EP0932117B1 - Touchpad providing screen cursor/pointer movement control - Google Patents

Touchpad providing screen cursor/pointer movement control Download PDF

Info

Publication number
EP0932117B1
EP0932117B1 EP19990300408 EP99300408A EP0932117B1 EP 0932117 B1 EP0932117 B1 EP 0932117B1 EP 19990300408 EP19990300408 EP 19990300408 EP 99300408 A EP99300408 A EP 99300408A EP 0932117 B1 EP0932117 B1 EP 0932117B1
Authority
EP
Grant status
Grant
Patent type
Prior art keywords
array
fig
surface
output
fingertip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19990300408
Other languages
German (de)
French (fr)
Other versions
EP0932117A2 (en )
EP0932117A3 (en )
Inventor
Alberto Ferrari
Marco Tartagni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics lnc
Original Assignee
STMicroelectronics lnc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/82Protecting input, output or interconnection devices
    • G06F21/83Protecting input, output or interconnection devices input devices, e.g. keyboards, mice or controllers thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control and interface arrangements for touch screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00006Acquiring or recognising fingerprints or palmprints
    • G06K9/00013Image acquisition
    • G06K9/0002Image acquisition by non-optical methods, e.g. by ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/033Indexing scheme relating to G06F3/033
    • G06F2203/0338Fingerprint track pad, i.e. fingerprint sensor used as pointing device tracking the fingertip image

