EP0932283B1 - Dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées - Google Patents

Dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées Download PDF

Info

Publication number
EP0932283B1
EP0932283B1 EP99400126A EP99400126A EP0932283B1 EP 0932283 B1 EP0932283 B1 EP 0932283B1 EP 99400126 A EP99400126 A EP 99400126A EP 99400126 A EP99400126 A EP 99400126A EP 0932283 B1 EP0932283 B1 EP 0932283B1
Authority
EP
European Patent Office
Prior art keywords
signal
phase
output
psk
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400126A
Other languages
German (de)
English (en)
Other versions
EP0932283A1 (fr
Inventor
Cyril Troise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP0932283A1 publication Critical patent/EP0932283A1/fr
Application granted granted Critical
Publication of EP0932283B1 publication Critical patent/EP0932283B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2335Demodulator circuits; Receiver circuits using non-coherent demodulation using temporal properties of the received signal

Definitions

  • the present invention relates to a device for demodulation of a binary signal modulated in phase by coded pulses.
  • phase modulation of a signal by coded pulses is commonly referred to as PSK modulation (for phase shift keying in Anglo-Saxon literature).
  • PSK modulation for phase shift keying in Anglo-Saxon literature.
  • BPSK modulation BPSK modulation
  • the carrier is a high frequency binary signal.
  • the modulating signal is a low frequency binary signal, comprising a series of transitions between a high level and a low level representing a coded sequence of "0" and "1".
  • the resulting BPSK modulated signal is a binary signal in which each phase change corresponds to a transition from high level to low level, called in the following transition transition or to a transition from low level to high level, called in the transition sequence rising modulating signal.
  • FIG. 1 represents an example of a binary signal modulating s m (t) with a non-return to zero type coding, called NRZ coding.
  • a bit “1" is coded as a high level over a period tm and a bit "0" is coded as a low level over the period t m .
  • the high level and the low level are respectively at + V and -V.
  • FIG. 2 represents a modulated signal BPSK resulting s PSK (t), from a carrier of frequency f p .
  • the first phase change in the modulated signal corresponds to a first downward transition equivalent to a start bit.
  • a device for demodulating a modulated binary signal in phase by coded pulses It's about detecting phase changes in a modulated signal received, to regenerate a demodulated signal at output corresponding to the modulating signal.
  • Analog type demodulation devices use mixers that are too bulky and very prone to drifts. These analog devices are also difficult to implement in convenient. We could use a digital device of the exclusive OR type and delay circuits, but of such devices are very dependent on the frequency modulation. They must be adapted for each different modulation frequency.
  • EP-A-0 576 826 describes a device for demodulation of a phase modulated binary signal, comprising a phase locked loop.
  • a device for BPSK demodulation capable of detecting changes phase on the high frequency modulated signal and which either not very sensitive to drifts (temperature, manufacturing process) and suitable for a wide range of modulation frequency.
  • a solution to this technical problem has been found in a loop demodulation device phase lock, including a comparator of phase, a filter and a voltage controlled oscillator.
  • said oscillator is such that it outputs a synchronous binary signal of the signal modulated, of frequency equal to N times the frequency carrier, the phase locked loop comprising further a divisor by N of the output of the oscillator to apply it as input to the comparator phase, and the said oscillator output signal being applied as the clock of a first counter for measure the duration of the high levels of the modulated signal and a second counter to measure the duration of low levels of the modulated signal.
  • the output of the first counter is used to output a first detection signal of phase change on the high level, when the count reaches a predetermined number.
  • the second counter output is used to deliver as output a second change detection signal phase on the low level, when the count reaches a predetermined number.
  • phase change detection signals are applied to an RS flip-flop, the output of which provides the demodulated signal.
  • the first detection signal will be applied to the input / R to reset the RS flip-flop, while the second detection signal will be applied to the input / S to set this toggle. In the opposite case, it is the second detection signal that will be applied to the reset input and the first signal to the reset input of the RS flip-flop.
  • the filter low-pass phase locked loop includes oversized strength and capacity elements.
  • FIG. 3 represents a device for BPSK demodulation according to the invention.
  • phase locked loop includes a phase comparator CP, followed by a low-pass filter FPB and an oscillator controlled in voltage VCO by the output of the filter.
  • the phase locked loop further comprises a divider by N, denoted DIV, between the output of the voltage controlled oscillator and an input e2 of the phase comparator CP.
  • the other input e1 of the phase comparator CP receives the modulated signal s PSK (t).
