EP0934381B1 - All purpose liquid cleaning compositions - Google Patents

All purpose liquid cleaning compositions Download PDF

Info

Publication number
EP0934381B1
EP0934381B1 EP97912698A EP97912698A EP0934381B1 EP 0934381 B1 EP0934381 B1 EP 0934381B1 EP 97912698 A EP97912698 A EP 97912698A EP 97912698 A EP97912698 A EP 97912698A EP 0934381 B1 EP0934381 B1 EP 0934381B1
Authority
EP
European Patent Office
Prior art keywords
ether
alkali metal
group
glycol
monobutyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97912698A
Other languages
German (de)
French (fr)
Other versions
EP0934381A1 (en
Inventor
Claude Blanvalet
Yves Lambremont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of EP0934381A1 publication Critical patent/EP0934381A1/en
Application granted granted Critical
Publication of EP0934381B1 publication Critical patent/EP0934381B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2068Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups

Definitions

  • British Patent No 1,453,385 discloses polyesterified nonionic surfactants similar to the polyesterified nonionic surfactants of the instant invention. However, these nonionic surfactants of British Patent 1,453,385 do not disclose the formula (II) portion of the instant composition. Additionally, the formulated compositions of British Patent 1,453,385 fail to disclose the critical limitations of the instant invention.
  • the invention generally provides a stable, clear all-purpose, hard surface cleaning composition especially effective in disinfecting the surface being cleaned and in the removal of oily and greasy soil.
  • the composition includes, on a weight basis:
  • the present invention relates to a stable hard surface cleaning composition by weight: as total surfactant 0.1% to 15% of a nonionic surfactant and/or an ethoxylated glycerol type compound, 0 to 15% of a water soluble solvent; 0.1% to 1.0% of a water insoluble organic compound, essential oil, or a perfume, 0.25% to 8% of a disinfectant agent and the balance being water wherein the composition does not contain any alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates.
  • perfume is used in its ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances.
  • perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
  • the precise composition of the perfume is of no particular consequence to cleaning performance so long as it meets the criteria of water immiscibility and having a pleasing odor.
  • the perfume, as well as all other ingredients should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc..
  • compositions show a marked improvement in ecotoxicity as compared to existing commercial products when mixture of a partially esterified ethoxylated polyhydnc alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound) are used as the nonionic detergent.
  • the water insoluble organic compound, essential oil or perfume is present in the composition in an amount of from 0.1 % to 1.0% by weight, preferably from 0.4% to 0.8% by weight, especially preferably from 0.5% to 0.6% by weight, such as weight percent.
  • the water insoluble saturated or unsaturated organic compound is selected from the group consisting of water insoluble hydrocarbons containing a cycloalkyl group having 5 to 10 carbon atoms, wherein the alkyl or cycloalkyl group can be saturated or unsaturated and the cycloalkyl group can have one or more saturated or unsaturated alkyl groups having 1 to 20 carbon atoms affixed to the alkyl or cycloalkyl group and one or more halogens, alcohols, nitro or ester group substituted on the cycloalkyl group or alkyl group; aromatic hydrocarbons; water insoluble ethers; water insoluble carboxylic acids, water insoluble alcohols, water insoluble amines, water insoluble esters, nitropropane.
  • Typical aromatic hydrocarbons are bromotoluene, diethyl benzene, cyclohexyl bromoxylene, ethyl-3 pentyl-4 toluene, tetrahydronaphthalene, nitrobenzene, and methyl naphthalene.
  • Typical water insoluble esters are benzyl acetate, dicyclopentadienylacetate, isononyl acetate, isobornyl acetate and isobutyl isobutyrate.
  • Typical water insoluble ethers are di(alphamethyl benzyl) ether, and diphenyl ether.
  • a typical alcohol is phenoxyethanol.
  • a typical water insoluble nitro derivative is nitro propane.
  • Suitable essential oils are selected from the group consisting of:
  • the at least one nonionic surfactant is present in amounts of 0.1 % to 15%, preferably 1% to 12% by weight of the composition and provides superior performance in the removal of oily soil and mildness to human skin.
  • the water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
  • the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
  • any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
  • a higher alcohol e.g., an alkanol containing 8 to
  • Neodol ethoxylates which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as C 9 -C 11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12), C 14-15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like.
  • Neodol ethoxylates such as C 9 -C 11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C 12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C 12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25
  • Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emutsifiers and poor detergents.
  • HLB hydrophobic lipophilic balance
  • Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type are C 11 -C 15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO (Tergitol 15-S-12) marketed by Union Carbide.
  • nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
  • alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and diisoctylphenol condensed with 15 moles of EO per mole of phenol.
  • nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
  • nonionic detergents are the water-soluble condensation products of a C 8 -C 20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1, preferably 2.8:1 to 3.3:1, with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight.
  • Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C 10 -C 16 alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being 3:1 and the total alkoxy content being 75% by weight.
  • Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C 10 -C 20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition.
  • These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
  • Suitable water-soluble nonionic detergents are marketed under the trade name "Pluronics.”
  • the compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500.
  • the addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble.
  • the molecular weight of the block polymers varies from 1,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight.
  • these surfactants will be in liquid form and satisfactory surfactants are available as grades L 62 and L 64.
  • the instant composition can contain alone or in combination with the at least one nonionic surfactant a composition (herein after referred to as ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is and wherein w equals one to four, most preferably one.
  • ethoxylated glycerol type compound which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is and wherein w equals one to four, most preferably one.
  • B is selected from the group consisting of hydrogen or a group represented by: wherein R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said and R' is selected from the group consisting of hydrogen and methyl groups; x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the ratio of monoester / diester / triester is 45 to 90 / 5 to 40/1 1 to 20, more preferably 50 to 90 / 9 to 32/1 to 12, wherein the ratio of Formula (I) to Formula (II) is a value between
  • the ethoxylated glycerol type compound used in the instant composition is manufactured by the Kao Corporation and sold under the trade name Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0.
  • the ethoxylated glycerol type compound has a molecular weight of 400 to 1600, and a pH (50 grams / liter of water) of 5-7.
  • the Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than 90% as measured by the Wickbold method Bias-7d.
  • Levenol V-501/2 Two examples of the Levenol compounds are Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465 and Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55.
  • Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II).
  • the Levenol compounds has ecoxicity values of algae growth inhibition > 100 mg/liter; acute toxicity for Daphniae > 100 mg/liter and acute fish toxicity > 100 mg/liter.
  • the Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301B measurement to be acceptably biodegradable.
  • Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands.
  • Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyceride which has 12 EO groups.
  • Crovol PK-70 which is prefered is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups.
  • Nonionic compounds are highly suitable, some of them do not deliver the right foam control and / or low enough ecotoxicity value. This is the reason why the present compositions can incorporate new nonionic type of surfactant which deliver outstanding foam control and very good ecotoxicity value.
  • Both Ni's are produced by DOW chemical which chemical structure is shown below. Their development name are Polyglycol EB95-0779 and EB-0843/1.
  • the major class of compounds found to provide highly suitable water soluble solvent for the composition are water-soluble polyethylene glycols having a molecular weight of 150 to 1000, polypropylene glycol of the formula HO(CH 3 CHCH 2 O) n H wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropyl glycol (Synalox) and mono and di C 1 -C 6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X) n OH R 1 (X) n OH R(X) n OR and R 1 (X) n OR 1 wherein R is C 1 -C 6 alkyl group, R 1 is C2-C4 acyl group, X is (OCH 2 CH 2 ) or (OCH 2 (CH 3 )CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate, wherein the alkyl group has 1 to 6 carbon atom
  • Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 150 to 1000, e.g., polypropylene glycol 400.
  • Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol mono
  • glycol type water soluble solvents are at a concentration of 1.0 to 14 weight %, more preferably 2.0 weight % to 10 %. While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), is tripropylene glycol monobutyl ether Generally, amounts of water soluble solvents in the range of from 0 to 15%, preferably from 1 wt. % to 12 wt. % provide stable compositions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
  • compositions contain 0.25 to 8 wt. %, more preferably 0.5 to 6 wt. % of a disinfectant agent selected from the group consisting of C 8 -C 16 alkyl benzyl dimethyl ammonium chlorides, C 8 -C 16 dialkyl dimethyl ammonium chlories, C 8 -C 16 alkyl, C 8 -C 14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
  • a disinfectant agent selected from the group consisting of C 8 -C 16 alkyl benzyl dimethyl ammonium chlorides, C 8 -C 16 dialkyl dimethyl ammonium chlories, C 8 -C 16 alkyl, C 8 -C 14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
  • Some typical disinfectant agent useful in the instant compositions are manufactured by Lonza, S.A. They are: Bardac 2180 which is N-decyl-N-isonoxyl-N, N-dimethyl ammonium chloride; Bardac 22 which is didecyl dimethyl ammonium chloride; Bardac LF which is N,Ndioctyl-N, N-dimethyl ammonium chloride; Bardac 114 which is a mixture in a ratio of 1:1:1 of N-alkyl-N, N-didecyl-N, N-dimethyl ammonium chloride/N-alkyl-N, N-dimethyl-N-ethyl ammonium chloride; and Barquat MB-50 which is N-alkyl-N, N-dimethyl-N-benzyl ammonium chloride.
  • the final essential ingredient in the inventive compositions having improved interfacial tension properties is water.
  • the proportion of water in the compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight of the usual diluted o/w composition.
  • compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
  • the all-purpose liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer.
  • Other components either to provide additional effect or to make the product more attractive to the consumer.
  • Colors or dyes in amounts up to 0.5% by weight, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed.
  • up to 4% by weight of an opacifier may be added.
  • the all-purpose liquids are clear compositions and exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C. Such compositions exhibit a pH in the acid or neutral range depending on intended end use.
  • the liquid compositions are readily pourable and exhibit a viscosity in the range of 6 to 60 milliPascal . second (mPas.) as measured at 25°C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 40 mPas.
  • compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
  • liquid compositions When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the socalled spray-and-wipe type of application.
  • compositions as prepared are aqueous liquid formulations
  • the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container.
  • the order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
  • alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
  • compositions in wt. % were prepared by simple mixing procedure: A B C D E F G H Polyglycol nonionic EB95-0779 4 4 4 4 4 4 4 4 Polyglycol nonionic EB96-0843/1 1 1 1 1 1 1 1 1 1 1 Chlorohexidine diacetate 1.5 Chlorohexidine digluconate 1.5 Alkylamine 1.5 Didecyldimethyl ammonium chloride 1.5 50% Bardac 22 plus 50% Barquat MB-50 1.5 Bardac 2180 1.5 C 12 -C 16 alkyl dimethyl benzyl ammonium chloride 1.5 Perfume 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Tripropylene glycol N-butyl ether 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
  • test protocol used to assess disinfection is the well known French AFNOR Norm 72-151 which uses four different strains of bacteria, a short contact time and calls for a bacteria count reduction of 5 log.
  • the described invention broadly relates to an improved composition containing a nonionic surfactant and/or an ethoxylated glycerol type compound, a water soluble solvent, a hydrocarbon ingredient, a disinfectant agent and water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

An improvement is described in compositions which is especially effective in disinfecting the surface being cleaned and in the removal of oily and greasy soil which contains at least one nonionic surfactant and/or an ethoxylated glycerol type compound, a hydrocarbon ingredient, a water soluble solvent, a bactericide and water.

Description

Background Of The Invention
British Patent No 1,453,385 discloses polyesterified nonionic surfactants similar to the polyesterified nonionic surfactants of the instant invention. However, these nonionic surfactants of British Patent 1,453,385 do not disclose the formula (II) portion of the instant composition. Additionally, the formulated compositions of British Patent 1,453,385 fail to disclose the critical limitations of the instant invention.
A number of patents teach esterified ethoxylated glycerol compounds for various applications. These patents are Great Britain 1,453,385; Japan 59-1600 and Japan 58-206693 and European Patent Application 0586,323A1. These publications fail to appreciate that a mixture of esterified ethoxylated glycerol and nonesterified ethoxylated glycerol, when used in a hard surface cleaning composition, functions as a grease release agent.
Summary of the Invention
In one aspect, the invention generally provides a stable, clear all-purpose, hard surface cleaning composition especially effective in disinfecting the surface being cleaned and in the removal of oily and greasy soil. The composition includes, on a weight basis:
  • as total surfactant from 0.1% to 15% of at least one nonionic surfactant and/or a mixture of a partially esterified ethoxylated polyhydric alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound);
  • 0 to 15% of a water soluble solvent
  • 0.1% to 1.0% of a perfume or water insoluble hydrocarbon;
  • 0.25% to 8% of a disinfectant agent; and
  • the balance of water, (said proportions being based upon the total weight of the composition), wherein the composition does not contain any alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates.
  • Detailed Description of the Invention
    The present invention relates to a stable hard surface cleaning composition by weight: as total surfactant 0.1% to 15% of a nonionic surfactant and/or an ethoxylated glycerol type compound, 0 to 15% of a water soluble solvent; 0.1% to 1.0% of a water insoluble organic compound, essential oil, or a perfume, 0.25% to 8% of a disinfectant agent and the balance being water wherein the composition does not contain any alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates.
    As used herein and in the appended claims the term "perfume" is used in its ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances. Typically, perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
    In the present invention the precise composition of the perfume is of no particular consequence to cleaning performance so long as it meets the criteria of water immiscibility and having a pleasing odor. Naturally, of course, especially for cleaning compositions intended for use in the home, the perfume, as well as all other ingredients, should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc.. The instant compositions show a marked improvement in ecotoxicity as compared to existing commercial products when mixture of a partially esterified ethoxylated polyhydnc alcohol, a fully esterified ethoxylated polyhydric alcohol, and a nonesterified polyhydric alcohol (said mixture being herein after referred to as an ethoxylated glycerol type compound) are used as the nonionic detergent.
    The water insoluble organic compound, essential oil or perfume is present in the composition in an amount of from 0.1 % to 1.0% by weight, preferably from 0.4% to 0.8% by weight, especially preferably from 0.5% to 0.6% by weight, such as weight percent.
    Furthermore, although superior grease removal performance will be achieved for perfume compositions not containing any terpene solvents, it is apparently difficult for perfumers to formulate sufficiently inexpensive perfume compositions for products of this type (i.e., very cost sensitive consumer-type products) which includes less than 20%, usually less than 30%, of such terpene solvents.
    The water insoluble saturated or unsaturated organic compound is selected from the group consisting of water insoluble hydrocarbons containing a cycloalkyl group having 5 to 10 carbon atoms, wherein the alkyl or cycloalkyl group can be saturated or unsaturated and the cycloalkyl group can have one or more saturated or unsaturated alkyl groups having 1 to 20 carbon atoms affixed to the alkyl or cycloalkyl group and one or more halogens, alcohols, nitro or ester group substituted on the cycloalkyl group or alkyl group; aromatic hydrocarbons; water insoluble ethers; water insoluble carboxylic acids, water insoluble alcohols, water insoluble amines, water insoluble esters, nitropropane. 2,5dimethylhydrofuran, 2-ethyl2-methyl 1,3dioxolane, 3-ethyl 4-propyl tetrahydropyran, N-isopropyl morpholine, alpha-methyl benzyldimethylamine, methyl chloraform and methyl perchlorapropane, and mixtures thereof. Typical hydrocarbons are cyclohexyl-1 decane, methyl-3 cyclohexyl-9 nonane, methyl-3 cyclohexyl-6 nononane, dimethyl cycloheplane, trimethyl cyclopentane, ethyl-2 isopropyl-4 cyclohexane. Typical aromatic hydrocarbons are bromotoluene, diethyl benzene, cyclohexyl bromoxylene, ethyl-3 pentyl-4 toluene, tetrahydronaphthalene, nitrobenzene, and methyl naphthalene. Typical water insoluble esters are benzyl acetate, dicyclopentadienylacetate, isononyl acetate, isobornyl acetate and isobutyl isobutyrate. Typical water insoluble ethers are di(alphamethyl benzyl) ether, and diphenyl ether. A typical alcohol is phenoxyethanol. A typical water insoluble nitro derivative is nitro propane.
    Suitable essential oils are selected from the group consisting of:
  • Anethole 20/21 natural, Aniseed oil china star, Aniseed oil globe brand, Balsam (Peru), Basil oil (India), Black pepper oil, Black pepper oleoresin 40/20, Bois de Rose (Brazil) FOB, Borneol Flakes (China), Camphor oil, White, Camphor powder synthetic technical, Cananga oil (Java), Cardamom oil, Cassia oil (China), Cedarwood oil (China) BP, Cinnamon bark oil, Cinnamon leaf oil, Citronella oil, Clove bud oil, Clove leaf, Coriander (Russia), Coumarin 69°C (China), Cyclamen Aldehyde, Diphenyl oxide, Ethyl vanilin, Eucalyptol, Eucalyptus oil, Eucalyptus citriodora, Fennel oil, Geranium oil, Ginger oil, Ginger oleoresin (India), White grapefruit oil, Guaiacwood oil, Gurjun balsam, Heliotropin, Isobornyl acetate, Isolongifolene, Juniper berry oil, L-methyl acetate, Lavender oil, Lemon oil, Lemongrass oil, Lime oil distilled, Litsea Cubeba oil, Longifolene, Menthol crystals, Methyl cedryl ketone, Methyl chavicol, Methyl salicylate, Musk ambrette, Musk ketone, Musk xylol, Nutmeg oil, Orange oil, Patchouli oil, Peppermint oil, Phenyl ethyl alcohol, Pimento berry oil, Pimento leaf oil, Rosalin, Sandalwood oil, Sandenol, Sage oil, Clary sage, Sassafras oil, Spearmint oil, Spike lavender, Tagetes, Tea tree oil, Vanilin, Vetyver oil (Java), Wintergreen, Allocimene, Arbanex™, Arbanol®, Bergamot oils, Camphene, Alpha-Campholenic aldehyde, I-Carvone, Cineoles, Citral, Citronellol Terpenes, Alpha-Citronellol, Citronellyl Acetate, Citronellyl Nitrile, Para-Cymene, Dihydroanethole, Dihydrocarveol, d-Dihydrocarvone, Dihydrolinalool, Dihydromyrcene, Dihydromyrcenol, Dihydromyrcenyl Acetate, Dihydroterpineol, Dimethyloctanal, Dimethyloctanol, Dimethyloctanyl Acetate, Estragole, Ethyl-2 Methylbutyrate, Fenchol, Fernlol™, Florilys™, Geraniol, Geranyl Acetate, Geranyl Nitrile, Glidmint™ Mint oils, Glidox™, Grapefruit oils, trans-2-Hexenal, trans-2-Hexenol, cis-3-Hexenyl Isovalerate, ds-3-Hexanyl-2-methylbutyrate, Hexyl Isovalerate, Hexyl-2-methylbutyrate, Hydroxycitronellal, lonone, Isobornyl Methylether, Linalool, Linalool Oxide, Linalyl Acetate, Menthane Hydroperoxide, I-Methyl Acetate, Methyl Hexyl Ether, Methyl-2-methylbutyrate, 2-Methylbutyl Isovalerate, Myrcene, Nerol, Neryl Acetate, 3-Octanol, 3-Octyl Acetate, Phenyl Ethyl-2-methylbutyrate, Petitgrain oil, cis-Pinane, Pinane Hydroperoxide, Pinanol, Pine Ester, Pine Needle oils, Pine oil, alpha-Pinene, beta-Pinene, alpha-Pinene Oxide, Plinol, Plinyl Acetate, Pseudo lonone, Rhodinol, Rhodinyl Acetate, Spice oils, alpha-Terpinene, gamma-Terpinene, Terpinene-4-OL, Terpineol, Terpinolene, Terpinyl Acetate, Tetrahydrolinalool, Tetrahydrolinalyl Acetate, Tetrahydromyrcenol, Tetralol®, Tomato oils, Vitalizair, Zestoral™.
  • The at least one nonionic surfactant is present in amounts of 0.1 % to 15%, preferably 1% to 12% by weight of the composition and provides superior performance in the removal of oily soil and mildness to human skin.
    The water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI). The nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups. Practically any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
    The nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
    A preferred group of the foregoing nonionic surfactants are the Neodol ethoxylates (Shell Co.), which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as C9-C11 alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12), C14-15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like. Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emutsifiers and poor detergents.
    Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide. Examples of commercially available nonionic detergents of the foregoing type are C11-C15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO (Tergitol 15-S-12) marketed by Union Carbide.
    Other suitable nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide. Specific examples of alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and diisoctylphenol condensed with 15 moles of EO per mole of phenol. Commercially available nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
    Also among the satisfactory nonionic detergents are the water-soluble condensation products of a C8-C20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from 2.5:1 to 4:1, preferably 2.8:1 to 3.3:1, with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably 70-80%, by weight. Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C10-C16 alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being 3:1 and the total alkoxy content being 75% by weight.
    Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C10-C20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition. These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
    Other suitable water-soluble nonionic detergents are marketed under the trade name "Pluronics." The compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,500. The addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble. The molecular weight of the block polymers varies from 1,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight. Preferably, these surfactants will be in liquid form and satisfactory surfactants are available as grades L 62 and L 64.
    The instant composition can contain alone or in combination with the at least one nonionic surfactant a composition (herein after referred to as ethoxylated glycerol type compound) which is a mixture of a fully esterified ethoxylated polyhydric alcohol, a partially esterified ethoxylated polyhydric alcohol and a nonesterified ethoxylated polyhydric alcohol, wherein the preferred polyhydric alcohol is glycerol, and the compound is
    Figure 00080001
    and
    Figure 00080002
    wherein w equals one to four, most preferably one. B is selected from the group consisting of hydrogen or a group represented by:
    Figure 00080003
    wherein R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms and alkenyl groups having 6 to 22 carbon atoms, more preferably 11 to 15 carbon atoms, wherein a hydrogenated tallow alkyl chain or a coco alkyl chain is most preferred, wherein at least one of the B groups is represented by said
    Figure 00080004
    and R' is selected from the group consisting of hydrogen and methyl groups; x, y and z have a value between 0 and 60, more preferably 0 to 40, provided that (x+y+z) equals 2 to 100, preferably 4 to 24 and most preferably 4 to 19, wherein in Formula (I) the ratio of monoester / diester / triester is 45 to 90 / 5 to 40/1 1 to 20, more preferably 50 to 90 / 9 to 32/1 to 12, wherein the ratio of Formula (I) to Formula (II) is a value between 3 to 0.02, preferably 3 to 0.1, most preferably 1.5 to 0.2, wherein it is most preferred that there is more of Formula (II) than Formula (I) in the mixture that forms the compound.
    The ethoxylated glycerol type compound used in the instant composition is manufactured by the Kao Corporation and sold under the trade name Levenol such as Levenol F-200 which has an average EO of 6 and a molar ratio of coco fatty acid to glycerol of 0.55 or Levenol V501/2 which has an average EO of 17 and a molar ratio of tallow fatty acid to glycerol of 1.0. It is preferred that the molar ratio of the fatty acid to glycerol is less than 1.7, more preferably less than 1.5 and most preferably less than 1.0. The ethoxylated glycerol type compound has a molecular weight of 400 to 1600, and a pH (50 grams / liter of water) of 5-7. The Levenol compounds are substantially non irritant to human skin and have a primary biodegradabillity higher than 90% as measured by the Wickbold method Bias-7d.
    Two examples of the Levenol compounds are Levenol V-501/2 which has 17 ethoxylated groups and is derived from tallow fatty acid with a fatty acid to glycerol ratio of 1.0 and a molecular weight of 1465 and Levenol F-200 has 6 ethoxylated groups and is derived from coco fatty acid with a fatty acid to glycerol ratio of 0.55. Both Levenol F-200 and Levenol V-501/2 are composed of a mixture of Formula (I) and Formula (II). The Levenol compounds has ecoxicity values of algae growth inhibition > 100 mg/liter; acute toxicity for Daphniae > 100 mg/liter and acute fish toxicity > 100 mg/liter. The Levenol compounds have a ready biodegradability higher than 60% which is the minimum required value according to OECD 301B measurement to be acceptably biodegradable.
    Polyesterified nonionic compounds also useful in the instant compositions are Crovol PK-40 and Crovol PK-70 manufactured by Croda GMBH of the Netherlands. Crovol PK-40 is a polyoxyethylene (12) Palm Kernel Glyceride which has 12 EO groups. Crovol PK-70 which is prefered is a polyoxyethylene (45) Palm Kernel Glyceride have 45 EO groups.
    Although all the above nonionic compounds are highly suitable, some of them do not deliver the right foam control and / or low enough ecotoxicity value. This is the reason why the present compositions can incorporate new nonionic type of surfactant which deliver outstanding foam control and very good ecotoxicity value. Both Ni's are produced by DOW chemical which chemical structure is shown below. Their development name are Polyglycol EB95-0779 and EB-0843/1.
    The major class of compounds found to provide highly suitable water soluble solvent for the composition are water-soluble polyethylene glycols having a molecular weight of 150 to 1000, polypropylene glycol of the formula HO(CH3CHCH2O)nH wherein n is a number from 2 to 18, mixtures of polyethylene glycol and polypropyl glycol (Synalox) and mono and di C1-C6 alkyl ethers and esters of ethylene glycol and propylene glycol having the structural formulas R(X)nOH R1 (X)nOH R(X)nOR and R1 (X)nOR1wherein R is C1-C6 alkyl group, R1 is C2-C4 acyl group, X is (OCH2CH2) or (OCH2(CH3)CH) and n is a number from 1 to 4, diethylene glycol, triethylene glycol, an alkyl lactate, wherein the alkyl group has 1 to 6 carbon atoms, 1 methoxy-2-propanol, 1 methoxy-3-propanol, and 1 methoxy 2-, 3- or 4-butanol.
    Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 150 to 1000, e.g., polypropylene glycol 400. Other satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, mono, di, tripropylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monopropyl ether, ethylene glycol monopentyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monopentyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monopentyl ether, triethylene glycol monohexyl ether, mono, di, tripropylene glycol monoethyl ether, mono, di tripropylene glycol monopropyl ether, mono, di, tripropylene glycol monopentyl ether, mono, di, tripropylene glycol monohexyl ether, mono, di, tributylene glycol mono methyl ether, mono, di, tributylene glycol monoethyl ether, mono, di, tributylene glycol monopropyl ether, mono, di, tributylene glycol monobutyl ether, mono, di, tributylene glycol monopentyl ether and mono, di, tributylene glycol monohexyl ether, ethylene glycol monoacetate and dipropylene glycol propionate. These glycol type water soluble solvents are at a concentration of 1.0 to 14 weight %, more preferably 2.0 weight % to 10 %. While all of the aforementioned glycol ether compounds provide the described stability, the most preferred cosurfactant compounds of each type, on the basis of cost and cosmetic appearance (particularly odor), is tripropylene glycol monobutyl ether Generally, amounts of water soluble solvents in the range of from 0 to 15%, preferably from 1 wt. % to 12 wt. % provide stable compositions for the above-described levels of primary surfactants and water insoluble hydrocarbon and any other additional ingredients as described below.
    The instant compositions contain 0.25 to 8 wt. %, more preferably 0.5 to 6 wt. % of a disinfectant agent selected from the group consisting of C8-C16 alkyl benzyl dimethyl ammonium chlorides, C8-C16 dialkyl dimethyl ammonium chlories, C8-C16 alkyl, C8-C14 alkyl dimethyl ammonium chloride and chlorhexidine and mixtures thereof.
    Some typical disinfectant agent useful in the instant compositions are manufactured by Lonza, S.A. They are: Bardac 2180 which is N-decyl-N-isonoxyl-N, N-dimethyl ammonium chloride; Bardac 22 which is didecyl dimethyl ammonium chloride; Bardac LF which is N,Ndioctyl-N, N-dimethyl ammonium chloride; Bardac 114 which is a mixture in a ratio of 1:1:1 of N-alkyl-N, N-didecyl-N, N-dimethyl ammonium chloride/N-alkyl-N, N-dimethyl-N-ethyl ammonium chloride; and Barquat MB-50 which is N-alkyl-N, N-dimethyl-N-benzyl ammonium chloride.
    The final essential ingredient in the inventive compositions having improved interfacial tension properties is water. The proportion of water in the compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight of the usual diluted o/w composition.
    In addition to the above-described essential ingredients, the compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
    The all-purpose liquid cleaning composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product more attractive to the consumer. The following are mentioned by way of example: Colors or dyes in amounts up to 0.5% by weight, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed. Furthermore, if opaque compositions are desired, up to 4% by weight of an opacifier may be added.
    In final form, the all-purpose liquids are clear compositions and exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5°C to 50°C, especially 10°C to 43°C. Such compositions exhibit a pH in the acid or neutral range depending on intended end use. The liquid compositions are readily pourable and exhibit a viscosity in the range of 6 to 60 milliPascal . second (mPas.) as measured at 25°C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 40 mPas.
    The compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
    When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the socalled spray-and-wipe type of application.
    Because the compositions as prepared are aqueous liquid formulations , the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container. The order of mixing the ingredients is not particularly important and generally the various ingredients can be added sequentially or all at once or in the form of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume. It is not necessary to use elevated temperatures in the formation step and room temperature is sufficient.
    The instant formulas explicitly exclude alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates because these materials, if used in the instant composition, would cause the composition to have a high pH as well as leaving residue on the surface being cleaned.
    The following examples illustrate liquid cleaning compositions of the described invention. Unless otherwise specified, all percentages are by weight. The exemplified compositions are illustrative only and do not limit the scope of the invention. Unless otherwise specified, the proportions in the examples and elsewhere in the specification are by weight.
    Example 1
    The following compositions in wt. % were prepared by simple mixing procedure:
    A B C D E F G H
    Polyglycol nonionic EB95-0779 4 4 4 4 4 4 4 4
    Polyglycol nonionic EB96-0843/1 1 1 1 1 1 1 1 1
    Chlorohexidine diacetate 1.5
    Chlorohexidine digluconate 1.5
    Alkylamine 1.5
    Didecyldimethyl ammonium chloride 1.5
    50% Bardac 22 plus 50% Barquat MB-50 1.5
    Bardac 2180 1.5
    C12-C16 alkyl dimethyl benzyl ammonium chloride 1.5
    Perfume 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
    Tripropylene glycol N-butyl ether 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
    Water Bal. Bal. Bal. Bal. Bal. Bal. Bal. Bal.
    Disinfecting results
    50% dilution in water Pass Pass Pass Pass Pass Pass Pass Fail
    2% dilution in water Pass Pass Pass Pass Pass Pass Pass Fail
    Degreasing test
    Neat Good Good Good Good Good Good Good Good
    Dilute Good Good Good Good Good Good Good Good
    The test protocol used to assess disinfection is the well known French AFNOR Norm 72-151 which uses four different strains of bacteria, a short contact time and calls for a bacteria count reduction of 5 log.
    In summary, the described invention broadly relates to an improved composition containing a nonionic surfactant and/or an ethoxylated glycerol type compound, a water soluble solvent, a hydrocarbon ingredient, a disinfectant agent and water.

    Claims (5)

    1. A composition comprising:
      (a) As total surfactant, 0.1 wt. % to 15 wt. % of at least one nonionic surfactant and/or a mixture of:
      Figure 00150001
      and
      Figure 00150002
      wherein w equals one to four. B is selected from the group consisting of hydrogen or a group represented by:
      Figure 00150003
      wherein R is selected from the group consisting of alkyl group having 6 to 22 carbon atoms, and alkenyl groups having 6 to 22 carbon atoms, wherein at least one of the B groups is represented by said
      Figure 00150004
      R' is selected from the group consisting of hydrogen and methyl groups; x, y and z have a value between 0 and 60, provided that (x+y+z) equals 2 to 100, wherein in Formula (I) the ratio of monoester/diester/triester is 40 to 90/5 to 35/1 to 20, wherein the ratio of Formula (I) to Formula (II) is a value between 3 to 0.02;
      (b) 0.25 wt. % to 8 wt. % of a disinfectant agent wherein the disinfecting agent is selected from the group consisting of a C8 to C16 alkyl benzyl dimethyl ammonium chloride, a C8 to C16 dialkyl dimethyl ammonium chloride and chlorohexidine;
      (c) 0 to 15wt. % of a water soluble solvent;
      (d) 0.1 wt. % to 1.0 wt. % of a water insoluble hydrocarbon, essential oil or a perfume; and
      (e) the balance being water, wherein the composition does not contain any alkali metal silicates and alkali metal builders such as alkali metal polyphosphates, alkali metal carbonates, alkali metal phosphonates and alkali metal citrates.
    2. The cleaning composition of Claim 1 which contains from 0.5 to 15% by weight of said water soluble solvent and from 0.4% to 0.8% by weight of said hydrocarbon, perfume or essential oil.
    3. The cleaning composition of Claim 1 wherein the solvent is a water soluble glycol ether.
    4. The cleaning composition of Claim 3 wherein the glycol ether is selected from the group consisting of ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, poly-propylene glycol having an average molecular weight of from 200 to 1,000 and propylene glycol tert.butyl ether, mono, di, tri propylene glycol monobutyl ether.
    5. The cleaning composition of Claim 4 wherein the glycol ether is ethylene glycol monobutyl ether or diethylene glycol monobutyl ether.
    EP97912698A 1996-10-11 1997-10-10 All purpose liquid cleaning compositions Expired - Lifetime EP0934381B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    US72947496A 1996-10-11 1996-10-11
    US729474 1996-10-11
    PCT/US1997/018292 WO1998016605A1 (en) 1996-10-11 1997-10-10 All purpose liquid cleaning compositions

    Publications (2)

    Publication Number Publication Date
    EP0934381A1 EP0934381A1 (en) 1999-08-11
    EP0934381B1 true EP0934381B1 (en) 2003-01-08

    Family

    ID=24931206

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97912698A Expired - Lifetime EP0934381B1 (en) 1996-10-11 1997-10-10 All purpose liquid cleaning compositions