Description

  • [0001]
    US. Patent Application Serial No. 08/799,548 (cited within US Patent No. 6114862 issued on 5 September 2000 as a continuation in-part from US Patent Application Serial No. 08/799,548) by Marco Tartagni, filed February 13, 1997, and entitled CAPACITIVE DISTANCE SENSOR is hereby referenced. This application described an Integrated Circuit (IC) capacitive distance sensor having a number of uses, including fingerprint acquisition. In this solid-state IC device, a portion of which is shown in FIGS. 1-3 of the present application, each individual cell 2 of a multi-cell array 3 includes a pair of flat metal armatures 23,24 that are spaced from each other in a horizontal plane to form a capacitor and to define a vertical distance "d" that is to be measured. Each cell 2 also includes the amplifier means shown in FIG. 2 wherein amplifier input 16 is connected to one armature 24, and wherein amplifier output 17 is connected to the other armature 23, to thereby provide a negative feedback circuit 17,23,25,18,24,16.
  • [0002]
    This invention relates to the field of the manual control of a cursor, or pointer on a display screen, such as a computer display monitor or a television (TV) set.
  • [0003]
    The prior art provides two general types of devices that achieve screen cursor/pointer movement control.
  • [0004]
    In a first type of device, of which a mouse is an example, continuous manual movement of the mouse across a generally horizontal surface is required in order to produce a continuous and corresponding direction of movement of the cursor/pointer across the display screen. This cursor/pointer movement stops when movement of the mouse stops. When the cursor/pointer must be moved a large screen distance, it is usually necessary to lift the mouse off of the surface, and then retrace the mouse over the horizontal surface one or more times.
  • [0005]
    In a second type of device, of which a joystick is an example, as long as the joystick is manually held in an off-center position, the cursor/pointer continuously moves in a corresponding direction across the screen. In order to stop this cursor/pointer movement, the joystick is returned to its center or neutral position.
  • [0006]
    The present invention will be described relative to embodiments of a fingertip operated capacitance touchpad whose end-result operation is generally the same as a joystick; however, the scope of the invention is not to be limited in this manner. That is, a fingertip position on the capacitance touchpad of the present invention produces cursor/pointer screen movement in accordance with the fingertip's position. The present invention finds particular utility in replacing glidepoint and trackpoint devices often found in portable computers, such as laptop computers and palmtop computers.
  • [0007]
    Embodiments of the present invention relate to a use of, and modifications to, a capacitance distance/fingerprint sensor, such as is described in the above-mentioned related patent application. The general use of capacitance-type sensors is known.
  • [0008]
    For example, the publication SENSORS AND ACTUATORS, Jan/Feb 1989, no. 1/2, at pages 141-153, contains an article entitled INTEGRATED TACTILE IMAGER WITH AN INTRINSIC CONTOUR DETECTION OPTION that was presented at the Fourth International Conference on Solid-State Sensors and Actuators (Transducers '87), Tokyo, Japan, June 2-5, 1987.
  • [0009]
    This article describes an integrated capacitive tactile imaging sensor that comprises a multi-layer construction having a bottom ceramic support, a 9-row/9-column array of square aluminum electrodes that are contained on a silicon wafer integrated circuit, a flexible and isolating intermediate layer that is made up of natural rubber, a thin conductive rubber layer, and a top protective layer. In this device, capacitance depends upon local deformation of the natural rubber layer. The 81 individual aluminum electrodes of this device provide capacitive measurement of an indentation pattern within the natural rubber layer, this indentation being caused by a pressure distribution that acts on the top protective layer.
  • [0010]
    The use of a capacitance-type sensor to sense the minutiae of a fingerprint is also known.
  • [0011]
    For example, the publication IEEE ELECTRON DEVICE LETTERS, VOL. 18, NO 1, January 1997, pages 19-20, contains an article entitled NOVEL FINGERPRINT SCANNING ARRAYS USING POLYSILICON TFT'S OF GLASS AND POLYMER SUBSTRATES. This article describes a two-dimensional (2-D), 200x200, capacitance sensing array that is made up of 40,000 individual pixels. Each pixel of the array includes two Thin Film Transistors (TFTs) and a capacitor plate. Each array pixel resides at the intersection of an array-row and an array-column, and each array pixel is individually addressable by way of row-driver circuits and column-driver circuits.
  • [0012]
    Considering the two TFTs, hereinafter called TFT-A and TFT-B that are associated with a given pixel, the drain electrodes of TFT-A and TFT-B are connected to the pixel's capacitor plate, the gate electrode and the source electrode of TFT-A are connected to a row-conductor that is associated with the pixel, the gate of TFT-B is connected to the following row-conductor, and the source of TFT-B is connected to a column-conductor that is associated with the pixel.
  • [0013]
    A thin (0.1 micrometer) silicon nitride insulator overlies the capacitor plate of each array pixel. When the ridge of a fingerprint lies directly over the capacitor plate, a capacitor is formed between the capacitor plate and the finger. This capacitor is charged when a row-pulse (8 to 10 VDC, and of 10 to 100 microsecond duration) is applied to the pixel by way of the row conductor that is associated with this pixel and TFT-A. This stored charge is thereafter transferred onto the pixel's column-conductor through TFT-B when a row-pulse is applied to the following row-electrode.
  • [0014]
    Also of interest is the publication 1997 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE that contains an article beginning at page 200 entitled A 390DPI LIVE FINGERPRINT IMAGER BASED ON FEEDBACK CAPACITIVE SENSING SCHEME. This article describes a single-chip, 200x200 element array, 2-metal digital CMOS technology sensor that is based upon feedback capacitance sensing, and that operates to detect the electrical field variation that is induced by the finger's skin surface. In each element of the array, two horizontally spaced metal plates are separated from the overlying and adjacent portion of the finger's skin surface by passivation oxide. Since the distance between the skin and the sensor's surface identifies the presence of the fingerprint's ridges and valleys, an array of elements provides a complete fingerprint pattern.
  • [0015]
    In each element of the array, the two metal plates are respectively connected to the input and the output of a high-gain inverter, to thereby form a charge integrator. In operation, the charge integrator is first reset by shorting the input and output of the inverter. A fixed amount of charge is then sinked from the input, causing the output voltage to swing inversely proportional to a feedback capacitance value that is inversely proportional to the distance to the fingerprint's ridges and valleys. The array of cells, or sensors, thus provides the complete fingerprint pattern. The fingerprint image disappears when the finger is removed from the array.
  • [0016]
    U.S. Patent 4,353,056, hereby referenced, is of interest in that it relates to a capacitance-type fingerprint sensor wherein a finger is pressed onto the surface of the sensor in order to read the ridges and valleys of the fingerprint. The sensor surface has a large number of capacitors of a small physical size associated therewith. Two sensors are described. In a first type of sensor, an electrical insulator carries a number of flexible and horizontally spaced curved metal electrodes, and two adjacent metal electrodes which comprise one capacitor. A protective insulating film overlies the electrical insulator, and when a finger is brought into physical contact with this protective insulating film, the metal electrodes are physically deformed, thereby selectively changing the capacitance of the large number of capacitors in accordance with the fingerprint's ridge/valley pattern. In a second type of sensor, the top surface of a rigid support carries a number of horizontally spaced and flat metal electrodes in a fixed position. Placed above the plane of the metal electrodes is the sequential arrangement of a flexible insulator, a flexible electrode, and a flexible protective membrane. A capacitor is formed between the top flexible electrode and each of the lower and fixed position flat metal electrodes. When the end of a finger is brought into contact with the flexible membrane, the flexible electrode becomes wavy in accordance with the fingerprints' ridges/valleys pattern.
  • [0017]
    In addition, U.S. Patent 5,325,442, hereby referenced, relates to a capacitance-type fingerprint sensor having a sensing pad that comprises a planar array of row/column sensing elements having a pitch of about 100-micrometers. Each sensing element is located at the intersection of a row conductor and a column conductor, and in each sensing element, a sensing capacitor comprises a planar sensing electrode that is spaced from a finger surface by way of an insulating film that overlies the sensing electrode. The plurality of sensing electrodes that make up the array are regularly spaced and equal size rectangles.
  • [0018]
    The sensing elements are fabricated using photolithographic processes, and each individual sensing element includes a Thin-Film-Transistor (TFT) in the form of a Field-Effect-Transistor (FET). Each FET gate is connected to a row conductor, each FET source is connected to a column conductor, and each FET drain is connected to a sensing electrode.
  • [0019]
    In one embodiment, each sensing element comprises a sensing capacitor that is formed between a sensing electrode and the finger. In another embodiment, each sensing element includes an electrically isolated and conducting pad that is physically engaged by the finger.
  • [0020]
    European patent application EU 96830068.1 (EP790479) is also of interest. This application discloses an array of capacitance sensors that are operable to detect the fingerprint pattern of a finger that is touching the top or upper surface of the array.
  • [0021]
    U.S. Patent Nos. 5,374,787, 5,495,077, and 5,648,642 are of interest in that they provide object/proximity detectors having a plurality of sensor pads/lines that are disposed in a row/column matrix.
  • [0022]
    U.S. Patent 5,543, 588 is of interest in that it discloses a hand-held device having a disposed screen on one side thereof and a touch sensitive transducer disposed on the opposite side.
  • [0023]
    U.S. Patent Nos. 5,543,590 and 5,543,591 are of interest in that they disclose a device for moving a cursor on a display screen wherein a sensing plane includes a matrix of row/column oriented conductor lines.
  • [0024]
    While prior devices as above described are generally useful for their limited intended purposes, a need remains in the art for a capacitance-type touchpad that operates to simulate a joystick or a mouse wherein the position of a fingertip on the upper surface of the capacitance touchpad produces cursor/pointer screen movement.
  • [0025]
    This invention may be based upon the use of a matrix array of capacitance sensors; for example, a matrix array as is shown in above-mentioned European patent application BU96830068.1 (EP790479).
  • [0026]
    The array of this invention can be initially used to acquire a user fingerprint; for example, as a user-identification (ID) procedure that occurs during log-on to a device, such as a laptop or a palmtop computer. Subsequent operation of the computer often requires control of the movement of a cursor across a display screen. The array of this invention also provides this cursor movement.
  • [0027]
    That is, when a user first logs onto the computer, the array of this invention captures a fingerprint pattern that is used to determine user authorization. Thereafter, the array is used to provide screen cursor/pointer control, with the cursor/pointer moving across the screen by virtue of the position of a fingertip on the upper surface of the array. This fingertip position is achieved, after fingerprint acquisition, only by rolling and/or pitching the fingertip on the top surface of the array. In an embodiment of the invention, cursor/pointer movement stops when the fingertip is removed from the array, or when the fingertip is moved to a mid-position on the top surface of the array.
  • [0028]
    During log-on, when the user is being identified/verified by comparing a sensor-acquired fingerprint pattern to memory-stored fingerprint patterns, the individual cell output of the array is serially scanned. Thereafter, and as the array is used in accordance with this invention, in order to achieve screen cursor/pointer control, the individual cell output of the array need not be scanned. Rather, each individual cell output of the array is connected to a corresponding individual node of a row/column resistive network.
  • [0029]
    While embodiments of the invention will be described relative to features, such as cursor control, utility is also found in aplications such as ATM machines, wherein user fingerprint authorization is first obtained, followed by using the array as an input device for choice selection and Yes/No responses to the ATM machine.
  • [0030]
    The sensing array of this invention can also be used as a pointing device in a 3D virtual reality application, in which case, the array is mounted over a structure that follows the movement of the fingers of a user's hand. In this way, a user is enabled to make selections using a finger and a 3D virtual menu, and in 3D virtual games, the array can be used to sense planar X,Y direction as well as Z direction commands.
  • [0031]
    The array of this invention provides X-direction cursor/pointer movement commands (i.e., left/right screen movement commands) as the fingertip is moved, or rolled sideways, on the array's upper surface. The array of this invention provides Y-direction cursor/pointer movement commands (i.e., up/down screen movement commands) as the fingertip is moved or pitched end to end on the upper surface of the array. The array of this invention provides Z-information, or switch-closed information, as the fingertip is pressed vertically down into the upper surface of the array. The upper surface of the array of this invention is about 1 cm square, and usually cooperates with the tip of a user's index finger.
  • [0032]
    When the gain of such a capacitance fingerprint sensing cell (for example, as is shown in the above-mentioned EU patent application) is adjusted to be high, or when the resolution of the array is low, the electrical output of the array is a two-dimensional "electronic picture" having a bright blob on a dark background. The position of the blob within this electronic picture corresponds to the contact area of the fingertip with the upper surface of the sensor.
  • [0033]
    The first moment coordinates of the position of this blob, or brightness function, encodes the X displacement and the Y displacement, or the fingertip position on the upper surface of the array, while the zero-moment value of this brightness function encodes the fingertip's downward pressure function.
  • [0034]
    In order to calculate the X output and Y output of the array, two options are available. First, the entire electronic image of the array, or picture, is transferred into a computation system where these two outputs (also called "mass" and "centroid") are calculated using hardware or software techniques. Second, analog computation is performed directly on the picture output of the sensor.
  • [0035]
    Relative to FIG. 8, the two-dimension (2D) electronic signal output, or pattern of the array which encodes the touching function of a fingertip on the upper surface of the array, is injected into a 2D pseudo-resistive network, as shown in FIG. 8. This network now detects the centroid, or first-moment and mass, or second moment of the incoming array output signal. The functions centroid and mass are calculated simultaneously by the FIG. 8 arrangement.
  • [0036]
    In accordance with a feature of this invention, the pseudo-resistive network of FIG. 8 can be embedded within the sensor array of FIG. 1 using integrated circuit techniques, to thereby provide an integrated device. For example, each resistor of FIG. 8 can be implemented with a MOS transistor, as taught and illustrated in an article by M. Tartagni and P. Persona entitled "COMPUTING CENTROIDS IN CURRENT-MODE TECHNIQUE" in the publication ELECTRIC LETTERS (29 (21), 1811-1813, October 1993.
  • [0037]
    There is provided according to the present invention a capacitance touchpad according to claim 1.
  • [0038]
    While the invention will be described while making comparisons to the well-known joy-stick type of device, those skilled in the art will recognize that the invention also finds utility in replacing mouse-like devices.
  • [0039]
    These and other object, features and advantages of this invention will be apparent to those of skill in the art upon reference to the following detailed description of preferred embodiments of the invention, which description makes reference to the drawing.
    • FIGS. 1, 2 and 3 relate to the above-mentioned related U.S. patent application, and are used in embodiments of this invention.
    • FIG. 4 is a flowchart that shows a fingerprint pattern acquisition process whereby a FIG. 1-3 arrangement is initially used during an initial user authorization log-on procedure, which user thereafter uses a version of the FIG. 1-3 arrangement in capacitive touchpad arrangements of the present invention in order to generate a cursor/pointer screen directional movement control signal.
    • FIGS. 5A through 51 show a two-dimensional (2D) electrical picture signal that is generated by the capacitance touchpad of this invention for various positions of a fingertip on the touchpad upper surface, each of these figures having a mass outline and a centroid-dot that is located within the mass outline.
    • FIG. 6 shows the Y-direction pitching of a fingertip end to end on the touchpad upper surface.
    • FIG. 7 shows the X-direction rolling of a fingertip side to side on the touchpad upper surface.
    • FIG. 8 is a circuit embodiment of this invention wherein the amplifier output signal from each of 25 sensor cells of a modified FIG. 1 are connected to a corresponding one of 25 resistor nodes within a row/column resistor network or array.
    • FIG. 9 shows one individual resistor node of FIG. 8 connected to receive the output of a corresponding individual amplifier of the type shown in FIGS. 2-3, FIG. 9 also showing four resistors that interconnect this resistor-node to adjacent resistor nodes.
  • [0040]
    The various figures are provided with a X-Y-Z three-dimensional coordinate system, and with legends reading top, bottom, left and right, in order to relate the various figures one to the other, and in order to relate the direction of screen cursor/pointer movement to certain of the figures.
  • [0041]
    FIGS. 1, 2 and 3 correspond to the above-mentioned related U.S. patent application, and versions thereof are usable in embodiments of the present invention.
  • [0042]