  • the frequency of the carrier of the modulated signal s PSK (t) is noted f p .
  • the oscillator VCO When the loop of the phase locked loop circuit PLL is hooked, the oscillator VCO according to the invention is such that it outputs a synchronous binary signal s VCO (t), of frequency f 0 equal to N times the carrier frequency f p (N different from 1).
  • a synchronous binary signal of frequency equal to the carrier frequency f p of the modulated signal s PSK (t).
  • the demodulation device further comprises a first CO 1 counter for measuring the duration of the high levels of the modulated signal.
  • the low levels of the signal s PSK (t) reset the counter to zero, while the counting of the pulses of frequency f 0 is done on the high levels.
  • the outputs QA, QB, QC, and QD of the counter indicate the number of pulses of frequency f 0 counted for each high level of the modulated signal.
  • the demodulation device includes a second CO 2 counter for measuring the duration of the low levels of the modulated signal.
  • This counter receives on its reset reset input, the inverse of the modulated signal s PSK (t).
  • the signal s PSK (t) is used to reset the counter on each high level, while the counting of the pulses of frequency f 0 is done on the low levels.
  • the outputs QA, QB, QC, and QD of the counter indicate the number of pulses of frequency f 0 counted for each low level of the modulated signal.
  • the outputs of each counter are applied to a respective decoder, capable of detecting a phase change.
  • a phase change on a level results in a duration twice the normal.
  • This detector therefore consists of a decoder with a determined number of pulses.
  • N 8
  • this level with phase change corresponds to eight pulses of frequency f 0 .
  • this level suffices to detect that this level lasts for more than 4 signal pulses s VCO (t).
  • the detector decodes that 6 pulses have been counted, it generates as output a phase change detection pulse.
  • the decoder is a simple NAND gate. The output of this decoder is the phase change detection signal on the corresponding level of the modulated signal s PSK (t).
  • the QB, QC outputs of the first counter are thus applied to a first DEC1 detector produced by a NAND gate, to detect a phase change on the high level.
  • the change detection signal phase on the high level, at the output of this decoder, is noted D3.
  • the outputs QB, Qc of the second counter are applied to a second detector DEC2 produced by a NAND gate, to detect a phase change on the low level of the modulated signal s PSK (t).
  • the phase change detection signal on the low level of the modulated signal s PSK (t), at the output of this decoder, is denoted D2.
  • Pulse counting and number decoding of pulses can be performed from different manners.
  • the counter directly outputs the phase change detection signal, without additional logic. So generally uses the output of each counter, directly or with additional logic, to provide the signal corresponding detection.
  • the demodulation device finally comprises a circuit for generating a demodulated signal, denoted D4, from these two phase change detection signals. These signals are used to force at the exit either a passage to the high level or a passage to the low level. If for example, the phase change on the high level of the modulated signal s PSK (t) corresponds to a downward transition of the modulating signal s m (t) and the phase change on the low level of the modulated signal s PSK (t) corresponds to an upward transition of the modulating signal s m (t), the first detection signal D3 will be used to force the setting to "0" and the second detection signal, D2, to force the setting to "1" of the demodulated signal .
  • the demodulated signal generation circuit at starting from these signals D2 and D3 is for example a RS flip-flop, whose input / R set to 0 receives the signal D3 and whose 1 / S setting input receives the signal D2.
  • the Q output of this RS flip-flop provides the expected demodulated signal, noted D4, as shown in Figure 4. This applies to a detection signal D3 corresponding to a downward transition of the signal modulating, the detection signal D2 then corresponding to an upward transition of the modulating signal. In the otherwise, this is signal D2 that we will apply on the reset input and the D3 signal that will apply on the entry of setting to 1.
  • This invention applies to all types of binary coding that can be used for the signal modulating.
  • the code used does not affect the demodulation device according to the invention, based on detection of phase changes.
  • the demodulation according to the invention works in a very wide modulation frequency range, corresponding to the loop capture range at phase lock.
  • the demodulation according to the invention works in a loop capture frequency range at phase lock ranging from 620 KHz to 1.15 MHz.
  • the resistance to temperature drifts and method of manufacturing said device because none element of the demodulation device according to the invention is not critical.
  • the present invention is particularly suitable data transmission between a card so-called smart card micromodules, of the contactless type and an application system comprising a reader of such a menu.
  • an application there is a demodulation device according to the invention in the reading system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

