EP0934381B1 - Compositions de nettoyage liquide a usages multiples - Google Patents
Compositions de nettoyage liquide a usages multiples Download PDFInfo
- Publication number
- EP0934381B1 EP0934381B1 EP97912698A EP97912698A EP0934381B1 EP 0934381 B1 EP0934381 B1 EP 0934381B1 EP 97912698 A EP97912698 A EP 97912698A EP 97912698 A EP97912698 A EP 97912698A EP 0934381 B1 EP0934381 B1 EP 0934381B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ether
- alkali metal
- group
- glycol
- monobutyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/48—Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/74—Carboxylates or sulfonates esters of polyoxyalkylene glycols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/825—Mixtures of compounds all of which are non-ionic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/18—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2068—Ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/43—Solvents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/40—Monoamines or polyamines; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/722—Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
Definitions
- British Patent No 1,453,385 discloses polyesterified nonionic surfactants similar to the polyesterified nonionic surfactants of the instant invention. However, these nonionic surfactants of British Patent 1,453,385 do not disclose the formula (II) portion of the instant composition. Additionally, the formulated compositions of British Patent 1,453,385 fail to disclose the critical limitations of the instant invention.
- the invention generally provides a stable, clear all-purpose, hard surface cleaning composition especially effective in disinfecting the surface being cleaned and in the removal of oily and greasy soil.
- the composition includes, on a weight basis:
- the present invention relates to a stable hard surface cleaning composition by weight: as total surfactant 0.1% to 15% of a nonionic surfactant and/or an ethoxylated glycerol type compound, 0 to 15% of a water soluble solvent; 0.1% to 1.0% of a water insoluble organic compound, essential oil, or a perfume, 0.25% to 8% of a disinfectant agent and the balance being water wherein the composition does not contain any alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates.
- perfume is used in its ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances.
- perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
- the precise composition of the perfume is of no particular consequence to cleaning performance so long as it meets the criteria of water immiscibility and having a pleasing odor.
- the perfume, as well as all other ingredients should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc..
- compositions show a marked improvement in ecotoxicity as compared to existing commercial products when mixture of a partially esterified ethoxylated polyhydnc alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound) are used as the nonionic detergent.
- the water insoluble organic compound, essential oil or perfume is present in the composition in an amount of from 0.1 % to 1.0% by weight, preferably from 0.4% to 0.8% by weight, especially preferably from 0.5% to 0.6% by weight, such as weight percent.
- the water insoluble saturated or unsaturated organic compound is selected from the group consisting of water insoluble hydrocarbons containing a cycloalkyl group having 5 to 10 carbon atoms, wherein the alkyl or cycloalkyl group can be saturated or unsaturated and the cycloalkyl group can have one or more saturated or unsaturated alkyl groups having 1 to 20 carbon atoms affixed to the alkyl or cycloalkyl group and one or more halogens, alcohols, nitro or ester group substituted on the cycloalkyl group or alkyl group; aromatic hydrocarbons; water insoluble ethers; water insoluble carboxylic acids, water insoluble alcohols, water insoluble amines, water insoluble esters, nitropropane.
- Typical aromatic hydrocarbons are bromotoluene, diethyl benzene, cyclohexyl bromoxylene, ethyl-3 pentyl-4 toluene, tetrahydronaphthalene, nitrobenzene, and methyl naphthalene.
- Typical water insoluble esters are benzyl acetate, dicyclopentadienylacetate, isononyl acetate, isobornyl acetate and isobutyl isobutyrate.
- Typical water insoluble ethers are di(alphamethyl benzyl) ether, and diphenyl ether.
- a typical alcohol is phenoxyethanol.
- a typical water insoluble nitro derivative is nitro propane.
- Suitable essential oils are selected from the group consisting of:
- the at least one nonionic surfactant is present in amounts of 0.1 % to 15%, preferably 1% to 12% by weight of the composition and provides superior performance in the removal of oily soil and mildness to human skin.