    FIG. 1 is a top view of an IC device 1 that includes a generally planar, multiple pixel, multiple row/column, array 3 having a relatively large number of solid state capacitive sensor cells, or nodes 2, that operate to provide a serial signal electrical output 10 that comprises a multiple pixel fingerprint pattern, or electrical signal picture of a fingerprint. As shown, FIG. 1 is taken in the X-Y plane.
  • [0043]
    Array 3 contains the number N of horizontal or X-direction extending rows of individual nodes 2. Each row has the number M of individual nodes 2 therein. Array 3 thus contains the number M of vertically or Y-direction extending columns of individual nodes 2, and each column has the number N of individual nodes 2 therein. The numbers N and M are integers that may or may not be equal to each other. The number of individual picture elements, pixels, nodes, or cells 2 within array 3 is quite large for fingerprint pattern acquisition, and equals the product of MxN. An example is 512x512 pixels, nodes, or cells 2 within array 3, array 3 being of a physical size of about 20 mm to about 25 mm.
  • [0044]
    FIG. 2 shows a fingertip 18 in physical contact with the upper and active surface 125 of array 3.
  • [0045]
    During fingerprint pattern acquisition, each individual cell 2 that is within array 3 is addressable by virtue of each cell being physically located at a unique intersection of a row/column of array 3. The manner in which the individual cells 2 of array 3 are addressed and read out in order to digitize a fingerprint pattern are well known to those of skill in the art, and do not form a limitation on this invention.
  • [0046]
    IC device 1 includes a horizontal scanning stage, or network 6, and a vertical scanning stage or network 5 for sequentially interrogating, or reading, one cell 2 at a time during fingerprint pattern acquisition according to a predetermined scanning pattern. Preferably, stages 5 and 6 comprise shift registers, or decoders, that operate to interrogate the FIG. 2 outputs 17 of cells 2 in a time sequence.
  • [0047]
    IC device 1 also includes a supply/logic stage or network 7 that operates to supply the IC device components, including all cells 2, with necessary operating voltages, and to control the sequence of steps that are necessary for operation of IC device 1. In particular, a DC voltage source 12 provides a DC reference voltage Vr that is referenced to ground potential at 100. A buffer 8 is connected to the outputs 17 of all cells 2. Output 10 of buffer 8 comprises the sequentially arranged output signal of IC device 1, the signal at output 10 being controlled by operation of scanning stages 5 and 6.
  • [0048]
    FIG. 2 schematically shows the circuit of a single cell 2 of the array 3 of FIG. 1. All cells 2 are generally identical in construction and arrangement. Each cell 2 includes a low-power, signal inverting, node-amplifier 13 having an exemplary gain from about 3000 to about 4000.
  • [0049]
    Terminal 21 comprises the input to the circuit of a cell 2, and terminal 21 and input capacitor 20 connect to input 16 of amplifier 13. Terminal 17 comprises the output of cell 2 and its amplifier 13. Each cell 2 also includes two X-Y planar armatures, or metal capacitor plates 23,24, that are of a generally equal X-Y area, and that are horizontally or X-direction spaced from each other within a common X-Y horizontal plane.
  • [0050]
    A thin dielectric layer 25 covers capacitor plates 23,24, and the upper horizontal surface 125 of layer 25 provides an active array surface for physical contact by the skin surface 18 of a finger whose fingerprint is to be sensed, determined or acquired. Dielectric layer 25 may cover the entire face of the upper portion of IC device I that includes array 3 and its individual cells 2.
  • [0051]
    In use for fingerprint pattern acquisition, a fingertip 18 is placed on the upper surface 125 of the dielectric layer 25 of array 3. Skin surface 18 thereby forms an armature, or electrode, that vertically overlies and faces the top, X-Y planar, surfaces of capacitor plates 23,24. Skin surface 18 operates to define with plates 23,24 a first capacitor 34, as shown in FIG. 3, and a second capacitor 33 as shown in FIG. 3. Series connected compound capacitors 33,34 are connected in negative feedback fashion from amplifier output 17 to amplifier input 16.
  • [0052]
    Each FIG. 2 node-amplifier 13 also includes a normally-open start, reset, or control switch 19, preferably in the form of a MOS switch. Switch 19 selectively and momentarily operates to short amplifier input 16 to amplifier output 17. Switch 19 is controlled by a control signal "R" that is provided by the supply and logic unit 7 of FIG. 1. At the start of a fingerprint acquisition operation, switches 19 of all array cells 2 are momentarily closed, and the voltage level at all cell inputs 21 is thus maintained at a constant magnitude. In this way, the input voltage of all cells 2 is brought to the same potential as the cell's output voltage.
  • [0053]
    Shortly thereafter, supply and logic unit 7 operates to open all reset switches 19, and to supply all cell inputs 21 with a step voltage that is equal in magnitude to reference voltage Vr. An electrical charge is now induced at each of the cell input capacitors 20, thus permitting the reading of the local and individual Z-direction cell distances "d" that exist between a cell's capacitor plates 23,24 and the overlying skin surface 18 of the cell.
  • [0054]
    Scanning stages 5,6 of FIG. 1 now operate to sequentially enable the reading or interrogation of the many cells 2 within array 3. In this way, buffer 8 operates to sequentially provide an output 10 in the form of a sequence of gray levels of voltage that provide a three-dimensional readout, and display of the skin surface 18 of the finger that is currently resident on the top surface 125 of array 3.
  • [0055]
    FIG. 3 is an equivalent circuit of the single cell circuit shown in FIG. 2. The input capacitance of amplifier 13 is shown at 30, the output capacitance of amplifier 13 is shown at 31, and the two above-mentioned series connected and skin-sensitive capacitors are shown at 33,34.
  • [0056]
    In accordance with a feature of this invention, the gain of each amplifier 16 can be increased in order to provide an output signal from the FIG. 1 array that comprises the corrected shape 170 shown in the various areas of FIGS. 5A-51. However, this increased gain feature is not required, since this corrected shape can also be calculated over the fingertip's complicated fingerprint pattern because the center of mass of the group of objects comprising the fingerprint is positioned in the center of the group of objects. When the increased gain feature is desired it is implemented by a step change in the magnitude of the voltage Vr of FIG. 1.
  • [0057]
    In use as a capacitance touchpad in accordance with the scope of this invention, the output 17 of all cells 2, or node-amplifiers 13, is a picture-signal that appears as a bright blob 170 that is positioned on a dark background, as is shown in FIGS. 5A-51. The position of this blob 170 within the picture encodes the contact area/position of finger 18 with the top surface 125 of the capacitance touchpad. This blob output signal function 170 can also be achieved by a construction and arrangement that ensures that the resolution of the cell-array matrix is low.
  • [0058]
    FIG. 4 is a flowchart that shows a fingerprint pattern acquisition process, whereby the arrangement of FIGS. 1-3 is used in a low-gain mode during an initial log-on by a computer user, which user thereafter uses the capacitance touchpad construction and arrangement of the present invention to generate a cursor/pointer screen direction/movement control signal, and/or a switch on/off the touchpad signal.
  • [0059]
    During this fingerprint pattern acquisition process, the buffer output 10 from array 3 of FIG. 1 is connected to a processing unit 160. In the sequence of operation, start switches 19 of all cells 2 are momentarily closed, thereafter reference step pulse voltage Vr is applied to all amplifier inputs 21, and thereafter all cell outputs 17 are presented to buffer output 10 in accordance with a sequence that is established by vertical and horizontal scan networks 5,6. As a result, the fingerprint pattern of fingertip 18 is presented as an input 10 to processing unit 160. Connection 10 between array 3 and processing unit 160 is shown to be bi-directional in order to signify the changing of array sensitivity when changing from fingerprint acquisition to touchpad operation.
  • [0060]
    Reference memory 161 contains a number of previously-stored fingerprint patterns; for example, one fingerprint pattern for each authorized user. At step 163, a similar computing unit compares input 10 to the patterns that are contained in memory 162, and when a pattern match is detected, the identity of the current touchpad/computer user is recorded in working memory 164.
  • [0061]
    As will be apparent, after the identity of the current touchpad/computer user has been established, step 165 enables use of the touchpad of this invention as a joystick-type touchpad. As mentioned previously, this joystick-type use of the touchpad takes place in a high-gain mode of FIGS. 1 -3.
  • [0062]
    When the capacitance touchpad of this invention is used in its high-gain mode to achieve cursor/pointer control on a display screen, the composite outputs 17 of all array cells 2 comprises an electronic picture-signal that appears as a bright blob that is positioned on a dark background.
  • [0063]
    FIGS. 5A through 51 show such a picture-signal for various positions of a fingertip 18 on array surface 125. The position of bright blob 170 in each of these figures corresponds to the contact area, or position of fingertip 18 with the top surface 125 of the capacitance touchpad. The center of each blob 170 is shown at 470. As stated previously, a Z-direction depression of fingertip 18 when it is in any of the FIG. 5A-5I positions, modifies or enlarges the mass of bright blob signal 170, so as to provide a switch-closed signal.
  • [0064]
    In FIG. 5A, the fingertip center 470 is located in a mid-position on array surface 125, and in this position, no cursor movement is produced. However, the relatively large mass, or size of blob 170 that is shown in FIG. 5A, is indicative of a switch-closed condition that is produced by pressing fingertip 18 vertically down onto array surface 125.
  • [0065]
    FIG. 6 represents the Y-direction pitching of fingertip 18 end to end on surface 125. In accordance with the direction of this pitching movement, a bright blob 170 is produced, as is shown in FIGS. 5B and 5C. That is, the pitching of fingertip 18 downward in FIG. 6 produces the condition shown in FIG. 58, and upward cursor movement occurs, as is represented by arrow 171. However, when the FIG. 6 pitching of fingertip 18 upward produces the condition of FIG. 5C, downward cursor movement as represented by arrow 172 occurs.
  • [0066]
    FIG. 7 represents the X-direction rolling of fingertip 18 side to side on surface 125. In accordance with the direction of this rolling movement, a blob 170 is produced, as is shown in FIGS. 5E and 5D. That is, the rolling of fingertip 18 to the left in FIG. 7 produces the condition shown in FIG. 5E, and leftward cursor movement occurs, as is represented by arrow 173. However, when the rolling of fingertip 18 to the right produces the condition of FIG. 5D, rightward cursor movement as represented by arrow 174 occurs.
  • [0067]
    In a like manner, FIGS. 5F and 5G show how diagonal cursor movements 175 and 176 occur as a result of the combined pitch and roll of fingertip 18 in one diagonal direction on surface 125, whereas FIGS. 5H and 5I s show how diagonal cursor movements 177 and 178 occur as a result of the combined pitch and roll of fingertip 18 in an orthogonal diagonal direction on surface 125.
  • [0068]
    FIG. 8 is a top view that is taken in the X-Y plane showing an embodiment of this invention having four corner-located current mirrors and adders, or current-buffers 601-604, wherein the amplifier output 17 of each of 25 node-cells 2 is connected to a different one of the 25 nodes 300 of a resistive network 301, each node 300 being established by the intersection of a cell-column C1-C5 with a cell-row R1-R5. Resistive network 301 comprises a pseudo-resistive network having four corner-located current mirrors and adders, or current buffers 601-604, that operates to detect the mass or area and the centroid 470 of the blob signals 170 that are shown in the various ones of figures 5.
  • [0069]
    FIG. 9 shows one individual resistor-network node 300 connected to the output 17 of its corresponding individual FIG. 2 node-amplifier. FIG. 9 also shows four resistors 311 that connect this node 300 to its four adjacent nodes 300. For example, if node 300 of FIG. 9 is the node that is formed by the intersection of node-column C2 and node-row R2, then its amplifier output 17 is the output of the FIG. 2 amplifier that is associated with the FIG. 1 cell that is located at the intersection of cell-column 2 and cell-row 2.
  • [0070]
    In this embodiment of the invention, array 3 of FIGS. 1-3 is first used to acquire user-fingerprint-ID during log-on, as was described relative to FIG.4. Thereafter, output 17 of each of the 25 cell-amplifiers of FIG. 2 is connected to a corresponding one of the 25 resistor-nodes 300 shown in FIG. 8.
  • [0071]
    In the FIG. 8 mode of operation, electrical outputs 302 and 303, respectively, provide the X-direction component and the Y-direction component of an output signal that defines the user's desired cursor/pointer screen movement direction. For example, signals 302,303 are used to control movement of a cursor/pointer across a TV or monitor screen, with this movement being continuous by virtue of a static/non-moving position of a fingertip 18 on the surface of the FIG. 8 touchpad.
  • [0072]
    As taught by D. L. Standley in an article entitled "An Object Position and Orientation IC with Embedded Imager" in the IEEE Journal of Solid State Circuits (26, 1853-1858, December 1991), outputs 302,303 provide an analog value which is proportional to the zero and first moment of the 2D-pattern.
  • [0073]
    With reference to FIGS. 5B and 5C, if it is assumed that a fingertip position produces blob 170 of FIG. 5B, then output 302 is essentially of zero magnitude, whereas output 303 is of a given magnitude and a given polarity or signal sense. As a result, upward cursor movement 171 is produced. If it is now assumed that the fingertip position produces bright blob 170 of FIG. 5C, then output 302 remains essentially zero, whereas output 303 is now of a given magnitude, but of an opposite polarity or signal sense, and downward cursor movement 172 results. In a like manner, outputs 302,303 can be related to the cursor movements as explained relative to the remaining ones of figures 5.
  • [0074]
    As stated previously, the user achieves a desired cursor/pointer movement by sidewise rolling movement of fingertip 18, represented by arrow 304, and/or by lengthwise end to end pitching of fingertip 18, represented by arrow 305.
  • [0075]
    During log-on, when the user is being identified/verified by comparing an acquired fingerprint pattern to the memory-stored fingerprint patterns 162 of FIG. 4, the individual cell outputs 17 of the array are serially scanned. However, thereafter, and as the array is used in accordance with this invention to achieve screen cursor/pointer control, the touchpad's individual cell outputs 17 are not scanned. Rather, each individual cell output 17 is connected to an individual node 300 of row/column resistive network 301.
  • [0076]
    Array 301 generates a X-direction cursor/pointer movement command 302, that is a horizontal left/right screen movement command, as fingertip 18 is moved, or rolled, sideways on the upper horizontal surface of array 301, this movement being indicated by arrow 305. Array 301 generates a Y-direction cursor/pointer movement command 303 that is a vertical up/down screen movement command, as fingertip 18 is moved, or pitched, end to end on the horizontal upper surface of array 301, this movement being indicated by arrow 304. Array 301 also generates a switch output or Z-command output as long as fingertip 18 is pressed vertically down onto the general geometric center of the current position of fingertip 18 on the horizontal upper surface of array 301.
  • [0077]
    As previously stated, one step in enabling touchpad operation, as shown at step 165 of FIG. 4, may be to switch each FIG. 2 node-amplifier 13 from low gain to high gain by operation of a change in the magnitude of the voltage Vr of FIG. 1. When each node-amplifier 13 operates at this high gain, or in the alternative, when the resolution of array 301 is low, the composite electrical outputs 17 of all node-amplifiers 13 can be described as an electronic array picture having a blob 170 that is located on a dark background wherein the central position 470 of this blob on the dark background corresponds to the area of contact of fingertip 18 with the top horizontal surface of array 301.
  • [0078]
    The first-moment coordinates of the position of this blob 170, or brightness function within this electronic picture, encodes the X and Y displacement or finger position on the array's top surface, while the zero-moment value of bright blob 170 encodes the finger's downward, or Z-direction pressure function. Networks 307 and 308 of FIG. 8 operate to determine the first-moment-coordinates and the zero-moment-value that are encoded within this electronic picture.
  • [0079]
    In order to calculate the two X and Y array outputs 302,303, two options are available. First, the entire electronic image of the array, that is all cell-amplifier output signals 17, is transferred into a computation system where the first-moment-coordinates and the zero-moment-value (also called "mass" and "centroid") are calculated using hardware or software. Second, analog computation may be performed on the FIG. 8 analog values that are proportional to the zero and first moment of the 2-D pattern.
  • [0080]
    The resistor-network embodiment of the invention utilizes the first above-mentioned technique by way of the following hardware. Relative to FIG. 1, the two-dimensional (2D) electronic signal-picture, output, or pattern of array 3, which encodes the touching function of fingertip 18 on the array's upper surface, is injected into nodes 300 of the 2D resistive network 301 of FIG. 8. Networks 307,308,309 then function to detect the centroid and the mass of this array output signal. The functions centroid and mass are calculated simultaneously by the FIG. 8 arrangement.
  • [0081]
    As shown in FIG. 8, each node 300 is connected to its adjacent nodes 300 by way of a resistor 311. While the resistance values, or magnitudes of resistors 3 11 are not critical, all resistors 311 should be of generally the same resistance value or magnitude. In addition, and as stated above, as a feature of the invention, resistors 311 1 are implemented by way of MOS transistors.
  • [0082]
    While the above description assumes that a fingerprint pattern is first acquired, and touchpad use is thereafter enabled, it is also possible in accordance with the scope of this invention, that cursor/pointer control by virtue of finger rotation/position can be detected concurrently as the fingerprint pattern itself is detected.
  • [0083]
    The above detailed description of embodiments of this invention is not to be taken as a limitation on the scope of this invention, since it is apparent that those skilled in the related art will, upon reading this detailed description, readily visualize yet other embodiments that are clearly within the scope of this invention.

