal on the CLK entry. The same phenomenon occurs when the voltage of the node N1 remains at zero after being positive. In this case resistor R3 blocks transistor 27 after current cancellation in capacitor C3.
  • the starting circuit 11 firstly comprises a resistor R7 and a capacitor C7.
  • Resistor R7 connected between the voltage Vdd and the node N3, charges the capacitor C7, connected between node N3 and ground, as soon as a voltage is applied to the terminal Vdd and positively polarizes the node N3.
  • a Zener Z diode sets the maximum voltage level.
  • a circuit comprising resistors R8, R9, R10, R11, R12, R13, NPN transistors 29 and PNP 30, and a capacitor C8 connected in the illustrated manner, provides a signal on the setting input to 1, S, of the flip and on the input R of it via the door 25 above.
  • the voltage on node N3 is applied at entry D of the scale. As long as the voltage on node N3 is too weak, transistors 29 and 30 are blocked and the flip-flop 10 is kept blocked by the signal applied to the carries 25. When that the tension on the node N3 crosses the trigger threshold of transistors 29 and 30, the capacitor C8 applies a pulse to the S input of the flip-flop.
  • the signal on the output Q flip-flop 10 is applied via a capacitor C9 and a resistor R14 at the base of transistor 23 to reset it to zero with a certain delay.
  • the exit Q is used to inhibit the operation of transistor 23 each time the switch SW is turned on. Indeed, the switch SW can be turned on while there is a high voltage across its terminals, which induces a lot of current in the resistor R4.
  • the capacitor C9 makes it possible to apply a negative pulse to the base of the transistor 23, which avoids re-blocking the flip-flop 10 just after setting it to 1.
  • One aspect of the present invention also resides in the low supply voltage generation mode on the node N3.
  • An initial charging step has been indicated via of resistance R7.
  • the present invention provides two other means of supplying this DC voltage. The first is that whenever the transistor 20 opens as a result of blocking of the MOS transistor 21, the charges stored in this transistor will be eliminated towards the node N3 by through a resistor R15. The second uses any excessive energy on the capacitor C3 which is discharged by through the diode D2 in this node N3. So we use for this load basically voltages and loads which otherwise would be lost. This helps maintain sufficient tension on node N3 during all operating phases retaining a resistance R7 of very high value (by example 1 M ⁇ ) to limit unnecessary consumption of the circuit.
  • Figure 4 shows a detailed embodiment of the present invention.
  • the Q output of flip-flop 10 is applied to the grid of the switching MOS transistor 21 via a amplifier circuit and the output voltage of the supply circuit is applied via two inverters.
  • the usefulness of the other elements added will become clear to one skilled in the art.
  • this figure has indicated the value and / or type of each component used in a mode of particular achievement. These values, given by way of example, will be considered part of this description.
  • the present invention provides a simple system switch control for automatic adjustment on the highest frequency of a likely resonant system to oscillate at several frequencies.
  • the present invention is susceptible of various variants and modifications which will appear to those skilled in the art.
  • the numerical values indicated were used only as an example.
  • a particular type of resonant circuit Various other structures resonant circuit may be used, the important being that this circuit has a frequency of high resonance which is automatically inhibited once that the tube is primed.
  • a electrode heating system and possibly modify the resonant circuit accordingly.
  • FIGS. 5A, 5B and 5C Examples of variants of the resonant circuit are illustrated in FIGS. 5A, 5B and 5C, the variant of FIG. 5C providing for electrode heating.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

L'invention concerne un dispositif d'amorçage et d'alimentation d'un tube fluorescent, comprenant un système résonant (C1, C2, L1, L2) connecté au tube et à un circuit d'alimentation redressée (Vdd, GND) avec un commutateur (SW) en série. Un premier détecteur (12) commande le commutateur (SW) à l'ouverture quand le courant fourni par l'alimentation dépasse un seuil déterminé. Un deuxième détecteur (14) commande le commutateur (SW) à la fermeture à chaque passage à zéro de la tension sur un noeud (N1) du système résonant et à chaque passage par un minimum de cette tension. <IMAGE>

