EP0932751B1 - Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine - Google Patents

Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine Download PDF

Info

Publication number
EP0932751B1
EP0932751B1 EP97911282A EP97911282A EP0932751B1 EP 0932751 B1 EP0932751 B1 EP 0932751B1 EP 97911282 A EP97911282 A EP 97911282A EP 97911282 A EP97911282 A EP 97911282A EP 0932751 B1 EP0932751 B1 EP 0932751B1
Authority
EP
European Patent Office
Prior art keywords
nocyl
signal
cylinders
engine
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97911282A
Other languages
English (en)
French (fr)
Other versions
EP0932751A1 (de
Inventor
Yves-Marie Boyard
Bernard Givois
Eric Gosselin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0932751A1 publication Critical patent/EP0932751A1/de
Application granted granted Critical
Publication of EP0932751B1 publication Critical patent/EP0932751B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start

Definitions

  • the present invention relates to a method synchronization of the electronic system control of an internal combustion engine four-stroke type twin cylinder and injection multi-point electronic fuel.
  • the invention relates more precisely to a process capable of generating a synchronization signal allowing to follow the progress of the functioning (succession of different times engine) in each of the engine cylinders, this synchronization signal for identification of a predetermined instant in the course of the cycle, such as the transition to Top Dead Center Admission or even at the bottom dead center Admission.
  • One of the important features of multipoint electronic injection is its intermittent operation, the injectors are in effect activated periodically: at least once per engine cycle, or again in the case of a four-stroke engine once for two turns crankshaft or 720 ° angle.
  • injection sequential is preferably phased so that that the opening of each injector ends before opening the intake valve of the corresponding cylinder, opening just starting before switching to Neutral Top Admission of corresponding cylinder.
  • the object of the present invention is to remedy the disadvantages of tracking systems known used to operate systems engine control electronics operating a phased sequential injection, by proposing a electronic system synchronization process simple and efficient control requires no specific position sensor in apart from the one used to locate the position angle of the crankshaft.
  • the system synchronization process combustion engine control electronics internal multi-cylinder consists to produce a synchronization signal, intended especially in the phasing of the injection, which allows the identification of a predetermined instant in the course of each person's operating cycle cylinders, such as shifting to Neutral High Admission (or even the transition to Neutral Low Admission, etc.).
  • This synchronization signal according to the invention is deduced from two distinct signals produced by suitable processing means using in particular the information provided by a angular position sensor cooperating with a ring gear carried by the crankshaft engine.
  • the first signal provides an estimate of the level of successive combustions occurring in the engine cylinders and the second signal follows the displacement of the pistons and in particular their passage in a predetermined position such as the Point Death High.
  • the method of developing a synchronization signal is based on the principle of action and reaction.
  • the action consists in operating adapted modifications to the parameters of engine control so as to generate opposite direction variations in the level of combustion in two cylinders whose cycles are offset by 360 ° crankshaft (or two-stroke engine).
  • step d) of the quantity representative of variations in levels of combustion for the affected cylinders is carried out taking into account a given number of cycles engine.
  • the distribution of the action over several motor cycles limit accordingly the amplitude of the variations in the combustion level and therefore to make the process of driver undetectable synchronization (lack of jerk in the operation of the engine).
  • This number of cycles which can be constant or even depend on the operating point engine, is determined so as to limit the variations in combustion levels while allowing rapid implementation of the process.
  • the predetermined conditions required in step b) to modify the parameters of combustion include stability conditions of all or part of the parameters acting on the engine combustion level, such as rpm engine rotation, or ignition advance, or the inlet pressure, or even the stable state auxiliary members driven by the engine.
  • changes to control parameters provided for in step c) consist of changes in the amount of fuel injected in the affected cylinders.
  • Changes in the quantities of fuel injected into the cylinders can be performed by application in the formulas of calculation of the injection times of a coefficient multiplicative corrector mapping according to engine operating conditions, said coefficient preferably between 0.7 and 0.99 for a cylinder and between 1.01 and 1.3 for the other.
  • changes in fuel quantities injected into the affected cylinders are adapted to engine operating conditions and in particular the pressure of the intake air, so as to produce a variation in the level of combustion in the cylinders which is substantially identical regardless of the operating point of the motor.
  • the first signal to monitor the level combustions in each cylinder operates a quantity representative of the gas torque generated by each of the engine combustions.
  • the calculation provided for in step d) consists of counting the combustion levels after a period of adapted timing according to the modifications of the control parameters operated in step c).
  • changes to the control parameters of the engine provided in step c) are suitable for generate at least one cyclic variation of the levels combustion in each of the affected cylinders, each cycle consisting of a first period during which the combustion level is improved for one cylinder and degraded for the other, and a second period of the same duration as the first period and during which we reverse these variations keeping essentially the same amplitudes.
  • changes to control parameters provided for in step c) are operated so similar on several groups of two cylinders (n ° 1, n ° 4; n ° 2, n ° 3) shifted by two engine times.
  • FIG. 1 we see, presented in a simplified way, the configuration an electronic engine control system with internal combustion using the process of synchronization object of the present invention. Only the constituent parts necessary for the understanding of the invention have been detailed.
  • the internal combustion engine which is marked 1 is more particularly intended for equip a motor or road vehicle.
  • This four-cylinder in-line engine and four time is equipped with a device for injecting the multi-point fuel with control electronics through which each cylinder is supplied with fuel from an electro-injector 5 specific.
  • each electro-injector 5 is controlled by the electronic system of command 7 also called the injection computer.
  • the injection computer 7 determines the quantity of fuel injected and the instant of injection into the cycle according to the operating conditions of the engine from known adapted strategies otherwise like for example the enslavement of the richness of the fuel air-fuel mixture admitted into cylinders at a set value predetermined.
  • the injection computer 7 comprises conventionally a microprocessor (CPU), random access memories (RAM), read only memories (ROM), as well as analog-to-digital converters (A / D), and various input and output interfaces exits.
  • CPU central processing unit
  • RAM random access memories
  • ROM read only memories
  • a / D analog-to-digital converters
  • the microprocessor integrates circuits electronics and software suitable for process signals from sensors adapted, determine the engine conditions and put implement predefined operations in order to generate control signals at destination including injectors (and ignition coils in the case of a positive-ignition engine) according to the adapted strategies selected.
  • the injection computer 7 is more particularly suitable for operating an injection indirect sequential phased fuel which is to trigger each injector 5 so that the fuel injection be completed before the opening of the corresponding intake valves.
  • crankshaft sensor 22 is fixedly mounted on the engine mount to be positioned in front of a measuring crown 12 secured to the flywheel attached to one end of the crankshaft.
  • This crown 12 is provided at its periphery with a succession of identical teeth and hollows except for one tooth that has been removed in order to define a absolute benchmark allowing to deduce the instant from shift to Top dead center of a cylinder piston reference data, in this case the cylinder No. 1.
  • the sensor 22 therefore delivers a signal Dn corresponding to the scrolling of the teeth of the crown 12.
  • This signal Dn allows, after processing by suitable calculation means, to generate a TDC signal identifying each crankshaft U-turn simultaneous passages at Top Dead Center pistons of cylinders n ° 1 and n ° 4 then alternately the simultaneous passages at the Point Dead Top of pistons of cylinders n ° 2 and n ° 3 (The cylinder n ° 1 being for example the most close to the crown 12 and so on).
  • the processing of the signal Dn emitted by the sensor 22 also allows speed measurement scrolling teeth of the crown 12, and so to obtain the instantaneous rotation speed of the engine.
  • This signal Dn is further processed by calculation methods described below to produce a signal Cg for measuring the gas torque generated by each of the combustions.
  • the first step of the process object of the invention consists in creating a signal NOCYL synchronization.
  • This NOCYL signal is more particularly suitable for spotting an instant predetermined in the course of the engine cycle used for the phasing of the injection of each of the cylinders, which in the example illustrated is the transition to Neutral High Admission but which could be the transition to bottom dead center Admission, or any other time that can be used for injection phasing.
  • This NOCYL synchronization signal is phased with the TDC signal and it is arbitrarily initialized to 1 (or 0), at the first detection of the change to Top dead center of a cylinder reference, such as cylinder # 1, which is therefore arbitrarily considered a Top Dead Center Admission, then it is incremented (modulo four) at each shift to Top Dead Center of a cylinder in the order of succession of combustions in cylinders.
  • the modification made which consists of enrich certain cylinders and impoverish others is suitable for causing variations in level opposite direction torque between cylinders shifted in the cycle, by two engine times. he just assign the torque values to matching cylinders using the signal NOCYL predefined and summing it for deduce from the sign the value thus obtained if the NOCYL signal is well phased or not.
  • the required operating conditions to operate the wealth modifications as well as the amplitudes of these modifications are chosen so as to limit the impact of the implementation of the engine operation procedure and avoid any jolting phenomenon of the vehicle that may be felt by the driver, while allowing a safe and indisputable identification by analyzing torque values provided by signal Cg.
  • the second step of the process therefore consists to determine if the operating conditions of the engine allow wealth changes necessary for the implementation of the invention.
  • the required operating conditions to limit the impact on the functioning of the driving wealth variations concern more particularly the transmission ratio, which should preferably be above a predetermined value, as well as the parameters of engine operation including pressure and the regime which must be within ranges of predetermined values.
  • the required operating conditions must also allow safe location and undeniable torque alterations resulting wealth changes made. It suits therefore that the alterations detected by through the gas torque signal Cg result many wealth changes generated according to the process which is the subject of the present invention and no noise affecting the measurement signal of the gas torque Cg.
  • the stability criterion retained can be defined by maintaining parameter values selected within a range of values for a given time.
  • the forks values can then be fixed or even given by function tables of the values taken by these parameters.
  • the magnitude of wealth changes operated on the different cylinders is also adjusted according to the operating conditions of the engine to limit the impact of these modifications on engine operation and avoid all vehicle jerk phenomenon which can be felt by the driver, while allowing a safe and indisputable identification through analysis of the signal Cg of the resulting torque changes.
  • the correction coefficient PARTINJ is chosen so that the alteration of the corresponding gas torque is between predetermined threshold values Smin and Smax, Smin corresponding to the minimum value below which the decrease in torque is not discernible from the noise affecting the signal Cg, this threshold Smin therefore has a predetermined function value the noise level observed and an adjustable margin, and Smax corresponding to the maximum value above which the decrease in torque causes a jerk.
  • the values of correction factor are chosen to produce a comparable effect over the entire pressure range, which is obtained by choosing values of the PARTINJ coefficient according to a function of inlet pressure.
  • N is predetermined. Her value results from a compromise between the speed of implementation of the synchronization process and the amplitude of the torque variations (i.e. again the amplitude of the PARTINJ coefficient).
  • the process object of the invention operates in a fourth step summations of the gas torque measurements provided by the signal Cg corresponding to each of cylinders. Assigning torque values supplied by signal Cg to cylinders is operated by exploiting the signal NOCYL predefined.
  • S1 be the sum for the first gas couple period corresponding to different cylinders.
  • the sum S1 is operated in positively accounting for torque values corresponding to the rich cylinders and negatively the corresponding torque values to poor cylinders.
  • This second summation begins with the same delay of n-1 cycles (at least one cycle) so that on the one hand the torque measurements recorded effectively take into account the new wealth changes and secondly so that the sums S1 and S2 have the same number (N-n) of terms.
  • the sum S is independent of the average torque values of different cylinders. It only depends on torque alteration resulting from the coefficient corrector applied 1 +/- PARTINJ and the number of engine cycles taken into account. The dispersions of torque between cylinders is therefore not involved in the implementation of the method according to the invention.
  • This method has many benefits.
  • the calculation of the sum S being calculated with a large number of torque values, The influence of noise on the measurement of torque decreases, the errors compensating each other. Furthermore, the calculation based on a large number of torque values it is possible to operate with a small torque deviation ⁇ Cg and in particular lower than the noise affecting the signal Cg, which further limits the impact of the strategy on the behavior of the engine.
  • the strategy implemented frees itself from the error made on the calculation of the gas couple Cgj, i. Indeed, the rich-poor permutation partially compensates for the error made on estimating the torque, we add the error when the cylinder is rich, we subtract the error when the cylinder is poor.
  • This strategy frees itself from instabilities on the torque which can to exist. The impact of poor combustion is diluted by the large number of torque values taken into account.
  • This second variant is therefore based on the similarity of the torque values medium between the cylinders. More dispersions are large between the mean torque values of cylinders and less such a strategy is performance. If on the other hand the dispersions are weak, this strategy is effective and quick to enforce.
  • the invention includes all technical equivalents applied to a internal combustion whatever its type injection, the fuel used diesel or petrol or the number of its cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Electric Motors In General (AREA)

Claims (12)

  1. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) für das elektronische System (7) zur Steuerung eines Mehrzylinder-Verbrennungsmotors (1) mit Viertaktzyklus, wobei dieses Synchronisierungssignal (NOCYL) die Erkennung eines vorbestimmten Zeitpunkts im Ablauf des Motorzyklus in jedem der Zylinder des Motors ermöglicht, wie z.B. des Übergangs zum oberen Totpunkt Ansaugung, und wobei das Signal NOCYL von einem ersten Signal (Cg) und einem zweiten Signal (PMH) abgeleitet wird, die durch geeignete Verarbeitungsmittel erzeugt werden, die insbesondere die Information verwenden, die von einem Winkelpositionssensor (22) geliefert wird, der mit einem Zahnkranz (12) zusammenarbeitet, der von der Kurbelwelle des Motors getragen wird, wobei das erste Signal (Cg) eine Schätzung des Niveaus der aufeinanderfolgenden Verbrennungen liefert, die in den Zylindern des Motors ablaufen, und das zweite Signal (PMH) die Bewegung der Kolben, und insbesondere ihren Übergang in eine vorbestimmte Position, wie z.B. zum oberen Totpunkt, markiert, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
    a) Ausarbeitung eines Synchronisierungssignals (NOCYL), das mit dem zweiten Signal (PMH) gephast ist, das den Übergang der Kolben in eine vorbestimmte Position, wie z.B. zum oberen Totpunkt, markiert, wobei dieses Synchronisierungssignal (NOCYL) willkürlich initialisiert ist, so dass die Identifizierung eines vorbestimmten Zeitpunkts im Ablauf des Zyklus jedes Zylinders, wie z.B. des Übergangs zum oberen Totpunkt Ansaugung, mit einer Unbestimmtheit bezüglich zweier Takte im Ablauf des Motorzyklus erfolgt;
    b) Verfolgung des Betriebs des Motors, und wenn vorbestimmte Bedingungen erfüllt sind;
    c) Veränderungen der Steuerparameter (Ti) des Motors betreffend mindestens zwei gegebene Zylinder (Nr. 1 und Nr. 4), deren Betriebszyklen um zwei Motortakte verschoben sind, wobei diese Veränderung der Steuerparameter geeignete, in die entgegengesetzte Richtung erfolgende Schwankungen des Niveaus der Verbrennungen in diesen Zylindern hervorruft;
    d) Berechnung für die von den Veränderungen des Schrittes c) betroffenen Zylinder (Nr. 1, Nr. 4) einer algebraischen Größe (S), die für die Schwankungen der Verbrennungsniveaus repräsentativ ist, wobei die Zuweisung der Werte, die den Verbrennungsniveaus entsprechen und vom ersten Signal abgeleitet werden, zu jedem der Zylinder (Nr. 1, Nr. 4) erfolgt, indem das Synchronisierungssignal (NOCYL) verwendet wird, wie es im Schritt a) definiert wurde;
    e) ausgehend vom Vorzeichen der algebraischen Größe (S), die für die Schwankungen der Verbrennungsniveaus zwischen den Zylindern (Nr. 1, Nr. 4) repräsentativ ist, Ableitung der Richtigkeit des Synchronisierungssignals (NOCYL) und Korrektur des Signals, wenn sich die im Schritt a) willkürlich erfolgte Initialisierung als falsch erweist.
  2. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach Anspruch 1, dadurch gekennzeichnet, dass die in Schritt d) vorgesehene Berechnung darin besteht, die Verbrennungsniveaus positiv zu zählen, die den Zylindern entsprechen, bei denen die Veränderungen der Steuerparameter eine Erhöhung der Verbrennungsniveaus herbeiführen müssen, und die Verbrennungsniveaus negativ zu zählen, die den Zylindern entsprechen, bei denen die Veränderungen der Steuerparameter eine Verringerung der Verbrennungsniveaus herbeiführen müssen.
  3. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die in Schritt d) vorgesehene Berechnung der Größe (S), die für die Schwankungen der Verbrennungsniveaus repräsentativ ist, durchgeführt wird, indem eine gegebene Anzahl von Motorzyklen (N-n; 2×(N-n)) berücksichtigt wird.
  4. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die in Schritt b) verlangten vorbestimmten Bedingungen zur Durchführung der Veränderung der Steuerparameter so angepasst sind, dass die Schwankungen der Verbrennungsniveaus für den Lenker nicht merkbar sind, wobei diese Bedingungen zum Beispiel der Wert des Übersetzungsverhältnisses und/oder das Halten der Motordrehzahl oder des Ansaugdrucks in vorbestimmten Bereichen von Werten sind.
  5. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in Schritt b) verlangten vorbestimmten Bedingungen zur Durchführung der Veränderung der Steuerparameter stabile Bedingungen bei allen oder einem Teil der Parameter, die sich auf das Verbrennungsniveau des Motors auswirken, wie z.B. Motordrehzahl, Vorzündung oder Ansaugdruck, oder auch einen stabilen Zustand der vom Motor angetriebenen Nebenorgane umfassen.
  6. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die in Schritt c) vorgesehenen Veränderungen der Steuerparameter in Veränderungen der Kraftstoffmengen (Ti) bestehen, die in die betroffenen Zylinder (Nr. 1, Nr. 4) eingespritzt werden.
  7. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach Anspruch 6, dadurch gekennzeichnet, dass die Veränderungen der Kraftstoffmengen (Ti), die in die betroffenen Zylinder (Nr. 1, Nr. 4) eingespritzt werden, an die Betriebsbedingungen des Motors und insbesondere an den Ansaugluftdruck angepasst sind, um eine Schwankung (ΔCg) des Verbrennungsniveaus in den Zylindern zu erzeugen, die annähernd identisch ist, gleich, wie der Betriebspunkt des Motors ist.
  8. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das erste Signal (Cg), das es ermöglicht, das Niveau der Verbrennungen in jedem Zylinder zu verfolgen, eine Größe verwendet, die repräsentativ für das Antriebsmoment ist, das durch jede der Verbrennungen des Motors erzeugt wird.
  9. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der in Schritt d) vorgesehene Berechnungsschritt darin besteht, die Verbrennungsniveaus nach einer geeigneten Verzögerungszeit (n-1 Zyklen) nach den in Schritt c) erfolgten Änderungen der Steuerparameter zu zählen.
  10. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die in Schritt c) vorgesehenen Veränderungen der Parameter zur Steuerung des Motors so angepasst sind, um mindestens eine zyklische Schwankung der Verbrennungsniveaus in jedem der betroffenen Zylinder (Nr. 1, Nr. 4) zu erzeugen, wobei jeder Zyklus zusammengesetzt ist aus einer ersten Periode, während der das Niveau der Verbrennungen in einem Zylinder (Nr. 4) verbessert (+ΔCg) und in dem anderen (Nr. 1) verschlechtert (-ΔCg) wird, und einer zweiten Periode von gleicher Dauer wie die erste Periode, während der diese Schwankungen umgekehrt werden, wobei annähernd die gleichen Amplituden (ΔCg) beibehalten werden.
  11. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach Anspruch 10, dadurch gekennzeichnet, dass der Schritt d) somit in folgendem besteht:
    Für die Zylinder (Nr. 1, Nr. 4), die von den Veränderungen des Schritts c) betroffen sind, Berechnung einer algebraischen Größe (S), die für die Schwankungen der Verbrennungsniveaus für die Gesamtheit der beiden Perioden repräsentativ ist, wobei die Zuweisung der Werte, die den Verbrennungsniveaus entsprechen und vom ersten Signal abgeleitet sind, zu jedem der Zylinder (Nr. 1, Nr. 4) erfolgt, indem das Synchronisierungssignal (NOCYL) verwendet wird, so wie es in Schritt a) definiert wurde.
  12. Verfahren zur Erzeugung eines Synchronisierungssignals (NOCYL) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die in Schritt c) vorgesehenen Veränderungen der Steuerparameter an mehreren Gruppen von zwei Zylindern (Nr. 1, Nr. 4; Nr. 2, Nr. 3), die um zwei Motortakte verschoben sind, auf gleichartige Weise ausgeführt werden.
EP97911282A 1996-10-18 1997-10-17 Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine Expired - Lifetime EP0932751B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9612685A FR2754852B1 (fr) 1996-10-18 1996-10-18 Procede de synchronisation du systeme electronique de commande de moteur a combustion interne
FR9612685 1996-10-18
PCT/FR1997/001857 WO1998017904A1 (fr) 1996-10-18 1997-10-17 Procede de synchronisation du systeme electronique de commande de moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0932751A1 EP0932751A1 (de) 1999-08-04
EP0932751B1 true EP0932751B1 (de) 2002-05-22

Family

ID=9496771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97911282A Expired - Lifetime EP0932751B1 (de) 1996-10-18 1997-10-17 Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine

Country Status (6)

Country Link
EP (1) EP0932751B1 (de)
AU (1) AU4871697A (de)
DE (1) DE69712771T2 (de)
ES (1) ES2174232T3 (de)
FR (1) FR2754852B1 (de)
WO (1) WO1998017904A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373928B2 (en) 2006-05-31 2008-05-20 Joseph Thomas Method for starting a direct injection engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10116815A1 (de) * 2001-04-04 2002-11-07 Bosch Gmbh Robert Verfahren zur Phasendetektion mittels lambda-Änderung an einem oder mehreren Zylindern
FR2874969A1 (fr) 2005-02-09 2006-03-10 Siemens Vdo Automotive Sas Procede de controle de demarrage d'un moteur a combustion interne a injection indirecte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849473A1 (de) 1978-11-15 1980-08-07 Bosch Gmbh Robert Einrichtung zur erzeugung eines fuer den bewegungsablauf der kurbelwelle einer mehrzylindrigen vier-takt-brennkraftmaschine charakteristischen ausgangssignals
JP2541949B2 (ja) * 1986-11-28 1996-10-09 本田技研工業株式会社 4サイクル内燃機関の点火時期制御装置
FR2692623B1 (fr) * 1992-06-23 1995-07-07 Renault Procede de reperage cylindres pour le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne.
FR2711185B1 (fr) * 1993-10-12 1996-01-05 Inst Francais Du Petrole Système d'acquisition et de traitement instantané de données pour le contrôle d'un moteur à combustion interne.
ITBO940238A1 (it) * 1994-05-23 1995-11-23 Weber Srl Sistema elettronico di identificazione delle fasi di un motore endotermico

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373928B2 (en) 2006-05-31 2008-05-20 Joseph Thomas Method for starting a direct injection engine

Also Published As

Publication number Publication date
ES2174232T3 (es) 2002-11-01
FR2754852B1 (fr) 1999-01-08
DE69712771T2 (de) 2002-11-28
AU4871697A (en) 1998-05-15
EP0932751A1 (de) 1999-08-04
DE69712771D1 (de) 2002-06-27
FR2754852A1 (fr) 1998-04-24
WO1998017904A1 (fr) 1998-04-30

Similar Documents

Publication Publication Date Title
EP0576334B1 (de) Verfahren zur Zylinderidentifikation für die Steuerung eines elektronischen Einspritzsystems eines Verbrennungsmotors
EP0826099B1 (de) Verfahren zur erkennun der phase der zylinder einer mehrzylinder-viertaktbrennkraftmaschine
EP2232035B1 (de) VERFAHREN ZUR ERZEUGUNG EINES SYNCHRONISATIONSSIGNALS FÜR eine Brennkraftmaschine
FR2787511A1 (fr) Procede et dispositif d'egalisation des couples de chaque cylindre d'un moteur
WO2007147484A1 (fr) Procede de detection de rate d'allumage et dispositif correspondant
FR2780448A1 (fr) Dispositif et procede de gestion de moteur
FR2691207A1 (fr) Système pour commander un dispositif de dosage de carburant contrôlé par vanne électromagnétique.
EP0775302B1 (de) Verfahren und vorrichtung zum messen des drehmomentes eines thermischen internen verbrennungsmotors
EP0932751B1 (de) Synchronisationsverfahren für das elektronische regelsystem einer brennkraftmaschine
WO2017097396A1 (fr) Procede et dispositif de determination du debit d'air entrant dans le collecteur d'admission d'un moteur à deux temps
EP0894254B1 (de) Verfahren zur bestimmung des drehmomentes eines verbrennungsmotors
FR2878574A1 (fr) Procede de gestion d'un moteur a combustion interne a plusieurs cylindres
EP1052488A1 (de) Verfahren and Vorrichtung zur Messung des Drehmomentes einer Brennkraftmaschine
FR2749885A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
EP0029374A1 (de) Signal-generator zur Korrektur der Einstellung der Frühzündung in Abhängigkeit vom Klopfverhalten
EP1217354B1 (de) Verfahren zur Auswertung des Drehmomentes eines Brennkraftmotors
WO1999019616A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
FR3084114A1 (fr) Procede de controle de combustion dans un moteur
FR2757945A1 (fr) Procede de calcul du couple d'un moteur thermique a injection commandee electroniquement
FR3065283A1 (fr) Procede de determination de la position angulaire d'un moteur
FR2523214A1 (fr) Dispositif et procede de determination de la position du piston dans le cylindre d'un moteur a mouvement alternatif
FR2871521A1 (fr) Systeme d'estimation de la pression dans le collecteur d'echappement d'un moteur diesel et procede de calibrage de ce systeme
FR2821887A1 (fr) Procede de detection de la phase du cycle d'un moteur a combustion interne a nombre de cylindres impair
FR3108676A1 (fr) Procédé et dispositif de contrôle moteur avec signal vilebrequin reconstitué
FR2950655A1 (fr) Procede d'evaluation des couples instantanes des cylindres d'un moteur a combustion interne.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010704

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69712771

Country of ref document: DE

Date of ref document: 20020627

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RENAULT S.A.S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020805

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2174232

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 20

Ref country code: GB

Payment date: 20161020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161011

Year of fee payment: 20

Ref country code: IT

Payment date: 20161024

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69712771

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171016

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171018