La présente invention concerne un dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées.
La modulation en phase d'un signal par impulsions codées est couramment désignée comme la modulation PSK (pour phase shift keying en littérature anglo-saxonne). Lorsque la porteuse est un signal binaire, on parle de modulation BPSK.
Dans la modulation BPSK, la porteuse est un signal binaire haute fréquence. Le signal modulant est un signal binaire basse fréquence, comprenant une série de transitions entre un niveau haut et un niveau bas représentant une suite codée de "0" et de "1". Le signal modulé BPSK résultant est un signal binaire dans lequel chaque changement de phase correspond à une transition du niveau haut vers le niveau bas, appelée dans la suite transition descendante ou à une transition du niveau bas vers le niveau haut, appelée dans la suite transition montante du signal modulant. La figure 1 représente un exemple de signal binaire modulant sm(t) avec un codage du type non retour à zéro, dit codage NRZ. Un bit "1" est codé sous la forme d'un niveau haut sur une période tm et un bit "0" est codé sous la forme d'un niveau bas sur la période tm. Le niveau haut et le niveau bas sont respectivement à +V et -V.
La figure 2 représente un signal modulé BPSK résultant sPSK(t), à partir d'une porteuse de fréquence fp.
Dans un exemple pratique, on a par exemple une fréquence fm du signal modulant de 105,9KHz et une fréquence de porteuse fp de 847 KHz (fp multiple de fm, pour avoir une modulation cohérente). Habituellement, par convention le premier changement de phase dans le signal modulé correspond à une première transition descendante équivalente à un bit de départ.
Dans la présente invention, on cherche un dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées. Il s'agit de détecter les changements de phase dans un signal modulé reçu, pour régénérer en sortie un signal démodulé correspondant au signal modulant.
Les dispositifs de démodulation du type analogique utilisent des mélangeurs qui sont trop encombrants et très sujets aux dérives. Ces dispositifs analogiques sont en outre difficiles à mettre en oeuvre en pratique. On pourrait utiliser un dispositif numérique du type à OU exclusif et circuits à retard, mais de tels dispositifs sont très dépendants de la fréquence de modulation. Il faut les adapter pour chaque fréquence de modulation différente.
Le document EP-A-0 576 826 décrit un dispositif de démodulation d'un signal binaire modulé en phase, comprenant une boucle à verrouillage de phase.
Dans l'invention, on a cherché un dispositif de démodulation BPSK capable de détecter les changements de phase sur le signal modulé haute fréquence et qui soit peu sensible aux dérives (de température, de procédé de fabrication) et adapté à une large plage de fréquence de modulation.
Une solution à ce problème technique a été trouvée dans un dispositif de démodulation à boucle à verrouillage de phase, comprenant un comparateur de phase, un filtre et un oscillateur commandé en tension.
Selon l'invention, ledit oscillateur est tel qu'il délivre en sortie un signal binaire synchrone du signal modulé, de fréquence égale à N fois la fréquence porteuse, la bouclé à verrouillage de phase comprenant en outre un diviseur par N de la sortie de l'oscillateur pour l'appliquer en entrée du comparateur de phase, et le dit signal de sortie de l'oscillateur étant appliqué comme horloge d'un premier compteur pour mesurer la durée des niveaux hauts du signal modulé et d'un deuxième compteur pour mesurer la durée des niveaux bas du signal modulé.
La sortie du premier compteur est utilisée pour délivrer en sortie un premier signal de détection de changement de phase sur le niveau haut, quand le comptage atteint un nombre prédéterminé. De même, la sortie du deuxième compteur est utilisée pour délivrer en sortie un deuxième signal de détection de changement de phase sur le niveau bas, quand le comptage atteint un nombre prédéterminé.
Ces signaux de détection de changement de phase sont appliqués à une bascule RS, dont la sortie fournit le signal démodulé.
Dans un exemple, si le changement de phase sur le niveau haut du signal modulé sPSK(t) correspond à une transition descendante du signal modulant sm(t) et le changement de phase sur le niveau bas du signal modulé sPSK(t) correspond à une transition montante du signal modulant sm(t), on appliquera le premier signal de détection sur l'entrée /R de mise à zéro de la bascule RS, tandis que le deuxième signal de détection sera appliqué sur l'entrée /S de mise à un de cette bascule. Dans le cas contraire, c'est le deuxième signal de détection que l'on appliquera sur l'entrée de mise à zéro et le premier signal sur l'entrée de mise à un de la bascule RS.