Description

La présente invention concerne des circuits d'amorçage et d'alimentation de tube fluorescent.
De façon générale, un tube fluorescent doit être alimenté à haute fréquence, par exemple à des fréquences de l'ordre de 10 à 100 kHz. En outre, il doit recevoir des tensions alternatives ou en impulsions particulièrement intenses dans la période initiale pour provoquer son amorçage. Ces impulsions doivent atteindre des tensions de l'ordre de 1000 à 3000 volts. De façon générale, pour produire des hautes tensions à haute fréquence, le tube fluorescent est associé à un réseau résonant constitué d'inductances et de condensateurs, ce réseau étant connecté à une alimentation continue ou alternative redressée par l'intermédiaire de commutateurs commandés de façon à exciter périodiquement le réseau résonant.
La réalisation d'un circuit d'amorçage et d'alimentation d'un tube fluorescent pose des problèmes pour la réalisation de chacun des éléments du système.
En ce qui concerne le circuit résonant, l'une des contraintes est que le coût des éléments est élevé, et notamment le coût de condensateurs amenés à supporter des tensions très hautes et des inductances amenées à laisser passer un fort courant et ce d'autant plus que la valeur de ces composants est élevée.
En ce qui concerne le circuit de commutation, il doit, pour des raisons d'économie, comprendre le plus petit nombre possible de commutateurs et, de préférence, l'ensemble de ces commutateurs doit pouvoir être réalisé sur un substrat de silicium monolithique. En pratique, on utilise souvent des systèmes en demi pont car ils imposent de plus faibles contraintes de tenue en tension mais ils présentent l'inconvénient de nécessiter au moins deux ensembles de commutateurs monolithiques.
En ce qui concerne le système de commande du circuit de commutation, il doit être le plus simple possible et présenter une faible consommation.
Il est donc clair que de nombreux compromis doivent être réalisés pour fournir un système optimal d'amorçage et d'alimentation de tube fluorescent, en réduisant le nombre de composants et le coût du système.
C'est un objet de la présente invention que de prévoir un circuit optimisé d'amorçage et d'alimentation de tube fluorescent.
Pour atteindre cet objet général, la présence invention prévoit un dispositif d'amorçage et d'alimentation d'un tube fluorescent, comprenant un système résonant connecté au tube, ce système ayant une première fréquence de résonance quand le tube est amorcé et au moins des deuxième et troisième fréquences de résonance quand le tube n'est pas amorcé, la troisième fréquence de résonance étant plus élevée que les première et deuxième fréquences de résonance ; un circuit d'alimentation redressée connecté au système résonant ; un commutateur en série entre l'alimentation et le circuit résonant ; un premier détecteur pour commander le commutateur à l'ouverture quand le courant fourni par l'alimentation dépasse un seuil déterminé ; et un deuxième détecteur pour commander le commutateur à la fermeture à chaque passage à zéro de la tension sur un noeud du système résonant et à chaque passage par un minimum de cette tension.
Selon un mode de réalisation de la présente invention, le système résonant comprend un premier condensateur et une première inductance connectés en série aux bornes du tube, et un deuxième condensateur et une deuxième inductance connectés en parallèle aux bornes du tube, le deuxième condensateur ayant une capacité inférieure à celle du premier condensateur.
Selon un mode de réalisation de la présente invention, le deuxième détecteur comprend un circuit dérivateur dont la sortie est reliée à un détecteur de passage par zéro indiquant des passages par zéro dans un sens déterminé.
Selon un mode de réalisation de la présente invention, le deuxième détecteur comprend un transistor dont l'émetteur est relié au noeud du système résonant par l'intermédiaire d'un condensateur et dont l'émetteur est relié à la base par l'intermédiaire d'une résistance, la base étant reliée à la masse par l'intermédiaire d'une diode propre à laisser passer un courant de commande de la masse vers le noeud par l'intermédiaire de la résistance pour polariser le transistor à la conduction, et la constante de temps est très inférieure à la période du signal de résonance de fréquence la plus élevée que l'on souhaite détecter.
Selon un mode de réalisation de la présente invention, le commutateur comprend un commutateur MOS de puissance dont la grille est commandée à l'ouverture et à la fermeture, en série avec un transistor bipolaire dont la base est polarisée en permanence.
Selon un mode de réalisation de la présente invention, le circuit comprend un noeud d'alimentation connecté à la masse par l'intermédiaire d'un condensateur de stockage, ce noeud d'alimentation étant connecté d'une part à l'alimentation haute par l'intermédiaire d'une résistance de forte valeur, d'autre part à la base dudit transistor bipolaire pour en recevoir un courant de déstockage de charge à chaque ouverture de ce transistor, et au condensateur du deuxième détecteur pour en recevoir la charge en excès.
La présente invention prévoit aussi un procédé d'amorçage et d'alimentation d'un tube fluorescent comprenant les étapes consistant à prévoir un système résonant connecté aux bornes du tube, ce système ayant une première fréquence de résonance quand le tube est amorcé et au moins des deuxième et troisième fréquences de résonance quand le tube n'est pas amorcé, la troisième fréquence de résonance étant plus élevée que les première et deuxième fréquences de résonance ; connecter ce système résonant à un circuit d'alimentation redressé par l'intermédiaire d'un commutateur commandé ; détecter le courant dans le commutateur et ouvrir le commutateur chaque fois que ce courant dépasse un seuil déterminé ; et détecter la tension sur un noeud du système résonant et adapter automatiquement la fermeture du commutateur à la plus haute des fréquences de résonance du circuit résonant.
Selon un mode de réalisation de la présente invention, l'étape de détection de la fréquence la plus haute du circuit résonant consiste à détecter les minima de la tension présente sur un noeud du circuit résonant et les passages à zéro de cette tension.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
  • la figure 1 est un schéma sous forme de blocs d'un circuit de démarrage et d'alimentation de tube fluorescent selon la présente invention ;
  • la figure 2 représente l'allure de signaux apparaissant dans un circuit résonant ;
  • la figure 3 représente un mode de réalisation plus détaillé du circuit de la figure 1 ;
  • la figure 4 représente un exemple détaillé de réalisation du circuit de la figure 3 ; et
  • les figures 5A à 5C représentent des variantes de réalisation du circuit résonant.
  • Selon une caractéristique de l'invention, le réseau résonant associé au tube fluorescent selon la présente invention, présente une première fréquence de résonance quand le tube est passant, et présente plusieurs fréquences de résonance dont une au moins est plus élevée que la première fréquence de résonance quand le tube n'est pas encore amorcé (et qu'il équivaut sensiblement à un circuit ouvert). On notera dans l'exemple particulier ci-après et on notera de façon générale que le fait de fonctionner à une fréquence plus élevée pour des hautes tensions données permet que les condensateurs destinés à supporter les hautes tensions peuvent avoir des valeurs plus faibles et entraíne également que les courants dans les inductances du réseau seront plus faibles. Ceci permet donc d'utiliser des condensateurs et des inductances de plus faible coût.
    Plus particulièrement, la figure 1 représente un tube fluorescent 1 dans lequel on a supposé qu'il n'y avait pas de préchauffage des électrodes. Ce tube fluorescent est associé à un réseau résonant comprenant des condensateurs C1 et C2 et des inductances L1 et L2. L'inductance L1 et le condensateur C1 sont connectés en série aux bornes du tube. L'inductance L2 et le condensateur C2 sont connectés en parallèle aux bornes du tube. Une borne d'une source d'alimentation continue, par exemple une alimentation alternative redressée Vdd, est reliée à la borne du tube connectée à une borne des condensateurs C1 et C2 et de l'inductance L2. Le point de connexion du condensateur C1 et de l'inductance L1 constitue un noeud N1 du circuit.
    On considérera ci-après un exemple particulier, indiqué uniquement à titre d'exemple, dans lequel la tension appliquée est la tension du secteur (220 V) redressée et où les éléments du réseau résonant ont les valeurs suivantes :
  • C1 = 1 nF,
  • L1 = 6,4 mH,
  • L2 = 25 mH, et
  • C2 = 300 pF.
  • L'homme de l'art notera que, une fois qu'un tube est amorcé, il présente une faible impédance, par exemple une résistance de l'ordre de 500 Ω. Etant donné que le tube de la figure 1 est disposé en parallèle avec le condensateur C2 et l'impédance L2, ces derniers éléments sont amortis et n'ont plus d'influence sur le système résonant une fois le tube amorcé. Le réseau résonant se ramène alors sensiblement au condensateur C1 et à l'inductance L1 qui définissent alors la fréquence d'oscillation (de l'ordre de 90 kHz dans le cas de l'exemple particulier ci-dessus).
    Quand le tube n'est pas amorcé, on peut considérer que le réseau comporte deux circuits résonants principaux. Un premier circuit résonant est constitué des inductances L1 et L2 en série avec le condensateur C1. Ce premier circuit résonant aura une fréquence de résonance de l'ordre de 28 kHz dans le cas de l'exemple particulier ci-dessus. Un deuxième circuit résonant comprend l'inductance L1 en série avec les condensateurs C1 et C2. La fréquence de résonance de ce deuxième circuit résonant sera de l'ordre de 126 kHz dans le cas de l'exemple particulier ci-dessus. Ceci montre que le réseau aura au moins deux fréquences de résonance quand le tube n'est pas amorcé et donne des ordres de grandeur approchés des fréquences de résonance pour indiquer qu'il existera une fréquence de résonance haute nettement plus élevée que la fréquence de résonance à l'état amorcé et une fréquence de résonance basse. On obtient donc, quand le circuit oscille, une onde de forme complexe comprenant au moins la superposition d'un signal à fréquence haute et d'un signal à fréquence basse.
    Le noeud N1 est relié à la deuxième borne d'alimentation GND (couramment la masse) par l'intermédiaire d'un commutateur SW et est connecté directement à la borne GND par une diode en inverse D1.
    Le commutateur SW est commandé par la sortie Q d'une bascule 10 mise à 1 par un circuit de démarrage 11.
    L'entrée de remise à zéro de la bascule 10 est connectée à un circuit 12 de détection de courant dans le commutateur SW, ce circuit de détection fournissant un signal de sortie quand le courant dépasse un seuil déterminé, par exemple une valeur de 200 milliampères.
    L'entrée d'horloge de la bascule 10 est commandée par un circuit détecteur 14 qui fournit un signal actif sur l'entrée CLOCK, c'est-à-dire un signal passant d'un état bas à un état haut quand la tension sur le noeud N1 reste à zéro après avoir été positive ou quand cette tension passe par un minimum. Ceci permet, comme on le verra ci-après, de commander le commutateur sur la fréquence la plus haute parmi les fréquences de résonance susmentionnées.
    La figure 2 représente à titre d'exemple la tension sur le noeud N1. On suppose que, à l'instant t1, le commutateur SW est fermé. Il s'ouvre dès que le courant qui le traverse dépasse un seuil et la tension au noeud N1 croít et a une forme d'onde relativement complexe illustrée entre les instants t1 et t2, consistant notamment en la superposition des fréquences de résonance haute et basse susmentionnées. A l'instant t2, cette tension passe par zéro et le détecteur 14 fournit un signal sur l'entrée CLK de la bascule 10 pour refermer le commutateur SW. A l'instant t3 quand le détecteur 12 a détecté un courant supérieur à 200 milliampères, le commutateur s'ouvre à nouveau. On retrouve alors une forme d'onde complexe et il arrivera nécessairement un moment (pendant cette période, la période t1-t2 antérieure, ou une période ultérieure) où la superposition des fréquences haute et basse entraínera, à un instant t4, que cette forme d'onde passe par un minimum. Ce minimum correspond à une valeur basse de la composante haute fréquence. A cet instant, le détecteur 14 fournit un front montant sur l'entrée CLOCK de la bascule 10. La sortie Q de la bascule 10 applique alors un signal de fermeture sur la borne de commande du commutateur SW. A partir de ce moment, il y a accrochage sur la fréquence haute. Et le commutateur s'ouvre et se referme sensiblement à cette fréquence, l'ouverture se produisant chaque fois que le courant dans le commutateur dépasse une valeur de 200 milliampères et la fermeture se produisant chaque fois que l'on repasse par un minimum ou un passage à zéro de la tension à la fréquence haute.
    La figure 1 représente également un mode de réalisation simplifié du détecteur 14. Ce détecteur comprend, entre le noeud N1 et la masse (GND), un condensateur C3 et une résistance R3 dont le point de connexion N2 est relié à une entrée d'un comparateur 16. L'autre entrée du comparateur est reliée à une tension de référence négative. Cette référence négative permet de provoquer un front positif sur l'entrée CLK de la bascule 10 lorsque la tension sur le noeud N1 reste à 0 (ou à -0,6 volt à cause de la présence de la diode D1) après avoir été positive. La constante de temps R3C3 est choisie très inférieure à la période du signal correspondant à la fréquence de résonance la plus élevée. Le montage fonctionne comme un dérivateur et la tension au noeud N2 passe par zéro à chaque changement de pente de la tension sur le noeud N1. Le comparateur 16 fournit une transition d'un état haut à un état bas quand la tension sur le noeud N1 passe par un maximum et d'un état bas à un état haut quand elle passe par un minimum. La bascule 10 ne fournit un signal sur sa sortie Q que lors de transitions d'un état bas à un état haut sur son entrée CLOCK. On obtient donc bien le signal de commande de commutation recherché qui s'accroche automatiquement sur le signal à la fréquence la plus haute parmi les composantes de signal du circuit résonant.
    Par ailleurs, on a indiqué précédemment des exemples numériques de valeurs des condensateurs C1 et C2. On retiendra que le condensateur C2 a une capacité nettement plus faible que le condensateur C1. Si sa capacité est, par exemple, trois fois plus faible, la tension à ses bornes sera environ trois fois plus forte, c'est-à-dire que, si la tension aux bornes du condensateur C1 est de l'ordre de 300 volts, on obtiendra aux bornes du condensateur C2 des tensions crête à crête de l'ordre du millier de volts, suffisantes pour déclencher le tube fluorescent.
    Après un certain nombre de commutations du commutateur SW à la fréquence haute, le tube fluorescent s'amorcera et, comme on l'a indiqué précédemment, seuls le condensateur C1 et l'inductance L1 seront alors actifs dans le circuit résonant. Alors, le détecteur 14 s'ajustera automatiquement sur la nouvelle fréquence et fournira des impulsions de comutation du commutateur SW à chaque passage à zéro de la tension alternative correspondant à la fréquence de résonance du réseau L1-C1.
    La figure 3 représente un exemple de réalisation plus détaillé du circuit de la figure 1. Dans cette figure, de mêmes éléments que ceux de la figure 1 sont désignés par les mêmes références numériques.
    Le système résonant associé au tube 1 est identique à celui de la figure 1.
    Le commutateur SW est réalisé par un montage cascode d'un transistor bipolaire 20 et d'un transistor MOS 21. De tels composants peuvent être réalisés sous forme monolithique dans une puce unique, par exemple dans les technologies d'intégration bipolaire-MOS développées par la société SGS-THOMSON. Le collecteur du transistor 20 est relié au noeud N1, son émetteur au drain du transistor 21, et sa base à un noeud N3 sur lequel est disponible une tension d'alimentation basse (+Vcc). Le drain du transistor 21 est relié à la masse par l'intermédiaire d'une résistance de mesure R4. La grille du transistor 21 est reliée à la sortie Q de la bascule 10. Le transistor 20 est en permanence polarisé à l'état passant et un courant ne le traverse effectivement que quand le transistor MOS 21 devient passant. Le rôle essentiel du transistor bipolaire 20 est de limiter la tension aux bornes du transistor MOS 21 qui ne voit que la tension d'émetteur de ce transistor 20 (sensiblement égale à la tension Vcc). En effet, il est technologiquement plus facile de réaliser un transistor bipolaire supportant une tension élevée qu'un transistor MOS supportant une tension élevée.
    Le détecteur de courant 12 comprend une résistance R4 dont la tension (noeud N4) est appliquée à la base d'un transistor NPN 23 dont l'émetteur est relié à la masse et le collecteur au noeud d'alimentation N3 par l'intermédiaire d'une résistance R5. La tension de collecteur du transistor 23 est appliquée à l'entrée de remise à zéro R de la bascule 10. Ainsi, dès que la tension aux bornes de la résistance R4 dépasse la tension baseémetteur du transistor 23 (sensiblement 0,6 volt), ce transistor devient passant et un niveau bas apparaít sur son collecteur. Le niveau bas est appliqué par l'intermédiaire d'un inverseur (une première entrée d'une porte NON-ET 25) à l'entrée R. Si l'on veut que le transistor MOS 21 s'ouvre dès qu'un courant de l'ordre de 200 milliampères le traverse, on choisira pour la résistance R4 une valeur de 3 Ω.
    Le circuit 14 de détection du passage par un minimum ou par zéro de la tension sur le noeud N1 comprend le condensateur C3 dont une première borne est reliée à ce noeud N1 et dont la deuxième borne est reliée à la masse par l'intermédiaire d'un condensateur C4. On désigne par la référence N5 le point de connexion des condensateurs C3 et C4. Le noeud N5 est relié au noeud N3 par l'intermédiaire d'une diode D2. En outre, le circuit 14 comprend une résistance R3 connectée entre base et émetteur d'un transistor 27 dont l'émetteur est relié au noeud N5 et dont le collecteur est relié au noeud N3 par l'intermédiaire d'une résistance R6. La masse est reliée à la base du transistor 27 par l'intermédiaire d'une diode D3 et au collecteur de ce transistor par l'intermédiaire d'une diode D4. Si le noeud N5 est plus positif que -1,2 V, le transistor 27 est bloqué. Si le noeud N5 devient plus négatif que -1,2 V, c'est-à-dire qu'un courant s'écoule à travers le condensateur C3 du noeud N5 vers le noeud N1, ce courant s'écoule depuis la masse par la diode D3 et la résistance R3 vers le noeud N5 et la tension qui se développe aux bornes de la résistance R3 provoque la mise en conduction du transistor 27. Son collecteur passe alors du niveau de tension du noeud N3 (niveau haut) au niveau de tension du noeud N5 (niveau bas). Cette transition entraíne l'apparition d'un signal sur l'entrée CLK. Le même phénomène se produit quand la tension du noeud N1 reste à zéro après avoir été positive. Dans ce cas, la résistance R3 bloque le transistor 27 après annulation du courant dans le condensateur C3.
    Le circuit de démarrage 11 comprend tout d'abord une résistance R7 et un condensateur C7. La résistance R7, connectée entre la tension Vdd et le noeud N3, charge le condensateur C7, connecté entre le noeud N3 et la masse, dès qu'une tension est appliquée sur la borne Vdd et polarise positivement le noeud N3. Une diode Zener Z fixe le niveau de tension maximal. Dès que le condensateur C7 est suffisamment chargé, un circuit comprenant des résistances R8, R9, R10, R11, R12, R13, des transistors NPN 29 et PNP 30, et un condensateur C8 connectés de la façon illustrée, fournit un signal sur l'entrée de mise à 1, S, de la bascule et sur l'entrée R de celle-ci par l'intermédiaire de la porte 25 susmentionnée. La tension sur le noeud N3 est appliquée à l'entrée D de la bascule. Tant que la tension sur le noeud N3 est trop faible, les transistors 29 et 30 sont bloqués et la bascule 10 est maintenue bloquée par le signal appliqué à la porte 25. Lorsque que la tension sur le noeud N3 franchit le seuil de déclenchement des transistors 29 et 30, le condensateur C8 applique une impulsion sur l'entrée S de la bascule.
    En outre, le signal sur la sortie Q de la bascule 10 est appliqué par l'intermédiaire d'un condensateur C9 et d'une résistance R14 à la base du transistor 23 pour le remettre à zéro avec un certain retard. La sortie Q est utilisée pour inhiber le fonctionnement du transistor 23 à chaque mise en conduction du commutateur SW. En effet, le commutateur SW peut être mis en conduction alors qu'il existe une tension élevée à ses bornes, ce qui induit beaucoup de courant dans la résistance R4. Le condensateur C9 permet d'appliquer une impulsion négative sur la base du transistor 23, ce qui évite de rebloquer la bascule 10 juste après sa mise à 1.
    Un aspect de la présente invention réside également dans le mode d'élaboration de la tension d'alimentation basse sur le noeud N3. On a indiqué une étape de charge initiale par l'intermédiaire de la résistance R7. La présente invention prévoit deux autres moyens de fourniture de cette tension continue. Le premier consiste dans le fait que, chaque fois que le transistor 20 s'ouvre par suite du blocage du transistor MOS 21, les charges stockées dans ce transistor vont s'éliminer vers le noeud N3 par l'intermédiaire d'une résistance R15. Le deuxième utilise toute énergie excessive sur le condensateur C3 qui est déchargée par l'intermédiaire de la diode D2 dans ce noeud N3. On utilise donc pour cette charge essentiellement des tensions et des charges qui sinon seraient perdues. Ceci permet de maintenir une tension suffisante sur le noeud N3 pendant toutes les phases de fonctionnement en conservant une résistance R7 de valeur très élevée (par exemple 1 MΩ) pour limiter la consommation inutile du circuit.
    La figure 4 représente un mode de réalisation détaillé de la présente invention. Dans cette figure, on a représenté quelques composants supplémentaires par rapport à ceux de la figure 3 destinés à assurer un bon fonctionnement du circuit. Notamment, la sortie Q de la bascule 10 est appliquée à la grille du transistor MOS de commutation 21 par l'intermédiaire d'un circuit amplificateur et la tension de sortie du circuit d'alimentation est appliquée par l'intermédiaire de deux inverseurs. L'utilité des autres éléments ajoutés apparaítra clairement à l'homme de l'art. De plus, on a indiqué dans cette figure la valeur et/ou le type de chaque composant utilisé dans un mode de réalisation particulier. Ces valeurs, indiquées à titre d'exemple, seront considérées comme faisant partie de la présente description.
    Ainsi, la présente invention fournit un système simple de commande d'un commutateur permettant de s'adapter automatiquement sur la fréquence la plus haute d'un système résonant susceptible d'osciller à plusieurs fréquences.
    La présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, on notera que les valeurs numériques indiquées l'ont été uniquement à titre d'exemple. De plus, on a décrit un type de circuit résonant particulier. Diverses autres structures de circuit résonant pourront être utilisées, l'important étant que ce circuit présente dans l'état d'amorçage une fréquence de résonance haute qui se trouve automatiquement inhibée une fois que le tube est amorcé. Par ailleurs, on pourra prévoir un système de chauffage d'électrodes, et modifier éventuellement le circuit résonant en conséquence.
    Des exemples de variantes du circuit résonant sont illustrés en figures 5A, 5B et 5C, la variante de la figure 5C prévoyant un chauffage d'électrodes.

    Claims (8)

    1. Dispositif d'amorçage et d'alimentation d'un tube fluorescent, comprenant :
      un système résonant (C1, C2, L1, L2) connecté au tube, ce système ayant une première fréquence de résonance quand le tube est amorcé et au moins des deuxième et troisième fréquences de résonance quand le tube n'est pas amorcé, la troisième fréquence de résonance étant plus élevée que les première et deuxième fréquences de résonance ;
      un circuit d'alimentation redressée (Vdd, GND) connecté au système résonant ;
      un commutateur (SW) en série entre l'alimentation et le circuit résonant ;
      un premier détecteur (12) pour commander le commutateur (SW) à l'ouverture quand le courant fourni par l'alimentation dépasse un seuil déterminé ; et
      caractérisé en ce qu'il comprend en outre un deuxième détecteur (14) pour commander le commutateur (SW) à la fermeture à chaque passage à zéro de la tension sur un noeud (N1) du système résonant et à chaque passage par un minimum de cette tension.
    2. Dispositif d'allumage selon la revendication 1, caractérisé en ce que le système résonant comprend un premier condensateur (C1) et une première inductance (L1) connectés en série aux bornes du tube, et un deuxième condensateur (C2) et une deuxième inductance (L2) connectés en parallèle aux bornes du tube, le deuxième condensateur (C2) ayant une capacité inférieure à celle du premier condensateur (C1).
    3. Dispositif selon la revendication 1, caractérisé en ce que le deuxième détecteur (14) comprend un circuit dérivateur (C3, R3) dont la sortie est reliée à un détecteur de passage par zéro (16) indiquant des passages par zéro dans un sens déterminé.
    4. Dispositif selon la revendication 3, caractérisé en ce que le deuxième détecteur (14) comprend un transistor (27) dont l'émetteur est relié au noeud (N1) du système résonant par l'intermédiaire d'un condensateur (C3) et dont l'émetteur est relié à la base par l'intermédiaire d'une résistance (R3), la base étant reliée à la masse par l'intermédiaire d'une diode (D3) propre à laisser passer un courant de commande de la masse vers le noeud (N5) par l'intermédiaire de la résistance (R3) pour polariser le transistor à la conduction, et en ce que la constante de temps (R3, C3) est très inférieure à la période du signal de résonance de fréquence la plus élevée que l'on souhaite détecter.
    5. Dispositif selon la revendication 1, caractérisé en ce que le commutateur (SW) comprend un commutateur MOS de puissance (21) dont la grille est commandée à l'ouverture et à la fermeture, en série avec un transistor bipolaire (20) dont la base est polarisée en permanence.
    6. Dispositif selon les revendications 1, 4 et 5, caractérisé en ce qu'il comprend un noeud d'alimentation (N3) connecté à la masse par l'intermédiaire d'un condensateur de stockage (C7), ce noeud d'alimentation étant connecté d'une part à l'alimentation haute par l'intermédiaire d'une résistance de forte valeur (R7), d'autre part à la base dudit transistor bipolaire pour en recevoir un courant de déstockage de charge à chaque ouverture de ce transistor, et au condensateur (C3) du deuxième détecteur pour en recevoir la charge en excès.
    7. Procédé d'amorçage et d'alimentation d'un tube fluorescent, caractérisé en ce qu'il comprend les étapes suivantes :
      prévoir un système résonant (C1, C2, L1, L2) connecté aux bornes du tube, ce système ayant une première fréquence de résonance quand le tube est amorcé et au moins des deuxième et troisième fréquences de résonance quand le tube n'est pas amorcé, la troisième fréquence de résonance étant plus élevée que les première et deuxième fréquences de résonance ;
      connecter ce système résonant à un circuit d'alimentation redressé par l'intermédiaire d'un commutateur commandé (SW) ;
      détecter le courant dans le commutateur et ouvrir le commutateur chaque fois que ce courant dépasse un seuil déterminé ; et
      détecter la tension sur un noeud du système résonant et adapter automatiquement la fermeture du commutateur à la plus haute des fréquences de résonance du circuit résonant.
    8. Procédé selon la revendication 7, caractérisé en ce que l'étape de détection de la fréquence la plus haute du circuit résonant consiste à détecter les minima de la tension présente sur un noeud du circuit résonant et les passages à zéro de cette tension.
    EP19980410008 1998-02-10 1998-02-10 Dispositif et procédé d'amorçage et d'alimentation de tube fluorescent Expired - Lifetime EP0936845B1 (fr)