- the water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
- the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
- any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
- the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
- a higher alcohol e.g., an alkanol containing 8 to
- Neodol ethoxylates which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as C 9 -C 11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12), C 14-15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like.
- Neodol ethoxylates such as C 9 -C 11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25
- Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emutsifiers and poor detergents.
- HLB hydrophobic lipophilic balance
- Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
- Examples of commercially available nonionic detergents of the foregoing type are C 11 -C 15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO (Tergitol 15-S-12) marketed by Union Carbide.
- nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
- alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and diisoctylphenol condensed with 15 moles of EO per mole of phenol.
- nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
- nonionic detergents are the water-soluble condensation products of a C 8 -C 20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1, preferably 2.8:1 to 3.3:1, with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight.
- Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C 10 -C 16 alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being 3:1 and the total alkoxy content being 75% by weight.
- Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C 10 -C 20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition.
- These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
- Suitable water-soluble nonionic detergents are marketed under the trade name "Pluronics.”
- the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
- the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500.
- the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble.
- the molecular weight of the block polymers varies from 1,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight.
- these surfactants will be in liquid form and satisfactory surfactants are available as grades L 62 and L 64.
- the instant composition can contain alone or in combination with the at least one nonionic surfactant a composition (herein after referred to as ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is and wherein w equals one to four, most preferably one.
- ethoxylated glycerol type compound which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is and wherein w equals one to four, most preferably one.
- B is selected from the group consisting of hydrogen or a group represented by: wherein R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said and R' is selected from the group consisting of hydrogen and methyl groups; x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the ratio of monoester / diester / triester is 45 to 90 / 5 to 40/1 1 to 20, more preferably 50 to 90 / 9 to 32/1 to 12, wherein the ratio of Formula (I) to Formula (II) is a value between
- the ethoxylated glycerol type compound used in the instant composition is manufactured by the Kao Corporation and sold under the trade name Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0.
- the ethoxylated glycerol type compound has a molecular weight of 400 to 1600, and a pH (50 grams / liter of water) of 5-7.
- the Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than 90% as measured by the Wickbold method Bias-7d.
- Levenol V-501/2 Two examples of the Levenol compounds are Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465 and Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55.
- Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II).
- the Levenol compounds has ecoxicity values of algae growth inhibition > 100 mg/liter; acute toxicity for Daphniae > 100 mg/liter and acute fish toxicity > 100 mg/liter.
- the Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301B measurement to be acceptably biodegradable.
- Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands.
- Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyceride which has 12 EO groups.
- Crovol PK-70 which is prefered is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups.
- Nonionic compounds are highly suitable, some of them do not deliver the right foam control and / or low enough ecotoxicity value. This is the reason why the present compositions can incorporate new nonionic type of surfactant which deliver outstanding foam control and very good ecotoxicity value.
- Both Ni's are produced by DOW chemical which chemical structure is shown below. Their development name are Polyglycol EB95-0779 and EB-0843/1.
- the major class of compounds found to provide highly suitable water soluble solvent for the composition are water-soluble polyethylene glycols having a molecular weight of 150 to 1000, polypropylene glycol of the formula HO(CH 3 CHCH 2 O) n H wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropyl glycol (Synalox) and mono and di C 1 -C 6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X) n OH R 1 (X) n OH R(X) n OR and R 1 (X) n OR 1 wherein R is C 1 -C 6 alkyl group, R 1 is C2-C4 acyl group, X is (OCH 2 CH 2 ) or (OCH 2 (CH 3 )CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate, wherein the alkyl group has 1 to 6 carbon atom
- Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 150 to 1000, e.g., polypropylene glycol 400.
- Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
- glycol type water soluble solvents are at a concentration of 1.0 to 14 weight %, more preferably 2.0 weight % to 10 %. While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), is tripropylene glycol monobutyl ether Generally, amounts of water soluble solvents in the range of from 0 to 15%, preferably from 1 wt. % to 12 wt. % provide stable compositions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
- compositions contain 0.25 to 8 wt. %, more preferably 0.5 to 6 wt. % of a disinfectant agent selected from the group consisting of C 8 -C 16 alkyl benzyl dimethyl ammonium chlorides, C 8 -C 16 dialkyl dimethyl ammonium chlories, C 8 -C 16 alkyl, C 8 -C 14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
- a disinfectant agent selected from the group consisting of C 8 -C 16 alkyl benzyl dimethyl ammonium chlorides, C 8 -C 16 dialkyl dimethyl ammonium chlories, C 8 -C 16 alkyl, C 8 -C 14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
- Some typical disinfectant agent useful in the instant compositions are manufactured by Lonza, S.A. They are: Bardac 2180 which is N-decyl-N-isonoxyl-N, N-dimethyl ammonium chloride; Bardac 22 which is didecyl dimethyl ammonium chloride; Bardac LF which is N,Ndioctyl-N, N-dimethyl ammonium chloride; Bardac 114 which is a mixture in a ratio of 1:1:1 of N-alkyl-N, N-didecyl-N, N-dimethyl ammonium chloride/N-alkyl-N, N-dimethyl-N-ethyl ammonium chloride; and Barquat MB-50 which is N-alkyl-N, N-dimethyl-N-benzyl ammonium chloride.
- the final essential ingredient in the inventive compositions having improved interfacial tension properties is water.
- the proportion of water in the compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight of the usual diluted o/w composition.
- compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
- the all-purpose liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
- Other components either to provide additional effect or to make the product more attractive to the consumer.
- Colors or dyes in amounts up to 0.5% by weight, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed.
- up to 4% by weight of an opacifier may be added.
- the all-purpose liquids are clear compositions and exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C. Such compositions exhibit a pH in the acid or neutral range depending on intended end use.
- the liquid compositions are readily pourable and exhibit a viscosity in the range of 6 to 60 milliPascal . second (mPas.) as measured at 25°C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 40 mPas.
- compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
- liquid compositions When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the socalled spray-and-wipe type of application.
- compositions as prepared are aqueous liquid formulations
- the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container.
- the order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
- alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
- compositions in wt. % were prepared by simple mixing procedure: A B C D E F G H Polyglycol nonionic EB95-0779 4 4 4 4 4 4 4 4 Polyglycol nonionic EB96-0843/1 1 1 1 1 1 1 1 1 1 1 Chlorohexidine diacetate 1.5 Chlorohexidine digluconate 1.5 Alkylamine 1.5 Didecyldimethyl ammonium chloride 1.5 50% Bardac 22 plus 50% Barquat MB-50 1.5 Bardac 2180 1.5 C 12 -C 16 alkyl dimethyl benzyl ammonium chloride 1.5 Perfume 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Tripropylene glycol N-butyl ether 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
- test protocol used to assess disinfection is the well known French AFNOR Norm 72-151 which uses four different strains of bacteria, a short contact time and calls for a bacteria count reduction of 5 log.
- the described invention broadly relates to an improved composition containing a nonionic surfactant and/or an ethoxylated glycerol type compound, a water soluble solvent, a hydrocarbon ingredient, a disinfectant agent and water.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Cleaning By Liquid Or Steam (AREA)
Claims (5)
- Composition comprenant :(a) comme agent tensio-actif total, 0,1 % en poids à 15 % en poids d'au moins un agent tensio-actif non ionique et/ou d'un mélange de : et où w est égal à 1 à 4, B est choisi dans la classe formée par un atome d'hydrogène ou un groupe représenté par : où R est choisi dans la classe formée par les groupes alkyle ayant 6 à 22 atomes de carbone et les groupes alcényle ayant 6 à 22 atomes de carbone, au moins l'un des groupes B étant représenté par ledit R' est choisi dans la classe formée par un atome d'hydrogène et un groupe méthyle ; x, y et z ont des valeurs comprises entre 0 et 60, à condition que (x+y+z) soit égal à 2 à 100, dans lequel le rapport monoester/diester/triester de Formule (I) est de 40 à 90/5 à 35/1 à 20, et le rapport de la Formule (I) à la Formule (II) est une valeur comprise entre 3 et 0,02 ;(b) 0,25 % en poids à 8 % en poids d'un agent désinfectant, l'agent désinfectant étant choisi dans la classe formée par un chlorure de (alkyle en C8-C16)benzyldiméthylammonium, un chlorure de di(alkyle en C8-C16) diméthylammonium et la chlorohexidine ;(c) 0 à 15 % en poids d'un solvant hydrosoluble ;(d) 0,1 % en poids à 1,0 % en poids d'un hydrocarbure insoluble dans l'eau, d'une huile essentielle ou d'un parfum ; et(e) le reste étant de l'eau, la composition ne contenant pas de silicates de métaux alcalins ni d'adjuvants de détergence contenant des métaux alcalins tels que des polyphosphates de métaux alcalins, des carbonates de métaux alcalins, des phosphonates de métaux alcalins et des citrates de métaux alcalins.