De préférence, pour améliorer la tenue aux dérives de température et celles dues aux variations inhérentes au procédé de fabrication, on prévoit que le filtre passe-bas de la boucle à verrouillage de phase comprend des éléments de résistance et de capacité sur-dimensionnés.
D'autres caractéristiques et avantages de l'invention sont détaillés dans la description suivante faite à titre indicatif et nullement limitatif et en référence aux dessins annexés, dans lesquels :
  • les figures 1 et 2 déjà décrites représentent un exemple de signal modulant sm(t) avec un codage de type NRZ et le signal sPSK(t) modulé BPSK correspondant;
  • la figure 3 représente un dispositif de démodulation BPSK selon l'invention;
  • la figure 4 représente un diagramme temporel d'un exemple de séquence du signal modulant sm(t) et le signal modulé SPSK(t), le signal de sortie de l'oscillateur commandé en tension SVCO(t), les signaux de détection de changement de phase D2, D3 et le signal démodulé D4 correspondants et
  • la figure 5 représente un autre diagramme temporel montrant un exemple de séquence pour les signaux de détection D2 et D3 et le signal démodulé D4 correspondant, obtenu en sortie de la bascule RS.
La figure 3 représente un dispositif de démodulation BPSK selon l'invention.
Il comprend une boucle à verrouillage de phase PLL. Cette boucle à verrouillage de phase comprend un comparateur de phase CP, suivi d'un filtre passe-bas FPB et un oscillateur commandé en tension VCO par la sortie du filtre. Selon l'invention, la boucle à verrouillage de phase comprend en outre un diviseur par N, noté DIV, entre la sortie de l'oscillateur contrôlé en tension et une entrée e2 du comparateur de phase CP. L'autre entrée e1 du comparateur de phase CP reçoit le signal modulé sPSK(t).
On note fp la fréquence de la porteuse du signal modulé sPSK(t).
Lorsque la boucle du circuit de boucle à verrouillage de phase PLL est accrochée, l'oscillateur VCO selon l'invention est tel qu'il fournit en sortie un signal binaire synchrone sVCO(t), de fréquence f0 égale à N fois la fréquence porteuse fp (N différent de 1). On retrouve en entrée e2 du comparateur un signal synchrone de fréquence égale à la fréquence porteuse fp du signal modulé sPSK(t).
Le dispositif de démodulation selon l'invention comprend en outre un premier compteur CO1 pour mesurer la durée des niveaux hauts du signal modulé. Ce compteur CO1 reçoit sur son entrée RAZ de remise à zéro, le signal modulé sPSK(t). Il reçoit sur son entrée horloge H, le signal de sortie sVCO(t) de fréquence f0=N.fp de l'oscillateur VCO. Ainsi, les niveaux bas du signal sPSK(t) remettent à zéro le compteur, tandis que le comptage des impulsions de fréquence f0 se fait sur les niveaux hauts. Les sorties QA, QB, QC, et QD du compteur indiquent le nombre d'impulsions de fréquence f0 comptées pour chaque niveau haut du signal modulé.
Le dispositif de démodulation comprend un deuxième compteur CO2 pour mesurer la durée des niveaux bas du signal modulé. Ce compteur reçoit sur son entrée RAZ de remise à zéro, l'inverse du signal modulé sPSK(t). Il reçoit sur son entrée horloge H, le signal de sortie de l'oscillateur VCO. Ainsi, le signal sPSK(t) est utilisé pour remettre à zéro le compteur sur chaque niveau haut, tandis que le comptage des impulsions de fréquence f0 se fait sur les niveaux bas. Les sorties QA, QB, QC, et QD du compteur indiquent le nombre d'impulsions de fréquence f0 comptées pour chaque niveau bas du signal modulé.
Dans l'exemple représenté, les sorties de chaque compteur sont appliquées à un décodeur respectif, apte à détecter un changement de phase. En effet, un changement de phase sur un niveau se traduit par une durée double de la normale. Ce détecteur consiste donc en un décodeur d'un nombre déterminé d'impulsions. Dans un exemple, si on choisit N=8, c'est à dire f0=8.fp, la durée normale d'un niveau haut (ou d'un niveau bas) du signal modulé sPSK (t) correspond normalement à 4 impulsions de fréquence f0. Dans le cas où l'on a un changement de phase sur ce niveau, ce niveau dure deux fois plus longtemps (une demi-période supplémentaire). Ainsi, au lieu de quatre impulsions, ce niveau avec changement de phase correspond à huit impulsions de fréquence f0. Pour détecter un changement de phase, il suffit de détecter que ce niveau dure plus de 4 impulsions de signal sVCO(t). Dans cet exemple avec N=8, on peut être certain que l'on a un changement de phase à partir de six ou sept impulsions. C'est le seuil de détection. Dans cet exemple, il suffit de décoder les sorties QB et QC, pour détecter le couple (Qb Qc) = (1, 1). Ainsi, dès que le détecteur décode que 6 impulsions ont été comptées, il génère en sortie une impulsion de détection de changement de phase. Dans l'exemple représenté, le décodeur est une simple porte NAND. La sortie de ce décodeur est le signal de détection de changement de phase sur le niveau correspondant du signal modulé sPSK(t).
Les sorties QB, QC du premier compteur sont ainsi appliquées à un premier détecteur DEC1 réalisé par une porte NAND, pour détecter un changement de phase sur le niveau haut. Le signal de détection de changement de phase sur le niveau haut, en sortie de ce décodeur, est noté D3.
De même, les sorties QB, Qc du deuxième compteur sont appliquées à un deuxième détecteur DEC2 réalisé par une porte NAND, pour détecter un changement de phase sur le niveau bas du signal modulé sPSK(t). Le signal de détection de changement de phase sur le niveau bas du signal modulé sPSK(t), en sortie de ce décodeur, est noté D2.
Le comptage des impulsions et le décodage du nombre d'impulsions peuvent être effectués de différentes manières. Dans un autre exemple de réalisation, on peut utiliser comme compteur, un compteur à sortie décimale décodée, avec entrée de remise à zéro RAZ. Dans cet exemple, le compteur fournit directement en sortie le signal de détection de changement de phase, sans logique supplémentaire. Ainsi, de manière générale, on utilise la sortie de chaque compteur, directement ou avec une logique supplémentaire, pour fournir le signal de détection correspondant.
Le dispositif de démodulation comprend enfin un circuit pour générer un signal démodulé, noté D4 à partir de ces deux signaux de détection de changement de phase. On utilise ces signaux pour forcer en sortie soit un passage au niveau haut soit un passage au niveau bas. Si par exemple, le changement de phase sur le niveau haut du signal modulé sPSK(t) correspond à une transition descendante du signal modulant sm(t) et le changement de phase sur le niveau bas du signal modulé sPSK(t) correspond à une transition montante du signal modulant sm(t), on utilisera le premier signal de détection D3 pour forcer la mise à "0" et le deuxième signal de détection, D2, pour forcer la mise à "1" du signal démodulé.
Le circuit de génération du signal démodulé à partir de ces signaux D2 et D3 est par exemple une bascule RS, dont l'entrée /R de mise à 0 reçoit le signal D3 et dont l'entrée de mise à 1 /S reçoit le signal D2. La sortie Q de cette bascule RS fournit le signal démodulé attendu, noté D4, comme représenté sur la figure 4. Ceci vaut pour un signal de détection D3 correspondant à une transition descendante du signal modulant, le signal de détection D2 correspondant alors à une transition montante du signal modulant. Dans le cas contraire, c'est le signal D2 que l'on appliquera sur l'entrée de mise à zéro et le signal D3 que l'on appliquera sur l'entrée de mise à 1.
Cette invention s'applique à tous les types de codage binaire qui peuvent être utilisés pour le signal modulant. Le code utilisé n'a aucune incidence sur le dispositif de démodulation selon l'invention, basé sur la détection des changements de phase.
En pratique, on a pu montrer que le dispositif de démodulation selon l'invention fonctionne dans une plage de fréquence de modulation très large, correspondant à la plage de capture de la boucle à verrouillage de phase. Dans l'exemple d'une fréquence de porteuse typique à 847 KHz, le dispositif de démodulation selon l'invention fonctionne dans une plage de fréquence de capture de la boucle à verrouillage de phase allant de 620 KHz à 1.15 MHz.
En outre, en utilisant des éléments de résistance et de capacité sur-dimensionnés dans le filtre passe-bas de ladite boucle, par exemple dans un rapport 10, on améliore la tenue aux dérives de température et de procédé de fabrication du dit dispositif, car aucun élément du dispositif de démodulation selon l'invention n'est critique.
La présente invention est particulièrement adaptée à la transmission de données entre une carte à micromodules dite smart card, du type sans contact et un système applicatif comprenant un lecteur d'une telle carte. Dans une telle application, on retrouve un dispositif de démodulation selon l'invention dans le système de lecture.

Claims (6)

  1. Dispositif de démodulation d'un signal binaire de fréquence porteuse fp, modulé en phase (sPSK(t)) par les impulsions codées d'un signal modulant sm(t), comprenant une boucle à verrouillage de phase (PLL) caractérisé en ce que la boucle à verrouillage de phase comprend un comparateur de phase (CP) suivi d'un filtre passe-bas (FPB) et un oscillateur contrôlé en tension (VCO) par la sortie du filtre, l'oscillateur contrôlé en tension délivrant en sortie un signal binaire (sVCO (t)) synchrone du signal modulé (sPSK(t)) et ayant une fréquence (f0), égale à N fois la fréquence porteuse fp, la boucle à verrouillage de phase comprenant en outre un diviseur par N du dit signal de sortie (sVCO(t)) de l'oscillateur, pour appliquer sur une entrée (e2) du comparateur de phase (CP), un signal binaire synchrone du signal modulé et de fréquence, la fréquence porteuse fp, l'autre entrée (e1) du comparateur de phase recevant ledit signal modulé (sPSK(t)), le signal de sortie (sVCO(t)) de l'oscillateur étant appliqué comme horloge (H) d'un premier compteur binaire (CO1) pour mesurer la durée des niveaux hauts du signal modulé (sPSK(t)) et comme horloge d'un deuxième compteur binaire (CO2) pour mesurer la durée des niveaux bas du dit signal modulé, afin de détecter les changements de phase sur ces niveaux.
  2. Dispositif de démodulation selon la revendication 1, caractérisé en ce que le premier compteur (CO1) et le deuxième compteur (CO2) fourni sont adaptés pour respectivement un premier signal (D3) de détection de changement de phase sur le niveau haut du signal modulé et un deuxième signal (D2) de détection de changement de phase sur le niveau bas du signal modulé lorsque le nombre d'impulsions comptées dans le compteur respectif dépasse un nombre prédéterminé.
  3. Dispositif de démodulation selon la revendication 2, caractérisé en ce que le dispositif de démodulation comprend une bascule (RS), le premier signal de détection (D3) correspondant à une transition descendante du signal modulant sm(t) étant appliqué sur l'entrée de mise à zéro (/R), le deuxième signal de détection (D2) correspondant à une transition montante du signal modulant étant appliqué sur l'entrée de mise à un (/S), cette bascule donnant en sortie le signal démodulé (D4).
  4. Dispositif de démodulation selon l'une quelconque des revendications précédentes, caractérisé en ce que N est égal à 8.
  5. Dispositif de démodulation selon l'une quelconque des revendications précédentes, caractérisé en ce que le filtre passe-bas (FPB), comprend des éléments de capacité et de résistance sur-dimensionnés.
  6. Application d'un dispositif de démodulation selon l'une quelconque des revendications précédentes, à une carte à micromodule du type sans contact et à un système de lecture correspondant.
EP99400126A 1998-01-21 1999-01-20 Dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées Expired - Lifetime EP0932283B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800584 1998-01-21
FR9800584A FR2773933B1 (fr) 1998-01-21 1998-01-21 Dispositif de demodulation d'un signal binaire module en phase par impulsions codees

Publications (2)

Publication Number Publication Date
EP0932283A1 EP0932283A1 (fr) 1999-07-28
EP0932283B1 true EP0932283B1 (fr) 2001-06-13

Family

ID=9521971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400126A Expired - Lifetime EP0932283B1 (fr) 1998-01-21 1999-01-20 Dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées

Country Status (4)

Country Link
US (1) US6140869A (fr)
EP (1) EP0932283B1 (fr)
DE (1) DE69900140T2 (fr)
FR (1) FR2773933B1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164811A (ja) 2000-11-24 2002-06-07 Toshiba Corp 時期同定方法、時期同定装置および時期同定システム
JP2009250807A (ja) * 2008-04-07 2009-10-29 Seiko Epson Corp 周波数測定装置及び測定方法
JP2010271091A (ja) 2009-05-20 2010-12-02 Seiko Epson Corp 周波数測定装置
JP5440999B2 (ja) 2009-05-22 2014-03-12 セイコーエプソン株式会社 周波数測定装置
JP5517033B2 (ja) 2009-05-22 2014-06-11 セイコーエプソン株式会社 周波数測定装置
JP5582447B2 (ja) 2009-08-27 2014-09-03 セイコーエプソン株式会社 電気回路、同電気回路を備えたセンサーシステム、及び同電気回路を備えたセンサーデバイス
JP5815918B2 (ja) 2009-10-06 2015-11-17 セイコーエプソン株式会社 周波数測定方法、周波数測定装置及び周波数測定装置を備えた装置
JP5876975B2 (ja) 2009-10-08 2016-03-02 セイコーエプソン株式会社 周波数測定装置及び周波数測定装置における変速分周信号の生成方法
RU2451408C2 (ru) * 2010-01-22 2012-05-20 Федеральное государственное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ Устройство синхронизации несущей и опорной частот в канале связи со значительными частотными нестабильностями и ограничениями на энергетику
JP5883558B2 (ja) 2010-08-31 2016-03-15 セイコーエプソン株式会社 周波数測定装置及び電子機器
RU2454015C1 (ru) * 2010-10-18 2012-06-20 Открытое акционерное общество "Омский научно-исследовательский институт приборостроения" (ОАО "ОНИИП") Способ демодуляции частотно-манипулированных абсолютно-биимпульсных сигналов, используемых для передачи информации по коротковолновому каналу связи
RU2445732C1 (ru) * 2011-01-11 2012-03-20 Открытое акционерное общество "Концерн "Созвездие" Способ радиосвязи с множественным доступом
RU2446560C1 (ru) * 2011-01-11 2012-03-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования Сибирский федеральный университет (СФУ) Устройство ускоренной синхронизации приемника шумоподобных сигналов с минимальной частотной манипуляцией
RU2625529C2 (ru) * 2014-09-12 2017-07-14 Открытое акционерное общество "Научно-исследовательский институт автоматизированных систем и комплексов связи "Нептун" Демодулятор псевдослучайных сигналов с относительной фазовой модуляцией
US9893916B2 (en) * 2016-07-01 2018-02-13 Texas Instruments Incorporated Methods and apparatus for performing a high speed phase demodulation scheme using a low bandwidth phase-lock loop
RU2752650C1 (ru) * 2020-12-28 2021-07-29 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет аэрокосмического приборостроения" Способ передачи дискретных сигналов на основе частотной модуляции

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2265140A1 (en) * 1974-03-19 1975-10-17 Labo Cent Telecommunicat Bit frequency restitution system - detects phase transitions and compares message phase w.r.t. reference
US3852811A (en) * 1974-04-10 1974-12-03 Singer Co Digital data encoding and reconstruction circuit
EP0576826B1 (fr) * 1992-05-29 2001-02-28 Sony Corporation Démodulateur pour signaux modulés en sauts de phase
FR2738423B1 (fr) * 1995-08-30 1997-09-26 Snecma Demodulateur de frequence numerique
GB2308948B (en) * 1996-01-06 1999-11-24 Motorola Inc Data Transfer Circuit and Method

Also Published As

Publication number Publication date
US6140869A (en) 2000-10-31
FR2773933B1 (fr) 2000-03-03
FR2773933A1 (fr) 1999-07-23
DE69900140D1 (de) 2001-07-19
DE69900140T2 (de) 2001-09-27
EP0932283A1 (fr) 1999-07-28

Similar Documents

Publication Publication Date Title
EP0932283B1 (fr) Dispositif de démodulation d'un signal binaire modulé en phase par impulsions codées
US4167760A (en) Bi-phase decoder apparatus and method
FR2498032A1 (fr) Synchroniseur de bits pour signaux numeriques
EP0421897B1 (fr) Extracteur de données numériques dans un signal vidéo
WO1998002840A1 (fr) Demodulateur d'un signal recu dans une bobine par induction electromagnetique
US7123678B2 (en) RZ recovery
EP0012880B1 (fr) Procédé de décodage de données binaires codées en phase, modulation de fréquence et modulation de fréquence modifiée
EP1163771B1 (fr) Decodeur bpsk synchrone
EP1101316B1 (fr) Procede de recuperation d'horloge lors de l'echantillonnage de signaux de type numerique
WO2010128030A1 (fr) Démodulateur et système de transmission d'informations modulées, notamment pour étiquette d'identification radiofréquence
EP0072848A1 (fr) Detecteur biphase.
FR2717646A1 (fr) Dispositif numérique de récupération large bande d'une porteuse.
US4499425A (en) Phase velocity sign detector for frequency shift key demodulation
EP0461022A1 (fr) Dispositif de récupération d'une onde porteuse muni d'un moyen d'inhibition de faux accrochages en frÀ©quence
EP1536566B1 (fr) Circuit électronique de décodage d'un signal de données asynchrone biphase et procédé de décodage correspondant, dispositif de controle d'un équipement
JPH02153629A (ja) バイポーラパターン中心推定器
EP0905946A1 (fr) Commande d'échantillonnage d'un signal biphase
EP0417681B1 (fr) Dispositif de synchronisation à deux modes, notamment pour la récupération de la phase de l'horloge trame dans un système de transmission à l'alternat
BE897202A (fr) Appareil pour detecter des erreurs dans un flux de donnees numeriques cote selon un code a double densite
US7626451B2 (en) Data demodulation using an asynchronous clock
CA2204275A1 (fr) Boucle a verrouillage de phase numerique pour recuperation d'horloges
EP0016692B1 (fr) Circuit comparateur de fréquences et dispositif d'appel sélectif comportant un tel circuit
EP1261182B1 (fr) Récepteur de signaux modulés en fréquence avec démodulateur numérique
EP0407956A1 (fr) Procédé de codage différentiel pour un système de modulation en sauts de phase
FR2579042A1 (fr) Procede d'extraction d'un signal d'horloge synchrone a partir d'un signal code en simple ou double intensite, et dispositif permettant la mise en oeuvre du procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991222

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20000511

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: BPSK DEMODULATOR FOR A PCM SIGNAL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TROISE, CYRIL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20010613

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010614

REF Corresponds to:

Ref document number: 69900140

Country of ref document: DE

Date of ref document: 20010719

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STMICROELECTRONICS S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030120

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080131

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120127

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69900140

Country of ref document: DE

Effective date: 20130801