Claims (11)

  1. A capacitance touchpad for providing an electrical output signal for selectively controlling the movement of visual pointer indicia across a two dimensional display screen, comprising:
    a plurality N of individual capacitance sensing cells (2) arranged in a first two dimensional row/column array (3), said first array (3) having N row/colomn intersections, and said first array (3) occupying a generally planar that area is adapted to cooperate with a human fingertip to produce an output signal for controlling said indicia movement, each individual sensing cell (2) having a unique output signal that varies in accordance with a positional relationship with a human fingertip;
    a plurality N of individual resistance nodes (300) arranged in a second two dimensional row/column array (301), said second array having N row/column intersections in a configuration that corresponds to said N row/column intersections of said first array;
    circuit means connecting each unique output signal of said sensing cells (2) to a corresponding one of said resistance nodes (300) of said second array;
    first computation means connected to said second array (301) for computing a centroid output signal as a function of the position of a human fingertip on said planar area of said first array (3); and
    first output means connected to said first computation means and providing an indicia movement control signal as a function of said centroid output signal.
  2. The capacitance touchpad of claim 1, including:
    second computation means connected to said second array for computing a mass output signal as a function of an area occupied by a human fingertip on said planar area; and
    second outut means connected to said second computation means providing a switch on/off signal as a function of said mass output signal.
  3. The capacitance touchpad of claim 1, wherein:
    the first array (3) has a sensing surface (125);
    adapted to receive the human fingertip and to control movement of the indicator indicia as a function of a position of the human fingertip on said sensing surface.
  4. The capacitance touchpad of claim 3, wherein each of said N sensing cells having an amplifier with an amplifier (13) input (16) and an amplifier output (17), a first and a second physically spaced capacitor plate (23, 24) associated with said sensing surface (125).
  5. The capacitance touchpad of claim 3, including:
    second computation means connected to said second array (301) for computing a mass output signal as a function of an area occupied by the human fingertip on said sensing surface (125); and
    second output means connected to said second computation means and providing a switch on/off signal as a function of said mass output signal.
  6. The capacitance touchpad of claim 3, further comprising:
    user-authorization means connected to said first array and operable to generate a user fingerprint pattern for comparison to authorized user fingerprint patterns, and to thereby enable operation of said touchpad to control movement of the cursor as a function of a position of the human fingertip on said sensing surface (125).
  7. The capacitance touchpad of claim 1, wherein the first array (3) comprises;
    a generally flat dielectric sensing surface (125) having a plurality of surface-portions;
    said sensing surface (125) being adapted to be physically touched by the human fingertip; said plurality N of sensing cells being associated with said surface-portions,
    said sensing cells (2) being arranged in a cell array having R rows and C columns, said rows and columns forming RxC intersections with one of said sensing cells being located at each of said intersections and at a corresponding surface portion;
    each of said sensing cells (2) having an amplifier (13) with an amplifier input (16) and an amplifier output (17);
    each of said sensing cells (2) having a first (24) and a second (23) physically spaced capacitor plate associated with, but isolated from said corresponding surface portion;
    each of said sensing cells (2) having said first capacitor plate (24) connected to said amplifier input (16) and said second capacitor plate (23) connected to said amplifier output (17), to thereby provide a negative input to output amplifier feedback signal as a function of said human fingertip touching said corresponding surface-portion;
  8. The capacitance touchpad of claim 7, wherein the plurality N of resistance nodes arranged in a two dimensional array (301) having R rows and C columns, said rows and columns forming RxC intersections with one of said resistor nodes being located at each of said intersection;
    each said amplifier outputs being connected to a corresponding one of said resistor nodes.
  9. The capacitance touchpad of claim 8, wherein R and C are integers.
  10. The capacitance touchpad of claim 4, further comprising:
    user-authorization means connected to said first array, operable to cause said sensing cell amplifiers (13) to operate in a low-gain mode, operable to generate a user fingerprint pattern for comparison to stored authorized user fingerprint patterns, and operable upon a comparison being detected to cause said sensing cell amplifiers to operate in a high-gain mode and to cause said sensing cell amplifiers to enable operation of said touchpad for use to control movement of the cursor as a function of a position of the human fingertip on said sensing surface.
  11. The capacitance touchpad of claim 10 wherein said plurality N of capacitance sensing cells (2) and said plurality N of resistance nodes (300) are integrated into a solid state unit.
EP19990300408 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control Active EP0932117B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09012065 US6392636B1 (en) 1998-01-22 1998-01-22 Touchpad providing screen cursor/pointer movement control
US12065 1998-01-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060075705 EP1669847A2 (en) 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP20060075705 Division EP1669847A2 (en) 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control

Publications (3)

Publication Number Publication Date
EP0932117A2 true EP0932117A2 (en) 1999-07-28
EP0932117A3 true EP0932117A3 (en) 2000-07-26
EP0932117B1 true EP0932117B1 (en) 2006-04-12

Family

ID=21753213

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20060075705 Withdrawn EP1669847A2 (en) 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control
EP19990300408 Active EP0932117B1 (en) 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20060075705 Withdrawn EP1669847A2 (en) 1998-01-22 1999-01-20 Touchpad providing screen cursor/pointer movement control

Country Status (4)

Country Link
US (1) US6392636B1 (en)
EP (2) EP1669847A2 (en)
JP (1) JP4209984B2 (en)
DE (2) DE69930774D1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416209B2 (en) 2004-05-06 2013-04-09 Apple Inc. Multipoint touchscreen
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US9244561B2 (en) 2006-06-09 2016-01-26 Apple Inc. Touch screen liquid crystal display
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8825152B2 (en) 1996-01-08 2014-09-02 Impulse Dynamics, N.V. Modulation of intracellular calcium concentration using non-excitatory electrical signals applied to the tissue
US9713723B2 (en) 1996-01-11 2017-07-25 Impulse Dynamics Nv Signal delivery through the right ventricular septum
US8321013B2 (en) * 1996-01-08 2012-11-27 Impulse Dynamics, N.V. Electrical muscle controller and pacing with hemodynamic enhancement
US7167748B2 (en) 1996-01-08 2007-01-23 Impulse Dynamics Nv Electrical muscle controller
US9289618B1 (en) 1996-01-08 2016-03-22 Impulse Dynamics Nv Electrical muscle controller
JP4175662B2 (en) 1996-01-08 2008-11-05 インパルス ダイナミクス エヌ.ヴイ. Electrical muscle control device
US8346363B2 (en) 1999-03-05 2013-01-01 Metacure Limited Blood glucose level control
EP1717681B1 (en) 1998-01-26 2015-04-29 Apple Inc. Method for integrating manual input
US6610917B2 (en) 1998-05-15 2003-08-26 Lester F. Ludwig Activity indication, external source, and processing loop provisions for driven vibrating-element environments
US6950539B2 (en) * 1998-09-16 2005-09-27 Digital Persona Configurable multi-function touchpad device
US6671392B1 (en) * 1998-12-25 2003-12-30 Nippon Telegraph And Telephone Corporation Fingerprint recognition apparatus and data processing method
CA2360664C (en) * 1999-02-04 2012-04-17 Shoshana Merchav Method and apparatus for maintenance and expansion of hemopoietic stem cells and/or progenitor cells
US8666495B2 (en) 1999-03-05 2014-03-04 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US9101765B2 (en) * 1999-03-05 2015-08-11 Metacure Limited Non-immediate effects of therapy
US8700161B2 (en) 1999-03-05 2014-04-15 Metacure Limited Blood glucose level control
US8019421B2 (en) 1999-03-05 2011-09-13 Metacure Limited Blood glucose level control
ES2262279T3 (en) * 1999-08-25 2006-11-16 Swatch Ag Watch comprising a contactless control device of a computer cursor.
LU90437A1 (en) * 1999-09-08 2001-03-09 Iee Sarl Sensor device and method for interrogating a sensor device
GB2357335B (en) * 1999-12-17 2004-04-07 Nokia Mobile Phones Ltd Fingerprint recognition and pointing device
US7239227B1 (en) * 1999-12-30 2007-07-03 Upek, Inc. Command interface using fingerprint sensor input system
JP5036948B2 (en) * 2000-06-09 2012-09-26 アイデックス・エーエスエー Navigation device
US20030193482A1 (en) * 2000-08-01 2003-10-16 Yongsun Kim Touch pad system
KR100698898B1 (en) 2000-08-03 2007-03-22 한국터치스크린(주) Touch Panel
US9931503B2 (en) 2003-03-10 2018-04-03 Impulse Dynamics Nv Protein activity modification
US7184026B2 (en) * 2001-03-19 2007-02-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Impedance sensing screen pointing device
DE10120067C1 (en) * 2001-04-24 2002-06-13 Siemens Ag Mobile communications device has incorporated biometric sensor for fingerprint checking for activation of communications device
US20020176611A1 (en) * 2001-05-23 2002-11-28 Dong Mimi C. Fingerprint addressing system and method
FR2832240A1 (en) * 2001-11-13 2003-05-16 St Microelectronics Sa Contact sensor for finger of stylus for use with a pocket computer, etc., whereby sensor has a low resolution low power operation mode for command input and a high resolution high power mode for fingerprint authentication
US6927581B2 (en) * 2001-11-27 2005-08-09 Upek, Inc. Sensing element arrangement for a fingerprint sensor
US6762752B2 (en) * 2001-11-29 2004-07-13 N-Trig Ltd. Dual function input device and method
US7184009B2 (en) * 2002-06-21 2007-02-27 Nokia Corporation Display circuit with optical sensor
WO2004018323A1 (en) * 2002-08-23 2004-03-04 Pfizer Products Inc. Apparatus for dispensing articles
US7358963B2 (en) * 2002-09-09 2008-04-15 Apple Inc. Mouse having an optically-based scrolling feature
FR2850478B1 (en) * 2003-01-29 2005-04-08 Sagem Access control device according to fingerprint sensor
CN102156571B (en) 2003-02-10 2013-07-24 N-特莱格有限公司 Touch detection for a digitizer
US8352031B2 (en) 2004-03-10 2013-01-08 Impulse Dynamics Nv Protein activity modification
JP2006519663A (en) 2003-03-10 2006-08-31 インパルス ダイナミックス エヌヴイ Device and method for delivering electrical signals to regulate gene expression in cardiac tissue
KR100964559B1 (en) * 2003-04-25 2010-06-21 삼성전자주식회사 Fingerprinting device
GB2401979B (en) * 2003-05-21 2007-03-21 Research In Motion Ltd Apparatus and method of input and finger print recognition on a handheld electronic device
DE60308492T2 (en) * 2003-05-28 2007-05-16 Freescale Semiconductor, Inc., Austin Keyboard Input Device
US7580030B2 (en) * 2003-06-13 2009-08-25 Semtech Corporation Sensor for capacitive touch pad pointing device
CN102509031B (en) * 2003-06-23 2014-12-24 索尼电影娱乐公司 Method for identifying media source, device and system of fingerprint addition
JP2007500884A (en) * 2003-07-21 2007-01-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィKoninklijke Philips Electronics N.V. Touch display for portable device, and such portable device
US8792985B2 (en) 2003-07-21 2014-07-29 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US6939736B2 (en) * 2003-07-31 2005-09-06 Texas Instruments Incorporated Ideal operational amplifier layout techniques for reducing package stress and configurations therefor
US7808479B1 (en) 2003-09-02 2010-10-05 Apple Inc. Ambidextrous mouse
FR2859525B1 (en) * 2003-09-09 2006-06-02 Delphi Tech Inc capacitive switch sliding
US7109977B2 (en) * 2003-10-05 2006-09-19 T2D, Inc. Slipcover touch input apparatus for displays of computing devices
US8244371B2 (en) 2005-03-18 2012-08-14 Metacure Limited Pancreas lead
US8131026B2 (en) 2004-04-16 2012-03-06 Validity Sensors, Inc. Method and apparatus for fingerprint image reconstruction
US8229184B2 (en) 2004-04-16 2012-07-24 Validity Sensors, Inc. Method and algorithm for accurate finger motion tracking
US8358815B2 (en) 2004-04-16 2013-01-22 Validity Sensors, Inc. Method and apparatus for two-dimensional finger motion tracking and control
US8175345B2 (en) 2004-04-16 2012-05-08 Validity Sensors, Inc. Unitized ergonomic two-dimensional fingerprint motion tracking device and method
US8077935B2 (en) 2004-04-23 2011-12-13 Validity Sensors, Inc. Methods and apparatus for acquiring a swiped fingerprint image
US7764273B2 (en) * 2004-06-30 2010-07-27 Au Optronics Corporation Touch panel for mounting on a display panel
US7339499B2 (en) 2004-06-30 2008-03-04 Freescale Semiconductor, Inc. Keypad signal input apparatus
US20060007174A1 (en) * 2004-07-06 2006-01-12 Chung-Yi Shen Touch control method for a drag gesture and control module thereof
US7649524B2 (en) * 2004-07-15 2010-01-19 N-Trig Ltd. Tracking window for a digitizer system
WO2006006173A3 (en) * 2004-07-15 2006-12-07 N trig ltd Automatic switching for a dual mode digitizer
JP4529012B2 (en) * 2004-07-16 2010-08-25 アオイ電子株式会社 Nanogripper equipment
US20060044280A1 (en) * 2004-08-31 2006-03-02 Huddleston Wyatt A Interface
JP3931898B2 (en) * 2004-09-30 2007-06-20 セイコーエプソン株式会社 Personal authentication device
US7751601B2 (en) 2004-10-04 2010-07-06 Validity Sensors, Inc. Fingerprint sensing assemblies and methods of making
EP1898991B1 (en) 2005-05-04 2016-06-29 Impulse Dynamics NV Protein activity modification
GB2423808B (en) * 2005-03-04 2010-02-17 Ford Global Tech Llc Motor vehicle control system for controlling one or more vehicle devices
US7656393B2 (en) 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
US7710397B2 (en) * 2005-06-03 2010-05-04 Apple Inc. Mouse with improved input mechanisms using touch sensors
US7244985B2 (en) * 2005-09-06 2007-07-17 Ememory Technology Inc. Non-volatile memory array
CN100454224C (en) 2005-12-28 2009-01-21 中兴通讯股份有限公司 Mobile terminal having virtual keyboard and hand-write synergic input function
US8077147B2 (en) 2005-12-30 2011-12-13 Apple Inc. Mouse with optical sensing surface
JP4669423B2 (en) * 2006-03-20 2011-04-13 富士通株式会社 Electronic device, scroll control device, and program
US7656392B2 (en) * 2006-03-24 2010-02-02 Synaptics Incorporated Touch sensor effective area enhancement
KR101128803B1 (en) * 2006-05-03 2012-03-23 엘지전자 주식회사 A mobile communication terminal, and method of processing input signal in a mobile communication terminal with touch panel
US20070273658A1 (en) * 2006-05-26 2007-11-29 Nokia Corporation Cursor actuation with fingerprint recognition
JP4764281B2 (en) * 2006-08-07 2011-08-31 日本システム開発株式会社 Position measuring sensor and the position measuring method
US8447077B2 (en) * 2006-09-11 2013-05-21 Validity Sensors, Inc. Method and apparatus for fingerprint motion tracking using an in-line array
US8165355B2 (en) * 2006-09-11 2012-04-24 Validity Sensors, Inc. Method and apparatus for fingerprint motion tracking using an in-line array for use in navigation applications
WO2008079596A1 (en) * 2006-12-19 2008-07-03 3M Innovative Properties Company Touch sensor with electrode array
US7855718B2 (en) 2007-01-03 2010-12-21 Apple Inc. Multi-touch input discrimination
US8542211B2 (en) * 2007-01-03 2013-09-24 Apple Inc. Projection scan multi-touch sensor array
US8269727B2 (en) 2007-01-03 2012-09-18 Apple Inc. Irregular input identification
US8130203B2 (en) 2007-01-03 2012-03-06 Apple Inc. Multi-touch input discrimination
US8970503B2 (en) * 2007-01-05 2015-03-03 Apple Inc. Gestures for devices having one or more touch sensitive surfaces
US8144129B2 (en) * 2007-01-05 2012-03-27 Apple Inc. Flexible touch sensing circuits
US7973771B2 (en) * 2007-04-12 2011-07-05 3M Innovative Properties Company Touch sensor with electrode array
US8605050B2 (en) 2007-08-21 2013-12-10 Tpk Touch Solutions (Xiamen) Inc. Conductor pattern structure of capacitive touch panel
JP3134925U (en) 2007-04-27 2007-08-30 宸鴻光電科技股▲分▼有限公司 Touch pattern structure of a capacitive touch pad
US8107212B2 (en) * 2007-04-30 2012-01-31 Validity Sensors, Inc. Apparatus and method for protecting fingerprint sensing circuitry from electrostatic discharge
US8290150B2 (en) * 2007-05-11 2012-10-16 Validity Sensors, Inc. Method and system for electronically securing an electronic device using physically unclonable functions
US20080297174A1 (en) * 2007-05-31 2008-12-04 Sarangan Narasimhan Capacitive sensing devices
JP5060845B2 (en) * 2007-06-27 2012-10-31 パナソニック液晶ディスプレイ株式会社 Screen input-type image display device
DE102007052008A1 (en) 2007-10-26 2009-04-30 Andreas Steinhauser Single or multi-touch capable touch screen or touch pad consisting of an array of pressure sensors as well as the production of such sensors
US8276816B2 (en) 2007-12-14 2012-10-02 Validity Sensors, Inc. Smart card system with ergonomic fingerprint sensor and method of using
US8204281B2 (en) * 2007-12-14 2012-06-19 Validity Sensors, Inc. System and method to remove artifacts from fingerprint sensor scans
US8294677B2 (en) 2007-12-24 2012-10-23 Wintek Corporation Transparent capacitive touch panel and manufacturing method thereof
US9740341B1 (en) * 2009-02-26 2017-08-22 Amazon Technologies, Inc. Capacitive sensing with interpolating force-sensitive resistor array
US8116540B2 (en) * 2008-04-04 2012-02-14 Validity Sensors, Inc. Apparatus and method for reducing noise in fingerprint sensing circuits
US8005276B2 (en) * 2008-04-04 2011-08-23 Validity Sensors, Inc. Apparatus and method for reducing parasitic capacitive coupling and noise in fingerprint sensing circuits
US9019237B2 (en) * 2008-04-06 2015-04-28 Lester F. Ludwig Multitouch parameter and gesture user interface employing an LED-array tactile sensor that can also operate as a display
US8169414B2 (en) 2008-07-12 2012-05-01 Lim Seung E Control of electronic games via finger angle using a high dimensional touchpad (HDTP) touch user interface
US8345014B2 (en) 2008-07-12 2013-01-01 Lester F. Ludwig Control of the operating system on a computing device via finger angle using a high dimensional touchpad (HDTP) touch user interface
GB2474999B (en) 2008-07-22 2013-02-20 Validity Sensors Inc System and method for securing a device component
US8604364B2 (en) * 2008-08-15 2013-12-10 Lester F. Ludwig Sensors, algorithms and applications for a high dimensional touchpad
US8174509B2 (en) * 2008-09-23 2012-05-08 Au Optronics Corp. Multi-touch positioning method for capacitive touch panel
US8669843B2 (en) * 2008-10-17 2014-03-11 Acer Incorporated Fingerprint detection device and method and associated touch control device with fingerprint detection
CN101727571B (en) 2008-10-24 2012-09-19 宏碁股份有限公司 Fingerprint sensing device and fingerprint sensing touch device
US8391568B2 (en) 2008-11-10 2013-03-05 Validity Sensors, Inc. System and method for improved scanning of fingerprint edges
EP3232315A1 (en) 2008-11-25 2017-10-18 Samsung Electronics Co., Ltd Device and method for providing a user interface
US9477396B2 (en) 2008-11-25 2016-10-25 Samsung Electronics Co., Ltd. Device and method for providing a user interface
US8600122B2 (en) 2009-01-15 2013-12-03 Validity Sensors, Inc. Apparatus and method for culling substantially redundant data in fingerprint sensing circuits
US8278946B2 (en) 2009-01-15 2012-10-02 Validity Sensors, Inc. Apparatus and method for detecting finger activity on a fingerprint sensor
US8374407B2 (en) 2009-01-28 2013-02-12 Validity Sensors, Inc. Live finger detection
US8170346B2 (en) 2009-03-14 2012-05-01 Ludwig Lester F High-performance closed-form single-scan calculation of oblong-shape rotation angles from binary images of arbitrary size using running sums
KR101666490B1 (en) * 2009-03-29 2016-10-14 (주) 엔피홀딩스 Touchscreen device having conductive sensor
JP5288479B2 (en) * 2009-04-27 2013-09-11 ルネサスエレクトロニクス株式会社 Display panel driver
US8212159B2 (en) * 2009-05-11 2012-07-03 Freescale Semiconductor, Inc. Capacitive touchpad method using MCU GPIO and signal processing
US8587531B2 (en) 2009-06-10 2013-11-19 Chunghwa Picture Tubes, Ltd. Touch input device
US9785272B1 (en) 2009-07-31 2017-10-10 Amazon Technologies, Inc. Touch distinction
US9244562B1 (en) 2009-07-31 2016-01-26 Amazon Technologies, Inc. Gestures and touches on force-sensitive input devices
US20110055722A1 (en) * 2009-09-02 2011-03-03 Ludwig Lester F Data Visualization Environment with DataFlow Processing, Web, Collaboration, Advanced User Interfaces, and Spreadsheet Visualization
US20110066933A1 (en) 2009-09-02 2011-03-17 Ludwig Lester F Value-driven visualization primitives for spreadsheets, tabular data, and advanced spreadsheet visualization
CN102043498B (en) 2009-10-15 2013-08-14 瑞鼎科技股份有限公司 The touch device
US9336428B2 (en) 2009-10-30 2016-05-10 Synaptics Incorporated Integrated fingerprint sensor and display
US9400911B2 (en) 2009-10-30 2016-07-26 Synaptics Incorporated Fingerprint sensor and integratable electronic display
US9274553B2 (en) 2009-10-30 2016-03-01 Synaptics Incorporated Fingerprint sensor and integratable electronic display
US8810524B1 (en) 2009-11-20 2014-08-19 Amazon Technologies, Inc. Two-sided touch sensor
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
US8421890B2 (en) 2010-01-15 2013-04-16 Picofield Technologies, Inc. Electronic imager using an impedance sensor grid array and method of making
US8791792B2 (en) 2010-01-15 2014-07-29 Idex Asa Electronic imager using an impedance sensor grid array mounted on or about a switch and method of making
US8934975B2 (en) 2010-02-01 2015-01-13 Metacure Limited Gastrointestinal electrical therapy
US20110202934A1 (en) * 2010-02-12 2011-08-18 Ludwig Lester F Window manger input focus control for high dimensional touchpad (htpd), advanced mice, and other multidimensional user interfaces
US9666635B2 (en) 2010-02-19 2017-05-30 Synaptics Incorporated Fingerprint sensing circuit
US8716613B2 (en) 2010-03-02 2014-05-06 Synaptics Incoporated Apparatus and method for electrostatic discharge protection
US20110221684A1 (en) * 2010-03-11 2011-09-15 Sony Ericsson Mobile Communications Ab Touch-sensitive input device, mobile device and method for operating a touch-sensitive input device
US9001040B2 (en) 2010-06-02 2015-04-07 Synaptics Incorporated Integrated fingerprint sensor and navigation device
US9632344B2 (en) 2010-07-09 2017-04-25 Lester F. Ludwig Use of LED or OLED array to implement integrated combinations of touch screen tactile, touch gesture sensor, color image display, hand-image gesture sensor, document scanner, secure optical data exchange, and fingerprint processing capabilities
US9626023B2 (en) 2010-07-09 2017-04-18 Lester F. Ludwig LED/OLED array approach to integrated display, lensless-camera, and touch-screen user interface devices and associated processors
US8754862B2 (en) 2010-07-11 2014-06-17 Lester F. Ludwig Sequential classification recognition of gesture primitives and window-based parameter smoothing for high dimensional touchpad (HDTP) user interfaces
US9950256B2 (en) 2010-08-05 2018-04-24 Nri R&D Patent Licensing, Llc High-dimensional touchpad game controller with multiple usage and networking modalities
US8331096B2 (en) 2010-08-20 2012-12-11 Validity Sensors, Inc. Fingerprint acquisition expansion card apparatus
US8538097B2 (en) 2011-01-26 2013-09-17 Validity Sensors, Inc. User input utilizing dual line scanner apparatus and method
US8594393B2 (en) 2011-01-26 2013-11-26 Validity Sensors System for and method of image reconstruction with dual line scanner using line counts
US20120204577A1 (en) 2011-02-16 2012-08-16 Ludwig Lester F Flexible modular hierarchical adaptively controlled electronic-system cooling and energy harvesting for IC chip packaging, printed circuit boards, subsystems, cages, racks, IT rooms, and data centers using quantum and classical thermoelectric materials
US9442652B2 (en) 2011-03-07 2016-09-13 Lester F. Ludwig General user interface gesture lexicon and grammar frameworks for multi-touch, high dimensional touch pad (HDTP), free-space camera, and other user interfaces
US9406580B2 (en) 2011-03-16 2016-08-02 Synaptics Incorporated Packaging for fingerprint sensors and methods of manufacture
CN102866794A (en) 2011-06-15 2013-01-09 宸鸿光电科技股份有限公司 Touch control sensing layer and manufacturing method thereof
CN102902394A (en) * 2011-07-28 2013-01-30 宸鸿科技(厦门)有限公司 Touch panel and detecting method thereof
US9052772B2 (en) 2011-08-10 2015-06-09 Lester F. Ludwig Heuristics for 3D and 6D touch gesture touch parameter calculations for high-dimensional touch parameter (HDTP) user interfaces
US8810367B2 (en) * 2011-09-22 2014-08-19 Apple Inc. Electronic device with multimode fingerprint reader
US9823781B2 (en) 2011-12-06 2017-11-21 Nri R&D Patent Licensing, Llc Heterogeneous tactile sensing via multiple sensor types
US9195877B2 (en) 2011-12-23 2015-11-24 Synaptics Incorporated Methods and devices for capacitive image sensing
US9785299B2 (en) 2012-01-03 2017-10-10 Synaptics Incorporated Structures and manufacturing methods for glass covered electronic devices
US9268991B2 (en) 2012-03-27 2016-02-23 Synaptics Incorporated Method of and system for enrolling and matching biometric data
US9137438B2 (en) 2012-03-27 2015-09-15 Synaptics Incorporated Biometric object sensor and method
US9251329B2 (en) 2012-03-27 2016-02-02 Synaptics Incorporated Button depress wakeup and wakeup strategy
US9600709B2 (en) 2012-03-28 2017-03-21 Synaptics Incorporated Methods and systems for enrolling biometric data
US9152838B2 (en) 2012-03-29 2015-10-06 Synaptics Incorporated Fingerprint sensor packagings and methods
EP2958052A3 (en) 2012-04-10 2016-03-30 Idex Asa Biometric sensing
US9665762B2 (en) 2013-01-11 2017-05-30 Synaptics Incorporated Tiered wakeup strategy
US8874396B1 (en) * 2013-06-28 2014-10-28 Cypress Semiconductor Corporation Injected touch noise analysis
US9819344B2 (en) * 2013-08-30 2017-11-14 Stmicroelectronics International N.V. Dynamic element matching of resistors in a sensor
WO2015116218A1 (en) 2014-01-31 2015-08-06 Hewlett-Packard Development Company, L.P. Touch distance based on a column weighted sensor value
CN104252277A (en) * 2014-09-18 2014-12-31 叶志 Touch panel array and scanning method used for same
KR20160123593A (en) * 2015-04-16 2016-10-26 삼성전자주식회사 Device and method for conrol based on recognizing fingerprint
CN106096489A (en) * 2015-04-27 2016-11-09 瑞鼎科技股份有限公司 Capacitive fingerprint sensing apparatus and capacitive fingerprint sensing method
US9477868B1 (en) * 2015-06-04 2016-10-25 Fingerprint Cards Ab Adaptive fingerprint-based navigation
CN106372567A (en) * 2015-07-23 2017-02-01 瑞鼎科技股份有限公司 Capacitive fingerprint sensing apparatus and capacitive fingerprint sensing method
CN106485195A (en) * 2015-08-27 2017-03-08 瑞鼎科技股份有限公司 Capacitive Fingerprint Sensing Apparatus And Capacitive Fingerprint Sensing Method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641431A (en) 1968-10-01 1972-02-08 Gleason Works Method for inspecting and adjusting cutter blades
US4353056A (en) 1980-06-05 1982-10-05 Siemens Corporation Capacitive fingerprint sensor
US4641350A (en) 1984-05-17 1987-02-03 Bunn Robert F Fingerprint identification system
DE3544187A1 (en) 1985-12-13 1987-06-19 Flowtec Ag capacitance measuring
DE68905237D1 (en) 1988-05-24 1993-04-15 Nec Corp A method and apparatus for matching fingerprints.
US4958129A (en) 1989-03-07 1990-09-18 Ade Corporation Prealigner probe
GB9011163D0 (en) 1990-05-18 1990-07-04 Philips Electronic Associated Fingerprint sensing
US5369228A (en) * 1991-11-30 1994-11-29 Signagraphics Corporation Data input device with a pressure-sensitive input surface
US5543590A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature
US5861583A (en) * 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
EP0574213B1 (en) * 1992-06-08 1999-03-24 Synaptics, Inc. Object position detector
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5543591A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5828773A (en) * 1996-01-26 1998-10-27 Harris Corporation Fingerprint sensing method with finger position indication
US5859420A (en) * 1996-02-12 1999-01-12 Dew Engineering And Development Limited Optical imaging device
EP0790479B1 (en) 1996-02-14 2002-01-16 SGS-THOMSON MICROELECTRONICS S.r.l. Capacitive distance sensor, particularly for acquiring fingerprints
EP0900364A1 (en) * 1996-05-14 1999-03-10 Michel Sayag Method and apparatus for generating a control signal
US5943044A (en) * 1996-08-05 1999-08-24 Interlink Electronics Force sensing semiconductive touchpad

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872785B2 (en) 2004-05-06 2014-10-28 Apple Inc. Multipoint touchscreen
US9454277B2 (en) 2004-05-06 2016-09-27 Apple Inc. Multipoint touchscreen
US9035907B2 (en) 2004-05-06 2015-05-19 Apple Inc. Multipoint touchscreen
US8982087B2 (en) 2004-05-06 2015-03-17 Apple Inc. Multipoint touchscreen
US8928618B2 (en) 2004-05-06 2015-01-06 Apple Inc. Multipoint touchscreen
US8605051B2 (en) 2004-05-06 2013-12-10 Apple Inc. Multipoint touchscreen
US8416209B2 (en) 2004-05-06 2013-04-09 Apple Inc. Multipoint touchscreen
US9244561B2 (en) 2006-06-09 2016-01-26 Apple Inc. Touch screen liquid crystal display
US8552989B2 (en) 2006-06-09 2013-10-08 Apple Inc. Integrated display and touch screen
US8432371B2 (en) 2006-06-09 2013-04-30 Apple Inc. Touch screen liquid crystal display
US9575610B2 (en) 2006-06-09 2017-02-21 Apple Inc. Touch screen liquid crystal display
US8451244B2 (en) 2006-06-09 2013-05-28 Apple Inc. Segmented Vcom
US9268429B2 (en) 2006-06-09 2016-02-23 Apple Inc. Integrated display and touch screen
US8493330B2 (en) 2007-01-03 2013-07-23 Apple Inc. Individual channel phase delay scheme
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
US8804056B2 (en) 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
US9146414B2 (en) 2010-12-22 2015-09-29 Apple Inc. Integrated touch screens
US8743300B2 (en) 2010-12-22 2014-06-03 Apple Inc. Integrated touch screens
US9025090B2 (en) 2010-12-22 2015-05-05 Apple Inc. Integrated touch screens

Also Published As

Publication number Publication date Type
EP1669847A2 (en) 2006-06-14 application
DE69930774D1 (en) 2006-05-24 grant
EP0932117A2 (en) 1999-07-28 application
US6392636B1 (en) 2002-05-21 grant
JP4209984B2 (en) 2009-01-14 grant
EP0932117A3 (en) 2000-07-26 application
JPH11353107A (en) 1999-12-24 application
DE69930774T2 (en) 2007-02-15 grant

Similar Documents

Publication Publication Date Title
US5841078A (en) Object position detector
US5503029A (en) Surface pressure input panel
US5149919A (en) Stylus sensing system
US6281878B1 (en) Apparatus and method for inputing data
US7538760B2 (en) Force imaging input device and system
US5117071A (en) Stylus sensing system
US7030860B1 (en) Flexible transparent touch sensing system for electronic devices
US20080100586A1 (en) Method and system for calibrating a touch screen
US4587378A (en) Two-layer touch tablet
US20030234769A1 (en) Touch sensor
EP0674288A1 (en) Multidimensional mouse
US6847354B2 (en) Three dimensional interactive display
Tartagni et al. A fingerprint sensor based on the feedback capacitive sensing scheme
US7324095B2 (en) Pressure-sensitive input device for data processing systems
US20120056846A1 (en) Touch-based user interfaces employing artificial neural networks for hdtp parameter and symbol derivation
US20100156795A1 (en) Large size capacitive touch screen panel
US20020030666A1 (en) Capacitive position sensor
US20120306802A1 (en) Differential capacitance touch sensor
US8525799B1 (en) Detecting multiple simultaneous touches on a touch-sensor device
US6288707B1 (en) Capacitive position sensor
US20100020032A1 (en) Display Device
US5376947A (en) Touch-type input terminal apparatus for pointing or specifying position on display device
US8692795B1 (en) Contact identification and tracking on a capacitance sensing array
US20140241595A1 (en) Integrated Finger Print Sensor
US20080158198A1 (en) Projection scan multi-touch sensor array

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent to

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Classification (correction)

Free format text: 7G 06K 11/16 A, 7G 06K 9/00 B, 7G 06F 3/033 B, 7G 06K 11/18 B

AX Request for extension of the european patent to

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states:

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010124

AKX Payment of designation fees

Free format text: DE FR GB IT

17Q First examination report

Effective date: 20031014

RIC1 Classification (correction)

Ipc: G06F 3/044 20060101AFI20060216BHEP

AK Designated contracting states:

Kind code of ref document: B1

Designated state(s): DE FR GB IT

RIC1 Classification (correction)

Ipc: G06F 3/044 20060101AFI20060217BHEP

Ipc: G06F 3/033 20060101ALI20060217BHEP

Ipc: G06K 9/00 20060101ALI20060217BHEP

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69930774

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

ET Fr: translation filed
26N No opposition filed

Effective date: 20070115

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Postgrant: annual fees paid to national office

Ref country code: IT

Payment date: 20080129

Year of fee payment: 9

PGRI Postgrant: patent reinstated in contracting state

Ref country code: IT

Effective date: 20081001

PGRI Postgrant: patent reinstated in contracting state

Ref country code: IT

Effective date: 20081001

PGFP Postgrant: annual fees paid to national office

Ref country code: FR

Payment date: 20100208

Year of fee payment: 12

PGFP Postgrant: annual fees paid to national office

Ref country code: GB

Payment date: 20100120

Year of fee payment: 12

Ref country code: DE

Payment date: 20100114

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69930774

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state announced via postgrant inform. from nat. office to epo

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802