- Composition nettoyante selon la revendication 1, qui contient 0,5 à 15 % en poids dudit solvant hydrosoluble et 0,4 % à 0,8 % en poids dudit hydrocarbure, parfum ou huile essentielle.
- Composition nettoyante selon la revendication 1, dans laquelle le solvant est un éther de glycol hydrosoluble.
- Composition nettoyante selon la revendication 3, dans laquelle l'éther de glycol est choisi dans la classe formée par l'éther monobutylique d'éthylène-glycol, l'éther monobutylique de diéthylène-glycol, l'éther monobutylique de triéthylène-glycol, un polypropylène-glycol ayant un poids moléculaire moyen de 200 à 1000, l'éther tert-butylique de propylène-glycol, l'éther monobutylique de mono-, di-, tri-propylène-glycol.
- Composition nettoyante selon la revendication 4, dans laquelle l'éther de glycol est l'éther monobutylique d'éthylène-glycol ou l'éther monobutylique de diéthylène-glycol.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72947496A | 1996-10-11 | 1996-10-11 | |
US729474 | 1996-10-11 | ||
PCT/US1997/018292 WO1998016605A1 (fr) | 1996-10-11 | 1997-10-10 | Compositions de nettoyage liquide a usages multiples |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0934381A1 EP0934381A1 (fr) | 1999-08-11 |
EP0934381B1 true EP0934381B1 (fr) | 2003-01-08 |
Family
ID=24931206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97912698A Expired - Lifetime EP0934381B1 (fr) | 1996-10-11 | 1997-10-10 | Compositions de nettoyage liquide a usages multiples |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0934381B1 (fr) |
AT (1) | ATE230792T1 (fr) |
AU (1) | AU4981097A (fr) |
DE (1) | DE69718340D1 (fr) |
WO (1) | WO1998016605A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016369276B2 (en) * | 2015-12-10 | 2020-07-23 | The Clorox Company | Food contact surface sanitizing liquid |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT1045021E (pt) * | 1999-04-13 | 2004-05-31 | Kao Corp Sa | Composicao que inclui uma mistura de mono- di- e trigliceridos alcoxilados e glicerina |
US6130196A (en) * | 1999-06-29 | 2000-10-10 | Colgate-Palmolive Co. | Antimicrobial multi purpose containing a cationic surfactant |
CN1077914C (zh) * | 1999-09-27 | 2002-01-16 | 上海家化联合股份有限公司 | 一种空调器杀菌清洗剂 |
ES2213070T3 (es) * | 2000-02-17 | 2004-08-16 | BODE CHEMIE GMBH & CO. | Sistemas de limpieza y desinfeccion para instrumentos medicos. |
EP1162254A1 (fr) * | 2000-06-09 | 2001-12-12 | Clariant International Ltd. | Compositions de nettoyage liquides polyvalentes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420484A (en) * | 1979-08-13 | 1983-12-13 | Sterling Drug Inc. | Basic amino or ammonium antimicrobial agent-polyethylene glycol ester surfactant-betaine and/or amine oxide surfactant compositions and method of use therof |
EP0815194A1 (fr) * | 1995-02-23 | 1998-01-07 | Colgate-Palmolive Company | Composition liquide pour nettoyage courant comprenant une micro-emulsion |
US5866534A (en) * | 1995-06-12 | 1999-02-02 | Colgate-Palmolive Co. | Stable liquid cleaners containing pine oil |
US5707952A (en) * | 1996-04-24 | 1998-01-13 | Colgate-Palmolive Company | Thickened acid composition |
-
1997
- 1997-10-10 EP EP97912698A patent/EP0934381B1/fr not_active Expired - Lifetime
- 1997-10-10 AU AU49810/97A patent/AU4981097A/en not_active Abandoned
- 1997-10-10 DE DE69718340T patent/DE69718340D1/de not_active Expired - Lifetime
- 1997-10-10 AT AT97912698T patent/ATE230792T1/de not_active IP Right Cessation
- 1997-10-10 WO PCT/US1997/018292 patent/WO1998016605A1/fr active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016369276B2 (en) * | 2015-12-10 | 2020-07-23 | The Clorox Company | Food contact surface sanitizing liquid |