    Priority Applications (2)

    Application Number Priority Date Filing Date Title
    EP19980410008 EP0936845B1 (fr) 1998-02-10 1998-02-10 Dispositif et procédé d'amorçage et d'alimentation de tube fluorescent
    DE1998608043 DE69808043T2 (de) 1998-02-10 1998-02-10 Gerät und Verfahren zum Zünden und Betreiben einer Leuchtstofflampe

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP19980410008 EP0936845B1 (fr) 1998-02-10 1998-02-10 Dispositif et procédé d'amorçage et d'alimentation de tube fluorescent

    Publications (2)

    Publication Number Publication Date
    EP0936845A1 true EP0936845A1 (fr) 1999-08-18
    EP0936845B1 EP0936845B1 (fr) 2002-09-18

    Family

    ID=8235613

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19980410008 Expired - Lifetime EP0936845B1 (fr) 1998-02-10 1998-02-10 Dispositif et procédé d'amorçage et d'alimentation de tube fluorescent

    Country Status (2)

    Country Link
    EP (1) EP0936845B1 (fr)
    DE (1) DE69808043T2 (fr)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1484947A2 (fr) * 2003-06-06 2004-12-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit interrupteur pour commander une lampe
    WO2005084084A1 (fr) * 2004-02-24 2005-09-09 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Circuit d'attaque pour convertisseur
    WO2015104277A1 (fr) * 2014-01-13 2015-07-16 Koninklijke Philips N.V. Circuit auto-oscillant

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1990001248A1 (fr) * 1988-07-25 1990-02-08 Stylux Gesellschaft Für Lichtelektronik M.B.H. Agencement de circuits pour unites d'alimentation
    DE4217822A1 (de) * 1991-10-18 1993-04-22 Heinrich Korte Elektronisches vorschaltgeraet

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1990001248A1 (fr) * 1988-07-25 1990-02-08 Stylux Gesellschaft Für Lichtelektronik M.B.H. Agencement de circuits pour unites d'alimentation
    DE4217822A1 (de) * 1991-10-18 1993-04-22 Heinrich Korte Elektronisches vorschaltgeraet

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1484947A2 (fr) * 2003-06-06 2004-12-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit interrupteur pour commander une lampe
    EP1484947A3 (fr) * 2003-06-06 2006-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit interrupteur pour commander une lampe
    US7057355B2 (en) 2003-06-06 2006-06-06 Patent Treuhand Gesellschaft Fur Elektrische Gluhlampen Mbh Drive circuit for operating at least one lamp in an associated load circuit
    WO2005084084A1 (fr) * 2004-02-24 2005-09-09 Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh Circuit d'attaque pour convertisseur
    US7564673B2 (en) 2004-02-24 2009-07-21 Osram Gesellschaft Mit Beschraenkter Haftung Control circuit for converters
    CN1922935B (zh) * 2004-02-24 2012-06-20 电灯专利信托有限公司 转换器的控制电路
    WO2015104277A1 (fr) * 2014-01-13 2015-07-16 Koninklijke Philips N.V. Circuit auto-oscillant

    Also Published As

    Publication number Publication date
    DE69808043T2 (de) 2003-08-14
    EP0936845B1 (fr) 2002-09-18
    DE69808043D1 (de) 2002-10-24

    Similar Documents

    Publication Publication Date Title
    EP2104213B1 (fr) Procédé d&#39;asservissement d&#39;un convertisseur DC-DC en mode discontinu
    EP1366402B1 (fr) Regulateur de tension protege contre les courts-circuits
    FR2745446A1 (fr) Circuit integre de correction de facteur de puissance
    EP0448434B1 (fr) Redresseur susceptible de fonctionner avec au moins deux plages distinctes de tension alternative d&#39;alimentation
    EP0688152B1 (fr) Circuit de commande de commutation et dispositif de commande pour lampe fluorescente à basse pression
    FR2551597A1 (fr) Circuit et procede d&#39;alimentation a commutation, a commande par inversion de phase
    FR2721104A1 (fr) Capteur du type à capacité électrostatique.
    FR2811490A1 (fr) Unite de commande de tension pour un generateur de courant alternatif vehiculaire
    FR2812984A1 (fr) Amplificateur a seuil
    FR2734429A1 (fr) Module interrupteur et d&#39;alimentation-application au demarrage d&#39;un tube fluorescent
    EP0936845B1 (fr) Dispositif et procédé d&#39;amorçage et d&#39;alimentation de tube fluorescent
    FR2475825A1 (fr) Dispositif electronique de commutation a effet de proximite, protege contee les impulsions parasites
    EP0581705A1 (fr) Dispositif de commutation écriture/lecture d&#39;une tête de magnétoscope
    FR2532487A1 (fr) Regulateur pour charge de batterie d&#39;accumulateurs par alternateur a aimant permanent
    FR2621751A1 (fr) Procede de production d&#39;une basse tension continue stabilisee
    EP0252808B1 (fr) Dispositif de commande et de contrôle d&#39;un contacteur et procédé de contrôle correspondant
    EP0331592B1 (fr) Dispositif de démarrage progressif d&#39;une alimentation à découpage
    FR2848359A1 (fr) Generateur d&#39;impulsions modulees en largeur
    FR2721474A1 (fr) Dispositif de commande d&#39;une lampe fluorescente à basse pression.
    FR2753333A1 (fr) Dispositif d&#39;amorcage et d&#39;alimentation de tube fluorescent
    EP0893875B1 (fr) Dispositif d&#39;ajustement du courant de charge d&#39;un condensateur de stockage
    FR2651623A1 (fr) Circuit integre presentant une detection d&#39;etat de saturation.
    EP0581700A1 (fr) Dispositif de commutation écriture/lecture d&#39;une tête de magnétoscope
    CH682019A5 (en) Amplitude control circuit for oscillator circuit - includes current sources and current mirror in circuit to limit final output voltage of oscillator control circuit
    FR2746979A1 (fr) Dispositif de commutation entre une tension alternative et une tension continue

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000128

    AKX Designation fees paid

    Free format text: DE GB IT

    17Q First examination report despatched

    Effective date: 20001002

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7H 05B 41/282 A

    RTI1 Title (correction)

    Free format text: DEVICE AND PROCESS FOR LIGHTING AND OPERATING A FLUORESCENT LAMP

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7H 05B 41/282 A

    RTI1 Title (correction)

    Free format text: DEVICE AND PROCESS FOR LIGHTING AND OPERATING A FLUORESCENT LAMP

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: STMICROELECTRONICS S.A.

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69808043

    Country of ref document: DE

    Date of ref document: 20021024

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030106

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030619

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20080213

    Year of fee payment: 11

    Ref country code: GB

    Payment date: 20080129

    Year of fee payment: 11

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090210

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090210

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090210

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110207

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69808043

    Country of ref document: DE

    Effective date: 20120901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120901