    Country Status (5)

    Country Link
    EP (1) EP0934381B1 (en)
    AT (1) ATE230792T1 (en)
    AU (1) AU4981097A (en)
    DE (1) DE69718340D1 (en)
    WO (1) WO1998016605A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU2016369276B2 (en) * 2015-12-10 2020-07-23 The Clorox Company Food contact surface sanitizing liquid

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    PT1045021E (en) * 1999-04-13 2004-05-31 Kao Corp Sa COMPOSITION INCLUDING A MIXTURE OF ALCOXYLATED MONO- DI- AND TRIGLYCERIDES AND GLYCERIN
    US6130196A (en) * 1999-06-29 2000-10-10 Colgate-Palmolive Co. Antimicrobial multi purpose containing a cationic surfactant
    CN1077914C (en) * 1999-09-27 2002-01-16 上海家化联合股份有限公司 Sterilizing detergent for cleaning air conditioner
    ES2213070T3 (en) * 2000-02-17 2004-08-16 BODE CHEMIE GMBH & CO. CLEANING AND DISINFECTION SYSTEMS FOR MEDICAL INSTRUMENTS.
    EP1162254A1 (en) * 2000-06-09 2001-12-12 Clariant International Ltd. Liquid all-purpose cleaners

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4420484A (en) * 1979-08-13 1983-12-13 Sterling Drug Inc. Basic amino or ammonium antimicrobial agent-polyethylene glycol ester surfactant-betaine and/or amine oxide surfactant compositions and method of use therof
    EP0815194A1 (en) * 1995-02-23 1998-01-07 Colgate-Palmolive Company Microemulsion light duty liquid cleaning compositions
    US5866534A (en) * 1995-06-12 1999-02-02 Colgate-Palmolive Co. Stable liquid cleaners containing pine oil
    US5707952A (en) * 1996-04-24 1998-01-13 Colgate-Palmolive Company Thickened acid composition

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AU2016369276B2 (en) * 2015-12-10 2020-07-23 The Clorox Company Food contact surface sanitizing liquid

    Also Published As

    Publication number Publication date
    AU4981097A (en) 1998-05-11
    EP0934381A1 (en) 1999-08-11
    ATE230792T1 (en) 2003-01-15
    WO1998016605A1 (en) 1998-04-23
    DE69718340D1 (en) 2003-02-13

    Similar Documents

    Publication Publication Date Title
    US6080706A (en) All Purpose liquid cleaning compositions
    US5911915A (en) Antimicrobial multi purpose microemulsion
    US6387866B1 (en) Antimicrobial multi purpose containing a cationic surfactant
    US6121224A (en) Antimicrobial multi purpose microemulsion containing a cationic surfactant
    US6096701A (en) Antimicrobial multi purpose containing a cationic surfactant
    US6632784B2 (en) Acidic all purpose liquid cleaning compositions
    US5948743A (en) Sprayable cleaning composition comprising acaricidal agent
    US5939376A (en) Liquid cleaning compositions containing an organic ester foam control agent
    US6380152B1 (en) Antibacterial cleaning wipe comprising triclosan
    US6346508B1 (en) Acidic all purpose liquid cleaning compositions
    US6462010B1 (en) All purpose liquid cleaning compositions comprising solubilizers
    US6281182B1 (en) Acidic cleaning composition comprising a glycol ether mixture
    US5840676A (en) Microemulsion light duty liquid cleaning compositions
    US6043208A (en) All purpose liquid cleaning compositions
    US6645929B2 (en) Cleaning composition
    US6022839A (en) All purpose liquid cleaning compositions
    US6071873A (en) Liquid cleaning compositions containing a methyl ethoxylated ester
    US6177394B1 (en) All purpose liquid cleaning compositions
    US6319887B1 (en) Liquid cleaning compositions containing a methyl ethoxylated ester
    US5858955A (en) Cleaning compositions containing amine oxide and formic acid
    US5851971A (en) Liquid cleaning compositions
    EP0934381B1 (en) All purpose liquid cleaning compositions
    US6475973B1 (en) Dual phase cleaning composition
    EP1194517A1 (en) Antimicrobial multi-purpose microemulsion containing a cationic surfactant
    US6156717A (en) Light duty liquid cleaning composition comprising an ethoxylated methyl ester

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990401

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    AX Request for extension of the european patent

    Free format text: RO PAYMENT 19990401

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: LAMBREMONT, YVES

    Inventor name: BLANVALET, CLAUDE

    17Q First examination report despatched

    Effective date: 20010626

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    AX Request for extension of the european patent

    Free format text: RO PAYMENT 19990401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20030108

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030108

    REF Corresponds to:

    Ref document number: 230792

    Country of ref document: AT

    Date of ref document: 20030115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 69718340

    Country of ref document: DE

    Date of ref document: 20030213

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030408

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030408

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030408

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030409

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030730

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031010

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031010

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    EN Fr: translation not filed
    26N No opposition filed

    Effective date: 20031009

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20031010

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A