EP0934381A1 - Compositions de nettoyage liquide a usages multiples - Google Patents

Compositions de nettoyage liquide a usages multiples

Info

Publication number
EP0934381A1
EP0934381A1 EP97912698A EP97912698A EP0934381A1 EP 0934381 A1 EP0934381 A1 EP 0934381A1 EP 97912698 A EP97912698 A EP 97912698A EP 97912698 A EP97912698 A EP 97912698A EP 0934381 A1 EP0934381 A1 EP 0934381A1
Authority
EP
European Patent Office
Prior art keywords
ether
group
glycol
cleaning composition
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97912698A
Other languages
German (de)
English (en)
Other versions
EP0934381B1 (fr
Inventor
Claude Blanvalet
Yves Lambremont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of EP0934381A1 publication Critical patent/EP0934381A1/fr
Application granted granted Critical
Publication of EP0934381B1 publication Critical patent/EP0934381B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups

Definitions

  • British Patent No 1 ,453,385 discloses polyesterified nonionic surfactants similar to the polyesterified nonionic surfactants of the instant invention. However, these nonionic surfactants of British Patent 1 ,453,385 do not disclose the formula (II) portion of the instant composition. Additionally, the formulated compositions of British Patent 1 ,453,385 fail to disclose the critical limitations of the instant invention.
  • the invention generally provides a stable, clear all-purpose, hard surface cleaning composition especially effective in disinfecting the surface being cleaned and in the removal of oily and greasy oil.
  • the composition includes, on a weight basis: from 0.1 % to 20% of at least nonionic surfactant and/or a mixture of a partially esterified ethoxylated polyhydric alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound); 0 to 15% of a water soluble solvent 0.4% to 1.0% of a perfume or water insoluble hydrocarbon;
  • the present invention relates to a stable hard surface cleaning composition by weight: 0.1 % to 20% of a nonionic surfactant and/or an ethoxylated glycerol type compound, 0 to 15% of a water soluble solvent; 0.1 % to 1.0% of a water insoluble organic compound, essential oil, or a perfume, 0.25% to 8% of a disinfectant agent and the balance being water.
  • perfume is used in its ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances.
  • perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
  • the precise composition of the perfume is of no particular consequence to cleaning performance so long as it meets the criteria of water immiscibility and having a pleasing odor.
  • the perfume, as well as all other ingredients should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc..
  • compositions show a marked improvement in ecotoxocity as compared to existing commercial products when mixture of a partially esterified ethoxylated polyhydric alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound) are used as the nonionic detergent.
  • the water insoluble organic compound, essential oil or perfume is present in the composition in an amount of from 0.1 % to 1.0% by weight, preferably from 0.4% to 0.8% by weight, especially preferably from 0.5% to 0.6% by weight, such as weight percent.
  • the water insoluble saturated or unsaturated organic compound is selected from the group consisting of water insoluble hydrocarbons containing a cycloalkyl group having 5 to 10 carbon atoms, wherein the alkyl or cycloalkyl group can be saturated or unsaturated and the cycloalkyl group can have one or more saturated or unsaturated alkyl groups having 1 to 20 carbon atoms affixed to the alkyl or cycloalkyl group and one or more halogens, alcohols, nitro or ester group substituted on the cycloalkyl group or alkyl group; aromatic hydrocarbons; water insoluble ethers; water insoluble carboxylic acids, water insoluble alcohols, water insoluble amines, water insoluble esters, nitropropane, 2,5dimethylhydrofuran, 2-ethyl2-methyl 1 ,3dioxolane, 3-ethyl 4-propyl tetrahydropyran, N-isopropyl morpholine, alpha
  • Typical hydrocarbons are cyclohexyl-ldecane, methyl-3 cyclohexyl-9 nonane, methyl-3 cyclohexyl-6 nononane, dimethyl cycloheplane, t methyl cyclopentane, ethyl- 2 isopropyl-4 cyclohexane.
  • Typical aromatic hydrocarbons are bromotoluene, diethyl benzene, cyclohexyl bromoxylene, ethyl-3 pentyl-4 toluene, tetrahydronaphthalene, nitrobenzene, and methyl naphthalene.
  • Typical water insoluble esters are benzyl acetate, dicyclopentadienylacetate, isononyl acetate, isobornyl acetate and isobutyl isobutyrate.
  • Typical water insoluble ethers are di(alphamethyl benzyl) ether, and diphenyl ether.
  • a typical alcohol is phenoxyethanol.
  • a typical water insoluble nitro derivative is nitro propane.
  • Suitable essential oils are selected from the group consisting of: Anethole 20/21 natural, Aniseed oil china star, Aniseed oil globe brand, Balsam (Peru), Basil oil (India), Black pepper oil, Black pepper oleoresin 40/20, Bois de Rose (Brazil) FOB, Borneol Flakes (China), Camphor oil, White, Camphor powder synthetic technical, Cananga oil (Java), Cardamom oil, Cassia oil (China), Cedarwood oil (China) BP, Cinnamon bark oil, Cinnamon leaf oil, Citronella oil, Clove bud oil, Clove leaf,
  • the water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
  • the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
  • any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myhstyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, my styl alcohol condensed with 10 moles of EO per mole of myhstyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
  • a higher alcohol e.g., an alkanol containing 8 to 18
  • Neodol ethoxylates which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as Cg-C-i i alkanol condensed with 7 to 10 moles of ethylene oxide
  • Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type are C-
  • nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
  • alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and di- isoctylphenol condensed with 15 moles of EO per mole of phenol.
  • nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
  • nonionic detergents are the water-soluble condensation products of a C ⁇ -C2o alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1 , preferably 2.8:1 to 3.3:1 , with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight.
  • Such detergents are commercially available from BASF- Wyandotte and a particularly preferred detergent is a C ⁇ o- -
  • Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri- C10- 20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition.
  • These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
  • Suitable water-soluble nonionic detergents are marketed under the trade name "Pluronics.”
  • the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500.
  • the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble.
  • the molecular weight of the block polymers varies from 1 ,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight.
  • these surfactants will be in liquid form and satisfactory surfactants are available as grades L 62 and L 64.
  • the instant composition can contain alone or in combination with the at least one nonionic surfactant a composition (herein after referred to as ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is f "
  • ethoxylated glycerol type compound which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is f "
  • B is selected from the group consisting of hydrogen or a group represented by:
  • R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 1 1 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said
  • R' is selected from the group consisting of hydrogen and methyl groups;
  • x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the ratio of monoester / diester / t ester is 45 to 90 / 5 to 40 / 1 to 20, more preferably 50 to 90 / 9 to 32 / 1 to 12, wherein the ratio of Formula (I) to Formula (II) is a value between 3 to 0.02, preferably 3 to 0.1 , most preferably 1.5 to 0.2, wherein it is most preferred that there is more of Formula (II) than Formula (I) in the mixture that forms the compound.
  • the ethoxylated glycerol type compound used in the instant composition is manufactured by the Kao Corporation and sold under the trade name Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0.
  • the ethoxylated glycerol type compound has a molecular weight of 400 to 1600, and a pH (50 grams / liter of water) of 5-7.
  • the Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than 90% as measured by the Wickbold method Bias-7d.
  • Levenol V-501/2 Two examples of the Levenol compounds are Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465 and Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55.
  • Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II).
  • the Levenol compounds has ecoxicity values of algae growth inhibition > 100 mg/liter; acute toxicity for Daphniae > 100 mg/liter and acute fish toxicity > 100 mg/liter.
  • the Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301 B measurement to be acceptably biodegradable.
  • Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands.
  • Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyce de which has 12 EO groups.
  • Crovol PK-70 which is prefered is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups.
  • Nonionic compounds are highly suitable, some of them do not deliver the right foam control and / or low enough ecotoxicity value. This is the reason why the present compositions can incorporate new nonionic type of surfactant which deliver outstanding foam control and very good ecotoxicity value.
  • Both Ni's are produced by DOW chemical which chemical structure is shown below. Their development name are Polyglycol EB95-0779 and EB-0843/1.
  • the major class of compounds found to provide highly suitable water soluble solvent for the composition are water-soluble polyethylene glycols having a molecular weight of 150 to 1000, polypropylene glycol of the formula HO(CH3CHCH2O) n H wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropyl glycol (Synalox) and mono and di C1 -C6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X) n OH Ri (X)nOH R(X)nOR and R1 (X)nOR ⁇ wherein R is Ci -CQ alkyl group, Ri is C2-C4 acyl group, X is (OCH2CH2) or (OCH2(CH3)CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate, wherein the alkyl group has 1 to 6 carbon atoms, 1 methoxy-2- propano
  • Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 150 to 1000, e.g., polypropylene glycol 400.
  • Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
  • glycol type water soluble solvents are at a concentration of 1.0 to 14 weight %, more preferably 2.0 weight % to 10 %. While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), is tripropylene glycol monobutyl ether Generally, amounts of water soluble solvents in the range of from 0 to 15%, preferably from 1 wt. % to 12 wt. % provide stable compositions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
  • compositions contain 0.25 to 8 wt. %, more preferably 0.5 to 6 wt. % of a disinfectant agent selected from the group consisting of Cs-Ci 6 alkyl amines, Cs- Ci 6 alkyl benzyl dimethyl ammonium chlorides, C8-C 6 dialkyl dimethyl ammonium chlories, C8-C16 alkyl, C8-C14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
  • a disinfectant agent selected from the group consisting of Cs-Ci 6 alkyl amines, Cs- Ci 6 alkyl benzyl dimethyl ammonium chlorides, C8-C 6 dialkyl dimethyl ammonium chlories, C8-C16 alkyl, C8-C14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
  • Some typical disinfectant agent useful in the instant compositions are manufactured by Lonza, S. A. They are: Bardac 2180 which is N-decyl-N-isonoxyl-N, N-dimethyl ammonium chloride; Bardac 22 which is didecyl dimethyl ammonium chloride; Bardac LF which is N,Ndioctyl-N, N-dimethyl ammonium chloride; Bardac 1 14 which is a mixture in a ratio of 1 :1 :1 of N-alkyl-N, N-didecyl-N, N-dimethyl ammonium chloride/N-alkyl-N, N-dimethyl-N-ethyl ammonium chloride; and Barquat MB-50 which is N-alkyl-N, N-dimethyl-N-benzyl ammonium chloride.
  • the final essential ingredient in the inventive compositions having improved interfacial tension properties is water.
  • the proportion of water in the compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight of the usual diluted o/w composition.
  • the compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
  • the all-purpose liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
  • Other components either to provide additional effect or to make the product more attractive to the consumer.
  • Colors or dyes in amounts up to 0.5% by weight, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed.
  • up to 4% by weight of an opacifier may be added.
  • the all-purpose liquids are clear compositions and exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C. Such compositions exhibit a pH in the acid or neutral range depending on intended end use.
  • the liquid compositions are readiiy pourable and exhibit a viscosity in the range of 6 to 60 milliPascal . second (mPas.) as measured at 25°C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 40 mPas.
  • compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
  • liquid compositions When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the so- called spray-and-wipe type of application.
  • compositions as prepared are aqueous liquid formulations
  • the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container.
  • the order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
  • alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
  • Example 1 The following compositions in wt. % were prepared by simple mixing procedure:
  • test protocol used to assess disinfection is the well known French AFNOR Norm 72-151 which uses four different strains of bacteria, a short contact time and calls for a bacteria count reduction of 5 log.
  • the described invention broadly relates to an improved composition containing a nonionic surfactant and/or an ethoxylated glycerol type compound, a water soluble solvent, a hydrocarbon ingredient, a disinfectant agent and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cleaning By Liquid Or Steam (AREA)
EP97912698A 1996-10-11 1997-10-10 Compositions de nettoyage liquide a usages multiples Expired - Lifetime EP0934381B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72947496A 1996-10-11 1996-10-11
US729474 1996-10-11
PCT/US1997/018292 WO1998016605A1 (fr) 1996-10-11 1997-10-10 Compositions de nettoyage liquide a usages multiples

Publications (2)

Publication Number Publication Date
EP0934381A1 true EP0934381A1 (fr) 1999-08-11
EP0934381B1 EP0934381B1 (fr) 2003-01-08

Family

ID=24931206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97912698A Expired - Lifetime EP0934381B1 (fr) 1996-10-11 1997-10-10 Compositions de nettoyage liquide a usages multiples

Country Status (5)

Country Link
EP (1) EP0934381B1 (fr)
AT (1) ATE230792T1 (fr)
AU (1) AU4981097A (fr)
DE (1) DE69718340D1 (fr)
WO (1) WO1998016605A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099964A1 (fr) 2015-12-10 2017-06-15 The Clorox Company Liquide de désinfection d'une surface en contact avec les aliments

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69913934T2 (de) * 1999-04-13 2004-11-04 Kao Corp., S.A. Zusammensetzung enthaltend eine Mischung von Glycerin und alkoxylierten Mono-, Di- und Triglyceride
US6130196A (en) * 1999-06-29 2000-10-10 Colgate-Palmolive Co. Antimicrobial multi purpose containing a cationic surfactant
CN1077914C (zh) * 1999-09-27 2002-01-16 上海家化联合股份有限公司 一种空调器杀菌清洗剂
EP1126014B1 (fr) * 2000-02-17 2004-01-28 Bode Chemie GmbH & Co. Systèmes détergents et désinfectants pour instruments médicaux
EP1162254A1 (fr) * 2000-06-09 2001-12-12 Clariant International Ltd. Compositions de nettoyage liquides polyvalentes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420484A (en) * 1979-08-13 1983-12-13 Sterling Drug Inc. Basic amino or ammonium antimicrobial agent-polyethylene glycol ester surfactant-betaine and/or amine oxide surfactant compositions and method of use therof
EP0815194A1 (fr) * 1995-02-23 1998-01-07 Colgate-Palmolive Company Composition liquide pour nettoyage courant comprenant une micro-emulsion
US5866534A (en) * 1995-06-12 1999-02-02 Colgate-Palmolive Co. Stable liquid cleaners containing pine oil
US5707952A (en) * 1996-04-24 1998-01-13 Colgate-Palmolive Company Thickened acid composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9816605A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099964A1 (fr) 2015-12-10 2017-06-15 The Clorox Company Liquide de désinfection d'une surface en contact avec les aliments
EP3387099A4 (fr) * 2015-12-10 2019-07-10 The Clorox Company Liquide de désinfection d'une surface en contact avec les aliments
US11147269B2 (en) 2015-12-10 2021-10-19 The Clorox Company Food contact surface sanitizing liquid
US11147268B2 (en) 2015-12-10 2021-10-19 The Clorox Company Food contact surface sanitizing liquid

Also Published As

Publication number Publication date
DE69718340D1 (de) 2003-02-13
EP0934381B1 (fr) 2003-01-08
AU4981097A (en) 1998-05-11
WO1998016605A1 (fr) 1998-04-23
ATE230792T1 (de) 2003-01-15

Similar Documents

Publication Publication Date Title
US5911915A (en) Antimicrobial multi purpose microemulsion
US6080706A (en) All Purpose liquid cleaning compositions
US6387866B1 (en) Antimicrobial multi purpose containing a cationic surfactant
US6121224A (en) Antimicrobial multi purpose microemulsion containing a cationic surfactant
US6096701A (en) Antimicrobial multi purpose containing a cationic surfactant
US6632784B2 (en) Acidic all purpose liquid cleaning compositions
US5939376A (en) Liquid cleaning compositions containing an organic ester foam control agent
US5948743A (en) Sprayable cleaning composition comprising acaricidal agent
US6380152B1 (en) Antibacterial cleaning wipe comprising triclosan
US6346508B1 (en) Acidic all purpose liquid cleaning compositions
US5912223A (en) Microemulsion light duty liquid cleaning compositions
US6281182B1 (en) Acidic cleaning composition comprising a glycol ether mixture
US5840676A (en) Microemulsion light duty liquid cleaning compositions
WO2003060050A1 (fr) Compositions de nettoyage liquides polyvalentes
US6043208A (en) All purpose liquid cleaning compositions
US6645929B2 (en) Cleaning composition
US6022839A (en) All purpose liquid cleaning compositions
US6071873A (en) Liquid cleaning compositions containing a methyl ethoxylated ester
US6177394B1 (en) All purpose liquid cleaning compositions
US5858955A (en) Cleaning compositions containing amine oxide and formic acid
US6319887B1 (en) Liquid cleaning compositions containing a methyl ethoxylated ester
US5851971A (en) Liquid cleaning compositions
EP0934381B1 (fr) Compositions de nettoyage liquide a usages multiples
US6475973B1 (en) Dual phase cleaning composition
WO2001000777A1 (fr) Microemulsion antimicrobienne multi-usage contenant un tensio-actif cationique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 19990401

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAMBREMONT, YVES

Inventor name: BLANVALET, CLAUDE

17Q First examination report despatched

Effective date: 20010626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

REF Corresponds to:

Ref document number: 230792

Country of ref document: AT

Date of ref document: 20030115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69718340

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031010

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20031009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031010

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A