Also Published As
Publication number | Publication date |
---|---|
AU4981097A (en) | 1998-05-11 |
EP0934381A1 (fr) | 1999-08-11 |
ATE230792T1 (de) | 2003-01-15 |
WO1998016605A1 (fr) | 1998-04-23 |
DE69718340D1 (de) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6080706A (en) | All Purpose liquid cleaning compositions | |
US5911915A (en) | Antimicrobial multi purpose microemulsion | |
US6387866B1 (en) | Antimicrobial multi purpose containing a cationic surfactant | |
US6121224A (en) | Antimicrobial multi purpose microemulsion containing a cationic surfactant | |
US6096701A (en) | Antimicrobial multi purpose containing a cationic surfactant | |
US6632784B2 (en) | Acidic all purpose liquid cleaning compositions | |
US5948743A (en) | Sprayable cleaning composition comprising acaricidal agent | |
US5939376A (en) | Liquid cleaning compositions containing an organic ester foam control agent | |
US6380152B1 (en) | Antibacterial cleaning wipe comprising triclosan | |
US6346508B1 (en) | Acidic all purpose liquid cleaning compositions | |
US6462010B1 (en) | All purpose liquid cleaning compositions comprising solubilizers | |
US6281182B1 (en) | Acidic cleaning composition comprising a glycol ether mixture | |
US5840676A (en) | Microemulsion light duty liquid cleaning compositions | |
US6043208A (en) | All purpose liquid cleaning compositions | |
US6645929B2 (en) | Cleaning composition | |
US6022839A (en) | All purpose liquid cleaning compositions | |
US6071873A (en) | Liquid cleaning compositions containing a methyl ethoxylated ester | |
US6177394B1 (en) | All purpose liquid cleaning compositions | |
US6319887B1 (en) | Liquid cleaning compositions containing a methyl ethoxylated ester | |
US5858955A (en) | Cleaning compositions containing amine oxide and formic acid | |
US5851971A (en) | Liquid cleaning compositions | |
EP0934381B1 (fr) | Compositions de nettoyage liquide a usages multiples | |
US6475973B1 (en) | Dual phase cleaning composition | |
EP1194517A1 (fr) | Microemulsion antimicrobienne multi-usage contenant un tensio-actif cationique | |
US6156717A (en) | Light duty liquid cleaning composition comprising an ethoxylated methyl ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990401 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: RO PAYMENT 19990401 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LAMBREMONT, YVES Inventor name: BLANVALET, CLAUDE |
|
17Q | First examination report despatched |
Effective date: 20010626 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: RO PAYMENT 19990401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030108 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030108 |
|
REF | Corresponds to: |
Ref document number: 230792 Country of ref document: AT Date of ref document: 20030115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69718340 Country of ref document: DE Date of ref document: 20030213 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030408 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030408 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030409 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031010 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031010 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
EN | Fr: translation not filed | ||
26N | No opposition filed |
Effective date: 20031009 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031010 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |