EP0930801B1 - Circuit and method for adaptive suppression of acoustic feedback - Google Patents

Circuit and method for adaptive suppression of acoustic feedback Download PDF

Info

Publication number
EP0930801B1
EP0930801B1 EP98811273A EP98811273A EP0930801B1 EP 0930801 B1 EP0930801 B1 EP 0930801B1 EP 98811273 A EP98811273 A EP 98811273A EP 98811273 A EP98811273 A EP 98811273A EP 0930801 B1 EP0930801 B1 EP 0930801B1
Authority
EP
European Patent Office
Prior art keywords
input signal
filter
correlation
echo
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811273A
Other languages
German (de)
French (fr)
Other versions
EP0930801A2 (en
EP0930801A3 (en
Inventor
Remo Leber
Arthur Schaub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bernafon AG
Original Assignee
Bernafon AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernafon AG filed Critical Bernafon AG
Publication of EP0930801A2 publication Critical patent/EP0930801A2/en
Publication of EP0930801A3 publication Critical patent/EP0930801A3/en
Application granted granted Critical
Publication of EP0930801B1 publication Critical patent/EP0930801B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the present invention relates to a circuit and a method for the adaptive suppression of an acoustic feedback according to the preambles of the independent claims. It is used, for example, in digital hearing aids.
  • acoustic feedback can occur between the loudspeaker or handset on the one hand and the microphone on the other hand.
  • the acoustic feedback causes unwanted distortions and leads in extreme cases to unstable behavior of the system, for example. An unpleasant whistling. Since the unstable operation is not acceptable, the signal gain of the signal processing part often has to be set smaller than effectively desired.
  • acoustic input signal is picked up and converted into a digital electrical signal. From this, an echo estimate is subtracted.
  • the echo-compensated signal is transformed with a necessary hearing correction into a digital output signal, converted into an analog electrical signal and emitted as an acoustic output signal.
  • the acoustic signal is deformed on its way back to the microphone according to a feedback characteristic and superimposed on an externally incident acoustic signal to a new acoustic input signal.
  • the fixed delays contained in the system are modeled and the unknown feedback characteristic is modeled.
  • a first approach involves the use of an artificial noise signal.
  • an artificial noise signal is, for example, from the European patent applications EP-415 677 .
  • the common feature of such systems is the use of an artificial noise signal to decorrelate the signals.
  • the noise signal is switched on only when needed instead of the output signal or continuously to Added output signal.
  • the disadvantage of these systems is the effort required for the control of the noise signal power such that the noise remains as inaudible and still a sufficiently good convergence speed can be achieved.
  • a third approach involves the use of adaptive decorrelation filters.
  • Such a system was, for example, in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4; 1-4, 1992 , described.
  • the feasible with this approach systems differ by the different arrangement and implementation of the decorrelation filter.
  • the disadvantage of the published system is the use of relatively slow transversal filter decorrelators, which due to their structure can not adapt very fast to the changing statistical properties of their input signals.
  • the coefficients of the two decorrelation filters are generally determined by decorrelation of the output signal reaching the loudspeaker or receiver. This is intended to make the convergence speed frequency-independent. A special weighting of the frequencies which are particularly critical for the feedback behavior with high gains in the signal processing path is thus not present.
  • an optimal convergence behavior with minimal, inaudible distortions and without additional signal delay should be achieved with the least possible effort.
  • the present invention belongs to the group of systems with adaptive decorrelation filters. It makes use of the knowledge that cross-member filter structures are particularly suitable for rapid decorrelation. Such cross-member filter structures are known from speech signal processing and are used there for linear prediction. Algorithms for the decorrelation of a signal by cross-link filter are known and can be taken from the literature, for example S. Thomas Alexander, "Adaptive Signal Processing", Springer-Verlag New York, 1986 ,
  • the present invention models the feedback path and adaptively follows its temporal changes by means of optimized tracking.
  • the fed back signal components are constantly removed from the input signal. This significantly increases the signal gain allowed for stable operation. This allows the use of higher reinforcements (eg in the case of severe hearing damage) or a pleasant, more open supply (eg in case of slight hearing damage).
  • the inventive circuit is used in an acoustic system with at least one microphone for generating an electrical input signal, at least one speaker or handset and an intermediate electronic signal processing part. It contains a filter for Modeling a feedback characteristic, an updating unit for calculating current coefficients for the filter, a subtractor for calculating an echo-compensated input signal by subtracting an echo estimate from a digital input signal supplied by the filter, a delay element for calculating a delayed output signal, and two adaptive cross-link decorrelation filters.
  • a first cross-sectional decorrelation filter is arranged to decorrelate the echo-canceled input signal
  • a second cross-sectional decorrelation filter is arranged to decorrelate the delayed output signal by means of coefficients derived from the first cross-sectional decorrelation filter.
  • the two cross-link decorrelation filters are configured to calculate their cross-member coefficients by means of adaptive decorrelation of the echo-canceled input signal.
  • the first decorrelation filter extracts from the echo-canceled signal the noise-like components contained therein.
  • the second decorrelation filter a cross-gate filter
  • the delayed output signal is converted into a transformed signal with the coefficients derived from the cross-divisor decorrelator.
  • the special feature of this arrangement is the interchanging of the cross-link decorrelator and the cross-link filter over the conventional arrangement, in which not the echo-canceled signal, but the delayed output signal is decorrelated.
  • the circuit according to the invention has the great advantage that the spectral maxima present in the hearing correction are preserved in the transformed signal. These maxima usually correspond to the most critical frequencies for the feedback, and these should certainly be taken into account in the updating of the filter coefficients with the correspondingly large weighting.
  • an electrical input signal is generated with at least one microphone, a feedback characteristic is modeled with a filter, current updating coefficients for the Calculates a filter, a subtracter calculates an echo-canceled input signal by subtracting an echo estimate provided by the filter from a digital input signal, and a delay element calculates a delayed output signal.
  • the echo-canceled input signal is decorrelated with a first cross-divisional decorrelation filter, and the delayed output signal is decorrelated with a second cross-divisional decorrelation filter by means of coefficients derived from the first cross-divisional decorrelation filter.
  • the cross-member coefficients of the two cross-member decorrelation filters are calculated by adaptive decorrelation of the echo-canceled input signal.
  • the present invention differs significantly from all previously published systems for suppressing the acoustic feedback. What is new are the special arrangement and realization of the blocks for decorrelation and normalization, the control of the forgetting factor and the step size factor, as well as the possibility of staggered updating in the combination according to the invention.
  • the present invention allows maximum convergence speeds with minimal distortion, since the updating of the filter coefficients takes place in terms of time and frequency mainly where the large amplifications in the auditory correction occur.
  • FIG. 1 A well-known system for the adaptive suppression of the acoustic feedback is in FIG. 1 shown.
  • An acoustic input signal a in (t) is picked up by a microphone 1 and initially converted into an electrical signal d (t).
  • a subsequent AD converter 2 determines a digital Input signal d n .
  • an echo estimate y n is subtracted in a subtractor 3.
  • the echo-compensated signal e n is transformed into a digital output signal u n with a correction 4 adaptable to the respective application, for example an individual hearing correction for a hearing impaired person.
  • the DA converter 5 performs a conversion into an electrical signal u (t), which is emitted via a loudspeaker or handset 6 as an acoustic output signal a out (t).
  • the acoustic output signal a out (t) is deformed on its way back to the microphone 1 in accordance with a feedback characteristic 7 characterized by an impulse response h ( ⁇ ) to a signal y (t) and superimposed on an externally incident acoustic signal s (t) (8 ).
  • the remaining components in the system are a delay element 9, a filter 10 and an updating unit 11.
  • the delay element 9 simulates the fixed delays contained in the system, resulting in a delayed signal x n .
  • the filter 10 models the unknown feedback characteristic.
  • the updating unit 11 the current coefficients w n for the filter are continuously calculated.
  • a variant of the LMS algorithm Least Mean Square
  • the well-known system does not suffice to achieve a distortion-free transmission in a realistic environment while at the same time satisfying convergence behavior.
  • the system can be improved if the updating unit works with decorrelated signals.
  • FIG. 2 shows a system which uses an artificial noise signal to decorrelate the signals.
  • a system is, for example, from the European patent applications EP-415 677 .
  • the artificial noise signal is generated in a noise generator 17 and added via a power control unit 18 to the digital output signal u n (19).
  • the artificial noise signal is also fed via a delay element 20 to the updating unit 11.
  • the noise signal is either switched on only if necessary instead of the output signal u n or continuously added to the output signal u n .
  • FIG. 3 shows a system which uses fixed orthogonal transformations to decorrelate the signals.
  • a system from Phonak AG was, for example, as a European patent application EP-585 976 released.
  • the echo-compensated signal e n and the output signal u n are transformed into the frequency domain via transformation units 21 and 22 and the echo estimate y n is recovered via an inverse transformation 23.
  • the filtering and updating of the coefficients in these systems does not take place directly in the time domain.
  • FIG. 4 shows a system which uses adaptive decorrelation filters 12, 13 to decorrelate the signals.
  • a system was, for example, in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4; 1-4, 1992 , described.
  • the echo-canceled signal e n and the delayed output signal x n are decorrelated by the adaptive decorrelation filters 12, 13.
  • the coefficients a n of the two decorrelation filters 12, 13 are calculated in block 13 by means of decorrelation of the delayed output signal x n .
  • FIG. 5 An embodiment of a system according to the invention is shown in FIG FIG. 5 shown.
  • the system according to the invention uses adaptive cross-member decorrelation filters, namely a cross-member decorrelator 12 and a cross-member filter 13 running parallel to it.
  • the cross-member filter structures known from speech signal processing prove to be particularly suitable , They are used there for linear prediction.
  • Algorithms for decorrelating a signal using cross-link filters are known.
  • the cross-correlator member 12 extracted from the echo-compensated signal e n is given by noise-like components e M n.
  • the cross member filter 13 with originating from the cross-over element de-correlator 12 coefficients k n the delayed output signal x n x M n converted into a transformed signal.
  • the special feature of this arrangement is the permutation of the two adaptive decorrelation filters 12 and 13 compared to the usual procedure, namely, not the echo-canceled signal e n , but the delayed signal x n is decorrelated.
  • the arrangement according to the invention has the great advantage that the spectral maxima present in the hearing correction 4 are maintained in the transformed signal x M n . These maxima usually correspond to the most critical frequencies for the feedback, and these should definitely be taken into account in the updating of the filter coefficients w n with the correspondingly large weighting.
  • the order of the two cross-link decorrelation filters 12, 13 is determined by a compromise between the desired degree of decorrelation and the associated computation effort.
  • M 2
  • a considerable improvement in the system behavior is again achieved by means of an upper boundary of the second cross-member coefficient k 2n .
  • This upper limit of the second cross-member coefficient has the consequence that pure sine tones are not completely decorrelated. This in turn has the great advantage that the whistling sounds occurring during unstable operation are compensated much faster.
  • the system according to the invention contains a control unit 14.
  • the control unit 14 continuously compares the power of the input signal d n with the power of the echo-compensated signal e n .
  • the ratio of the two powers determines which forgetting factor ⁇ n in the updating unit 11 Application comes. If the power of the echo-compensated signal is greater than the power of the input signal, this is almost always an indication that the echo estimate y n and thus the coefficients w n of the filter 10 are too large in terms of magnitude.
  • ⁇ n 1 is set.
  • the described control of the forgetting factor ⁇ n provides improved convergence behavior with rapid changes in the feedback path. An internal feedback generated temporarily by the system is recognized immediately and quickly adapted to the external feedback path.
  • the updating unit 11 includes a normalization unit 15 and a speed control unit 16.
  • the arrangement of the blocks described below is shown in FIG. 8 which illustrates a specification of the updating unit 11.
  • the normalization unit 15 allows the application of the NLMS algorithm (Normalized Least Mean Square). It calculates the power of the signal e M n .
  • the special feature of this arrangement is that the normalization with respect to e M n and not as usual with respect to x M n .
  • the convergence speed becomes dependent on the ratio of the powers of x M n and e M n .
  • This ratio is essentially given by the gain contained in the hearing correction 4.
  • the gain in the hearing correction is not constant in the general, non-linear case (eg compression method).
  • the convergence behavior of the adaptive filter 10 modeling the feedback characteristic 7 depends on the temporal behavior of the hearing correction 4, ie on the temporal course of its amplification and frequency response.
  • a fast adaptation of the coefficients w n occurs and in times of small amplification with uncritical feedback behavior a correspondingly slower adaptation takes place.
  • the updating takes place mainly in the times when it is actually necessary. This approach combines rapid convergence in the critical case with an approximately distortion-free processing in the uncritical case.
  • the speed control unit 16 provides a step factor ⁇ n for the NLMS algorithm.
  • the speed control unit 16 delivers values for ⁇ n beginning at the start value ⁇ max and within the first seconds after start-up gradually decreasing to the final value ⁇ min . This procedure allows a very fast convergence of the filter coefficients w n from zero to their nominal values after startup. The resulting initial signal distortions are less severe than the otherwise much longer-lasting feedback whistles.
  • the updating unit 11 can be designed so that only a certain small, cyclically changing part of the (N + 1) filter coefficients is updated at each discrete point in time. This considerably reduces the required computing effort. The system does not have to be made slower than it needs to be to prevent audible distortion anyway.
  • the microphone 1, the AD converter 2, the DA converter 5 and the handset 6 are considered ideal in the consideration.
  • the characteristics of the real acoustic and electrical transducers can be considered as part of the feedback characteristic 7.
  • T and f s denote the sampling period and the subscript n the discrete time.
  • the function f () stands for any nonlinear function of its arguments. It results from the selected procedure for correcting individual hearing loss.
  • the acoustic transmission path is modeled by means of the feedback characteristic 7 and an adder 8.
  • the operator * is to be understood as a convolution operator and h ( ⁇ ) stands for the impulse response of the feedback.
  • the externally incident signal is denoted by s (t).
  • the delay element 9 is in FIG. 6 and the following relationships apply.
  • the delay length L must be matched to the sum of the delays of the acoustic and electrical converters.
  • the filter 10 is in FIG. 7 and the following relationships apply. Underlined sizes mean the similar elements combined into vectors.
  • the factor r allows range selection, so that the filter coefficients are independent of the hearing correction 4 can always be kept in the range -1 ⁇ w kn ⁇ 1.
  • the filter order N must be matched to the length of the impulse response h ( ⁇ ).
  • the updating unit 11 is in FIG. 8 and the following relationships apply.
  • the formula is given in vector notation and element notation.
  • the updating unit 11 in turn includes the normalization unit 15 and the speed control unit 16.
  • the normalization unit 15 is shown in FIG. 9 and the following relationships apply.
  • the coefficients g and h determine the length of the time interval over which an averaging of the power of e M n takes place.
  • n n G ⁇ n n - 1 + H ⁇ e n M 2
  • G 63 / 64
  • the speed control unit 16 is in FIG. 10 and the following relationships apply.
  • the step size factor ⁇ n is gradually reduced by a factor of 0.5 starting from ⁇ max to ⁇ min .
  • the optimal values for ⁇ max and ⁇ min depend on the individual hearing correction (4).
  • the variable c n is used as a count variable.
  • ⁇ min ( c n 0 )
  • the cross-member decorrelator 12 is in FIG. 11 and the following relationships apply.
  • the quantities d i n and n i n must also be determined at each stage for tracking the coefficients k in .
  • the filter order M results from a compromise between the desired degree of decorrelation and the required computational effort.
  • the cross-member filter 13 is in FIG. 12 and the following relationships apply.
  • the control unit 14 is in FIG. 13 and the following relationships apply.
  • the forgetting factor ⁇ n results from the ratio of the two powers n d n and n e n .
  • the preferred embodiment can be easily programmed on a commercial signal processor or implemented in an integrated circuit. All variables must be suitably quantized and the operations optimized to the existing architecture blocks. Special attention is given to the treatment of the quadratic quantities (powers) and the division operations. Depending on the target system, there are optimized procedures for this. However, these are not in and of themselves subject of the present invention.

Description

Die vorliegende Erfindung betrifft eine Schaltung und ein Verfahren zur adaptiven Unterdrückung einer akustischen Rückkopplung gemäss den Oberbegriffen der unabhängigen Patentansprüche. Sie kommt bspw. in digitalen Hörgeräten zum Einsatz.The present invention relates to a circuit and a method for the adaptive suppression of an acoustic feedback according to the preambles of the independent claims. It is used, for example, in digital hearing aids.

In akustischen Systemen mit einem Mikrophon, einem Lautsprecher bzw. Hörer und einem dazwischenliegenden elektronischen Signalverarbeitungsteil kann es zu einer akustischen Rückkopplung zwischen Lautsprecher bzw. Hörer einerseits und Mikrophon andererseits kommen. Die akustische Rückkopplung verursacht unerwünschte Verzerrungen und führt im Extremfall zu instabilem Verhalten des Systems, bspw. einem unangenehmen Pfeifen. Da der instabile Betrieb nicht akzeptabel ist, muss die Signalverstärkung des Signalverarbeitungsteils oft kleiner als effektiv gewünscht eingestellt werden.In acoustic systems with a microphone, a loudspeaker or listener and an intermediate electronic signal processing part, acoustic feedback can occur between the loudspeaker or handset on the one hand and the microphone on the other hand. The acoustic feedback causes unwanted distortions and leads in extreme cases to unstable behavior of the system, for example. An unpleasant whistling. Since the unstable operation is not acceptable, the signal gain of the signal processing part often has to be set smaller than effectively desired.

Die Unterdrückung der akustischen Rückkopplung in digitalen Hörgeräten kann grundsätzlich mit unterschiedlichen Ansätzen angegangen werden. Die besten Ergebnisse werden zur Zeit mit der Methode der adaptiven Filterung erzielt.The suppression of the acoustic feedback in digital hearing aids can basically be addressed with different approaches. The best results are currently achieved with the adaptive filtering method.

Verschiedene Systeme mit adaptiver Filterung sind bekannt. Grundsätzlich wird in solchen Systemen ein akustisches Eingangssignal aufgenommen und in ein digitales elektrisches Signal umgewandelt. Davon wird eine Echoschätzung abgezogen. Das echokompensierte Signal wird mit einer notwendigen Hörkorrektur in ein digitales Ausgangssignal transformiert, in ein analoges elektrisches Signal umgewandelt und als akustisches Ausgangssignal abgestrahlt. Das akustische Signal wird auf seinem Weg zurück zum Mikrophon entsprechend einer Rückkopplungscharakteristik verformt und einem von aussen einfallenden akustischen Signal zu einem neuen akustischen Eingangssignal überlagert. Zur Berechnung der Echoschätzung werden die fixen, im System enthaltenen Verzögerungen nachgebildet und die unbekannte Rückkopplungscharakteristik modelliert.Various systems with adaptive filtering are known. Basically, in such systems, an acoustic input signal is picked up and converted into a digital electrical signal. From this, an echo estimate is subtracted. The echo-compensated signal is transformed with a necessary hearing correction into a digital output signal, converted into an analog electrical signal and emitted as an acoustic output signal. The acoustic signal is deformed on its way back to the microphone according to a feedback characteristic and superimposed on an externally incident acoustic signal to a new acoustic input signal. To calculate the echo estimate, the fixed delays contained in the system are modeled and the unknown feedback characteristic is modeled.

Solche allgemein bekannten Systeme mit adaptiver Filterung genügen nun leider nicht, um in realistischer Umgebung eine verzerrungsarme Übertragung bei gleichzeitig befriedigendem Konvergenzverhalten zu erzielen. Die Schwierigkeiten rühren daher, dass reale Signale wie Sprache oder Musik eine nicht zu vernachlässigende Autokorrelationsfunktion besitzen. Das adaptive Filter interpretiert die Autokorrelation des Signals gewissermassen als Rückkopplungseffekt und eine teilweise Auslöschung des gewünschten Signals ist die Folge. Am extremsten tritt dieser Effekt bei rein periodischen Signalen (z. B. bei Alarmtönen) auf. Das System kann verbessert werden, wenn die Rückkopplungscharakteristik unter Verwendung von dekorrelierten Signalen modelliert wird. Es existieren unterschiedliche Ansätze dazu, die im folgenden erläutert werden.Unfortunately, such well-known systems with adaptive filtering are not enough to achieve a distortion-free transmission in a realistic environment while at the same time satisfying convergence behavior. The difficulties stem from the fact that real signals such as speech or music have a non-negligible autocorrelation function. The adaptive filter effectively interprets the autocorrelation of the signal as a feedback effect and partial cancellation of the desired signal is the consequence. This effect is most extreme for purely periodic signals (eg alarm sounds). The system can be improved if the feedback characteristic is modeled using decorrelated signals. There are different approaches to this, which are explained below.

Ein erster Ansatz beinhaltet die Verwendung eines künstlichen Rauschsignals. Ein solches System ist bspw. aus den europäischen Patentanmeldungen EP-415 677 , EP-634 084 und EP-671 114 der Firma GN Danavox AS bekannt. Die gemeinsame Eigenschaft derartiger Systeme ist die Verwendung eines künstlichen Rauschsignals zur Dekorrelation der Signale. Das Rauschsignal wird entweder nur bei Bedarf anstelle des Ausgangssignals zugeschaltet oder laufend zum Ausgangssignal addiert. Der Nachteil dieser Systeme ist der notwendige Aufwand für die Steuerung der Rauschsignalleistung derart, dass das Rauschen möglichst unhörbar bleibt und trotzdem eine genügend gute Konvergenzgeschwindigkeit erreicht werden kann.A first approach involves the use of an artificial noise signal. Such a system is, for example, from the European patent applications EP-415 677 . EP-634 084 and EP-671 114 known by the company GN Danavox AS. The common feature of such systems is the use of an artificial noise signal to decorrelate the signals. The noise signal is switched on only when needed instead of the output signal or continuously to Added output signal. The disadvantage of these systems is the effort required for the control of the noise signal power such that the noise remains as inaudible and still a sufficiently good convergence speed can be achieved.

Ein zweiter Ansatz beinhaltet die Verwendung von fixen orthogonalen Transformationen. Ein solches System der Firma Phonak AG wurde bspw. als europäische Patentanmeldung EP-585 976 veröffentlicht. Die gemeinsame Eigenschaft derartiger Systeme ist die Verwendung von fixen orthogonalen Transformationen zur Dekorrelation der Signale. Die Filterung und Aufdatierung der Koeffizienten erfolgt bei diesen Systemen nicht direkt im Zeitbereich. Der Nachteil dieser Systeme ist neben dem im Allgemeinen grösseren Rechenaufwand die durch die blockweise Verarbeitung bedingte zusätzliche Verzögerung im Signalverarbeitungspfad.A second approach involves the use of fixed orthogonal transformations. Such a system from Phonak AG was, for example, as a European patent application EP-585 976 released. The common feature of such systems is the use of fixed orthogonal transforms to decorrelate the signals. The filtering and updating of the coefficients in these systems does not take place directly in the time domain. The disadvantage of these systems, in addition to the generally greater computational effort, is the additional delay in the signal processing path caused by the block-by-block processing.

Ein dritter Ansatz beinhaltet die Verwendung von adaptiven Dekorrelationsfiltern. Ein solches System wurde bspw. in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4;1-4, 1992 , beschrieben. Die mit diesem Ansatz machbaren Systeme unterscheiden sich durch die unterschiedliche Anordnung und Realisierung der Dekorrelationsfilter. Der Nachteil des publizierten Systems besteht in der Verwendung von relativ langsamen Transversalfilter-Dekorrelatoren, die sich aufgrund ihrer Struktur nicht besonders schnell den sich ändernden statistischen Eigenschaften ihrer Eingangssignale anpassen können. Die Koeffizienten der beiden Dekorrelationsfilter werden im allgemeinen durch Dekorrelation des zum Lautsprecher bzw. Hörer gelangenden Ausgangssignal ermittelt. Damit soll die Konvergenzgeschwindigkeit frequenzunabhängig gemacht werden. Eine besondere Gewichtung der für das Rückkopplungsverhalten besonders kritischen Frequenzen mit hohen Verstärkungen im Signalverarbeitungspfad ist also nicht vorhanden.A third approach involves the use of adaptive decorrelation filters. Such a system was, for example, in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4; 1-4, 1992 , described. The feasible with this approach systems differ by the different arrangement and implementation of the decorrelation filter. The disadvantage of the published system is the use of relatively slow transversal filter decorrelators, which due to their structure can not adapt very fast to the changing statistical properties of their input signals. The coefficients of the two decorrelation filters are generally determined by decorrelation of the output signal reaching the loudspeaker or receiver. This is intended to make the convergence speed frequency-independent. A special weighting of the frequencies which are particularly critical for the feedback behavior with high gains in the signal processing path is thus not present.

Es ist Aufgabe der Erfindung, eine Schaltung und ein Verfahren zur adaptiven Unterdrückung einer akustischen Rückkopplung anzugeben, welche die Nachteile der bekannten Systeme nicht aufweisen. Insbesondere soll mit möglichst geringem Aufwand ein optimales Konvergenzverhalten mit minimalen, unhörbaren Verzerrungen und ohne zusätzliche Signalverzögerung erreicht werden.It is an object of the invention to provide a circuit and a method for the adaptive suppression of an acoustic feedback, which do not have the disadvantages of the known systems. In particular, an optimal convergence behavior with minimal, inaudible distortions and without additional signal delay should be achieved with the least possible effort.

Die Aufgabe wird gelöst durch die Schaltung und das Verfahren, wie sie in den unabhängigen Patentansprüchen definiert sind.The object is achieved by the circuit and the method as defined in the independent claims.

Die vorliegende Erfindung gehört zur Gruppe von Systemen mit adaptiven Dekorrelationsfiltern. Sie macht sich die Erkenntnis zunutze, dass Kreuzglied-Filterstrukturen für die schnelle Dekorrelation besonders geeignet sind. Solche Kreuzglied-Filterstrukturen sind aus der Sprachsignalverarbeitung bekannt und werden dort für die lineare Prädiktion eingesetzt. Algorithmen für die Dekorrelation eines Signals mittels Kreuzglied-Filter sind bekannt und können der Fachliteratur entnommen werden, bspw. bei S. Thomas Alexander, "Adaptive Signal Processing", Springer-Verlag New York, 1986 .The present invention belongs to the group of systems with adaptive decorrelation filters. It makes use of the knowledge that cross-member filter structures are particularly suitable for rapid decorrelation. Such cross-member filter structures are known from speech signal processing and are used there for linear prediction. Algorithms for the decorrelation of a signal by cross-link filter are known and can be taken from the literature, for example S. Thomas Alexander, "Adaptive Signal Processing", Springer-Verlag New York, 1986 ,

Die vorliegende Erfindung modelliert den Rückkopplungspfad und folgt dessen zeitlichen Änderungen adaptiv mittels einer optimierten Nachführung. Die rückgekoppelten Signalanteile werden laufend aus dem Eingangssignal entfernt. Damit wird die für den stabilen Betrieb zulässige Signalverstärkung wesentlich erhöht. Dies ermöglicht die Anwendung höherer Verstärkungen (z. B. bei schweren Hörschäden) oder eine angenehme offenere Versorgung (z. B. bei leichten Hörschäden).The present invention models the feedback path and adaptively follows its temporal changes by means of optimized tracking. The fed back signal components are constantly removed from the input signal. This significantly increases the signal gain allowed for stable operation. This allows the use of higher reinforcements (eg in the case of severe hearing damage) or a pleasant, more open supply (eg in case of slight hearing damage).

Die erfindungsgemässe Schaltung kommt bei einem akustischen System mit mindestens einem Mikrophon zur Erzeugung eines elektrischen Eingangssignals, mindestens einem Lautsprecher bzw. Hörer und einem dazwischenliegenden elektronischen Signalverarbeitungsteil zum Einsatz. Sie beinhaltet ein Filter zur Modellierung einer Rückkopplungscharakteristik, eine Aufdatierungseinheit zur Berechnung aktueller Koeffizienten für das Filter, einen Subtrahierer zur Berechnung eines echokompensierten Eingangssignals mittels Subtraktion einer vom Filter gelieferten Echoschätzung von einem digitalen Eingangssignal, ein Verzögerungselement zur Berechnung eines verzögerten Ausgangssignals und zwei adaptive Kreuzglied-Dekorrelationsfilter. Ein erstes Kreuzglied-Dekorrelationsfilter ist zur Dekorrelation des echokompensierten Eingangssignals angeordnet, und ein zweites Kreuzglied-Dekorrelationsfilter ist zur Dekorrelation des verzögerten Ausgangssignals mittels aus dem ersten Kreuzglied-Dekorrelationsfilter stammender Koeffizienten angeordnet. Die beiden Kreuzglied-Dekorrelationsfilter sind für eine Berechnung ihrer Kreuzglied-Koeffizienten mittels adaptiver Dekorrelation des echokompensierten Eingangssignals konfiguriert.The inventive circuit is used in an acoustic system with at least one microphone for generating an electrical input signal, at least one speaker or handset and an intermediate electronic signal processing part. It contains a filter for Modeling a feedback characteristic, an updating unit for calculating current coefficients for the filter, a subtractor for calculating an echo-compensated input signal by subtracting an echo estimate from a digital input signal supplied by the filter, a delay element for calculating a delayed output signal, and two adaptive cross-link decorrelation filters. A first cross-sectional decorrelation filter is arranged to decorrelate the echo-canceled input signal, and a second cross-sectional decorrelation filter is arranged to decorrelate the delayed output signal by means of coefficients derived from the first cross-sectional decorrelation filter. The two cross-link decorrelation filters are configured to calculate their cross-member coefficients by means of adaptive decorrelation of the echo-canceled input signal.

Das erste Dekorrelationsfilter, ein Kreuzglied-Dekorrelator, extrahiert aus dem echokompensierten Signal die darin enthaltenen rauschartigen Komponenten. Parallel dazu wird im zweiten Dekorrelationsfilter, einem Kreuzglied-Filter, mit den aus dem Kreuzglied-Dekorrelator stammenden Koeffizienten das verzögerte Ausgangssignal in ein transformiertes Signal umgewandelt. Das Besondere an dieser Anordnung ist die Vertauschung des Kreuzglied-Dekorrelators und des Kreuzglied-Filters gegenüber der üblichen Anordnung, bei der nämlich nicht das echokompensierte Signal, sondern das verzögerte Ausgangssignal dekorreliert wird. Die erfindungsgemässe Schaltung hat den grossen Vorteil, dass die in der Hörkorrektur vorhandenen spektralen Maxima im transformierten Signal erhalten bleiben. Diese Maxima entsprechen meistens den für die Rückkopplung kritischsten Frequenzen, und diese sollen bei der Aufdatierung der Filterkoeffizienten durchaus mit der entsprechend grossen Gewichtung berücksichtigt werden.The first decorrelation filter, a cross-member decorrelator, extracts from the echo-canceled signal the noise-like components contained therein. In parallel, in the second decorrelation filter, a cross-gate filter, the delayed output signal is converted into a transformed signal with the coefficients derived from the cross-divisor decorrelator. The special feature of this arrangement is the interchanging of the cross-link decorrelator and the cross-link filter over the conventional arrangement, in which not the echo-canceled signal, but the delayed output signal is decorrelated. The circuit according to the invention has the great advantage that the spectral maxima present in the hearing correction are preserved in the transformed signal. These maxima usually correspond to the most critical frequencies for the feedback, and these should certainly be taken into account in the updating of the filter coefficients with the correspondingly large weighting.

Beim erfindungsgemässen Verfahren zur adaptiven Unterdrückung der akustischen Rückkopplung wird mit mindestens einem Mikrophon ein elektrisches Eingangssignal erzeugt, mit einem Filter eine Rückkopplungscharakteristik modelliert, mit einer Aufdatierungseinheit werden aktuelle Koeffizienten für das Filter berechnet, mit einem Subtrahierer wird ein echokompensiertes Eingangssignal mittels Subtraktion einer vom Filter gelieferten Echoschätzung von einem digitalen Eingangssignal berechnet, und mit einem Verzögerungselement wird ein verzögertes Ausgangssignal berechnet. Mit einem ersten Kreuzglied-Dekorrelationsfilter wird das echokompensierte Eingangssignal dekorreliert, und mit einem zweiten Kreuzglied-Dekorrelationsfilter wird das verzögerte Ausgangssignal mittels aus dem ersten Kreuzglied-Dekorrelationsfilter stammender Koeffizienten dekorreliert. Die Kreuzglied-Koeffizienten der beiden Kreuzglied-Dekorrelationsfilter werden mittels adaptiver Dekorrelation des echokompensierten Eingangssignals berechnet.In the method according to the invention for the adaptive suppression of the acoustic feedback, an electrical input signal is generated with at least one microphone, a feedback characteristic is modeled with a filter, current updating coefficients for the Calculates a filter, a subtracter calculates an echo-canceled input signal by subtracting an echo estimate provided by the filter from a digital input signal, and a delay element calculates a delayed output signal. The echo-canceled input signal is decorrelated with a first cross-divisional decorrelation filter, and the delayed output signal is decorrelated with a second cross-divisional decorrelation filter by means of coefficients derived from the first cross-divisional decorrelation filter. The cross-member coefficients of the two cross-member decorrelation filters are calculated by adaptive decorrelation of the echo-canceled input signal.

Die vorliegende Erfindung unterscheidet sich wesentlich von allen bisher publizierten Systemen zur Unterdrückung der akustischen Rückkopplung. Neu sind die besondere Anordnung und Realisierung der Blöcke für die Dekorrelation und die Normierung, die Steuerung des Vergessensfaktors und des Schrittweitefaktors, sowie die Möglichkeit der gestaffelten Aufdatierung in der erfindungsgemässen Kombination. Die vorliegende Erfindung erlaubt maximale Konvergenzgeschwindigkeiten bei minimalen Verzerrungen, da die Aufdatierung der Filterkoeffizienten zeitlich und frequenzmässig hauptsächlich dort stattfindet, wo die grossen Verstärkungen in der Hörkorrektur auftreten.The present invention differs significantly from all previously published systems for suppressing the acoustic feedback. What is new are the special arrangement and realization of the blocks for decorrelation and normalization, the control of the forgetting factor and the step size factor, as well as the possibility of staggered updating in the combination according to the invention. The present invention allows maximum convergence speeds with minimal distortion, since the updating of the filter coefficients takes place in terms of time and frequency mainly where the large amplifications in the auditory correction occur.

Im folgenden wird die Erfindung und zum Vergleich auch der Stand der Technik anhand von Figuren detailliert beschreiben. Dabei zeigen in Blockdiagrammen:

Fig. 1
ein allgemeines System zur adaptiven Unterdrückung der akustischen Rückkopplung gemäss Stand der Technik,
Fig. 2
ein System mit Verwendung eines Rauschsignals gemäss Stand der Technik,
Fig. 3
ein System mit Verwendung von orthogonalen Transformationen gemäss Stand der Technik,
Fig. 4
ein System mit Verwendung von adaptiven Dekorrelationsfiltern gemäss Stand der Technik,
Fig. 5
das erfindungsgemässe System,
Fig. 6
eine Detailzeichnung eines Verzögerungselements des erfindungsgemässen Systems,
Fig. 7
eine Detailzeichnung eines Filters des erfindungsgemässen Systems,
Fig. 8
eine Detailzeichnung einer Aufdatierungseinheit des erfindungsgemässen Systems,
Fig. 9
eine Detailzeichnung einer Normierungseinheit des erfindungsgemässen Systems,
Fig. 10
eine Detailzeichnung einer Geschwindigkeitssteuerungseinheit des erfindungsgemässen Systems,
Fig.11
eine Detailzeichnung eines Kreuzglied-Dekorrelators des erfindungsgemässen Systems,
Fig. 12
eine Detailzeichnung eines Kreuzglied-Filters des erfindungsgemässen Systems und
Fig. 13
eine Detailzeichnung einer Kontrolleinheit des erfindungsgemässen Systems.
In the following, the invention and for comparison, the prior art will be described in detail with reference to figures. Here are shown in block diagrams:
Fig. 1
a general system for adaptive suppression of the acoustic feedback according to the prior art,
Fig. 2
a system using a noise signal according to the prior art,
Fig. 3
a system using orthogonal transformations according to the prior art,
Fig. 4
a system using adaptive decorrelation filters according to the prior art,
Fig. 5
the system according to the invention,
Fig. 6
a detailed drawing of a delay element of the inventive system,
Fig. 7
a detailed drawing of a filter of the inventive system,
Fig. 8
a detailed drawing of an updating unit of the system according to the invention,
Fig. 9
a detailed drawing of a normalization unit of the inventive system,
Fig. 10
a detailed drawing of a speed control unit of the inventive system,
Figure 11
a detailed drawing of a cross-member decorrelator of the inventive system,
Fig. 12
a detailed drawing of a cross-member filter of the inventive system and
Fig. 13
a detailed drawing of a control unit of the inventive system.

Ein allgemein bekanntes System zur adaptiven Unterdrückung der akustischen Rückkopplung ist in Figur 1 dargestellt. Ein akustisches Eingangssignal ain(t) wird von einem Mikrophon 1 aufgenommen und vorerst in ein elektrisches Signal d(t) umgewandelt. Ein nachfolgender AD-Wandler 2 ermittelt daraus ein digitales Eingangssignal dn. Davon wird in einem Subtrahierer 3 eine Echoschätzung yn abgezogen. Das echokompensierte Signal en wird mit einer an die jeweilige Anwendung anpassbaren Korrektur 4, bspw. einer individuellen Hörkorrektur für einen Hörbehinderten, in ein digitales Ausgangssignal un transformiert. Der DA-Wandler 5 vollzieht eine Umwandlung in ein elektrisches Signal u(t), das über einen Lautsprecher bzw. Hörer 6 als akustisches Ausgangssignal aout(t) abgestrahlt wird. Das akustische Ausgangssignal aout(t) wird auf seinem Weg zurück zum Mikrophon 1 entsprechend einer durch eine Impulsantwort h(τ) charakterisierten Rückkopplungscharakteristik 7 zu einem Signal y(t) verformt und einem von aussen einfallenden akustischen Signal s(t) überlagert (8). Die restlichen Komponenten im System sind ein Verzögerungselement 9, ein Filter 10 und eine Aufdatierungseinheit 11. Das Verzögerungselement 9 bildet die fixen, im System enthaltenen Verzögerungen nach, wodurch ein verzögertes Signal xn entsteht. Das Filter 10 modelliert die unbekannte Rückkopplungscharakteristik. In der Aufdatierungseinheit 11 werden laufend die aktuellen Koeffizienten w n für das Filter berechnet. Dabei wird üblicherweise eine Variante des LMS-Algorithmus (Least Mean Square) angewendet.A well-known system for the adaptive suppression of the acoustic feedback is in FIG. 1 shown. An acoustic input signal a in (t) is picked up by a microphone 1 and initially converted into an electrical signal d (t). A subsequent AD converter 2 determines a digital Input signal d n . Of these, an echo estimate y n is subtracted in a subtractor 3. The echo-compensated signal e n is transformed into a digital output signal u n with a correction 4 adaptable to the respective application, for example an individual hearing correction for a hearing impaired person. The DA converter 5 performs a conversion into an electrical signal u (t), which is emitted via a loudspeaker or handset 6 as an acoustic output signal a out (t). The acoustic output signal a out (t) is deformed on its way back to the microphone 1 in accordance with a feedback characteristic 7 characterized by an impulse response h (τ) to a signal y (t) and superimposed on an externally incident acoustic signal s (t) (8 ). The remaining components in the system are a delay element 9, a filter 10 and an updating unit 11. The delay element 9 simulates the fixed delays contained in the system, resulting in a delayed signal x n . The filter 10 models the unknown feedback characteristic. In the updating unit 11, the current coefficients w n for the filter are continuously calculated. In this case, a variant of the LMS algorithm (Least Mean Square) is usually applied.

Das allgemein bekannte System genügt wegen der nicht zu vernachlässigenden Autokorrelationsfunktion realer akustischer Signale s(t) nicht, um in realistischer Umgebung eine verzerrungsarme Übertragung bei gleichzeitig befriedigendem Konvergenzverhalten zu erzielen. Das System kann verbessert werden, wenn die Aufdatierungseinheit mit dekorrelierten Signalen arbeitet.Because of the non-negligible autocorrelation function of real acoustic signals s (t), the well-known system does not suffice to achieve a distortion-free transmission in a realistic environment while at the same time satisfying convergence behavior. The system can be improved if the updating unit works with decorrelated signals.

Figur 2 zeigt ein System, welches zur Dekorrelation der Signale ein künstliches Rauschsignal verwendet. Ein solches System ist bspw. aus den europäischen Patentanmeldungen EP-415 677 , EP-634 084 und EP-671 114 der Firma GN Danavox AS bekannt. Das künstliche Rauschsignal wird in einem Rauschgenerator 17 erzeugt und via einer Leistungsregelungseinheit 18 zum digitalen Ausgangssignal un addiert (19). Das künstliche Rauschsignal wird auch über ein Verzögerungselement 20 zur Aufdatierungseinheit 11 geführt. Das Rauschsignal wird entweder nur bei Bedarf anstelle des Ausgangssignals un zugeschaltet oder laufend zum Ausgangssignal un addiert. FIG. 2 shows a system which uses an artificial noise signal to decorrelate the signals. Such a system is, for example, from the European patent applications EP-415 677 . EP-634 084 and EP-671 114 known by the company GN Danavox AS. The artificial noise signal is generated in a noise generator 17 and added via a power control unit 18 to the digital output signal u n (19). The artificial noise signal is also fed via a delay element 20 to the updating unit 11. The noise signal is either switched on only if necessary instead of the output signal u n or continuously added to the output signal u n .

Figur 3 zeigt ein System, welches zur Dekorrelation der Signale fixe orthogonale Transformationen verwendet. Ein solches System der Firma Phonak AG wurde bspw. als europäische Patentanmeldung EP-585 976 veröffentlicht. Das echokompensierte Signal en und das Ausgangssignal un werden über Transformationseinheiten 21 und 22 in den Frequenzbereich transformiert bzw. die Echoschätzung yn wird über eine inverse Transformation 23 zurückgewonnen. Die Filterung und Aufdatierung der Koeffizienten erfolgt bei diesen Systemen nicht direkt im Zeitbereich. FIG. 3 shows a system which uses fixed orthogonal transformations to decorrelate the signals. Such a system from Phonak AG was, for example, as a European patent application EP-585 976 released. The echo-compensated signal e n and the output signal u n are transformed into the frequency domain via transformation units 21 and 22 and the echo estimate y n is recovered via an inverse transformation 23. The filtering and updating of the coefficients in these systems does not take place directly in the time domain.

Figur 4 zeigt ein System, welches zur Dekorrelation der Signale adaptive Dekorrelationsfilter 12, 13 verwendet. Ein solches System wurde bspw. in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4; 1-4, 1992 , beschrieben. Das echokompensierte Signal en und das verzögerte Ausgangssignal xn werden durch die adaptiven Dekorrelationsfilter 12, 13 dekorreliert. Die Koeffizienten a n der beiden Dekorrelationsfilter 12, 13 werden im Block 13 mittels Dekorrelation des verzögerten Ausgangssignals xn berechnet. FIG. 4 FIG. 12 shows a system which uses adaptive decorrelation filters 12, 13 to decorrelate the signals. Such a system was, for example, in Mamadou Mboup et al., "Coupled Adaptive Prediction and System Identification: A Statistical Model and Transient Analysis", Proc. 1992 IEEE ICASSP, 4; 1-4, 1992 , described. The echo-canceled signal e n and the delayed output signal x n are decorrelated by the adaptive decorrelation filters 12, 13. The coefficients a n of the two decorrelation filters 12, 13 are calculated in block 13 by means of decorrelation of the delayed output signal x n .

Ein Ausführungsbeispiel eines erfindungsgemässen Systems ist in Figur 5 dargestellt. Nebst den oben beschriebenen Blöcken 1 bis 11 verwendet das erfindungsgemässe System adaptive Kreuzglied-Dekorrelationsfilter, nämlich einen Kreuzglied-Dekorrelator 12 und ein parallel dazu mitlaufendes Kreuzglied-Filter 13. Für die schnelle Dekorrelation erweisen sich die aus der Sprachsignalverarbeitung bekannten Kreuzglied-Filterstrukturen als besonders geeignet. Sie werden dort für die lineare Prädiktion eingesetzt. Algorithmen für die Dekorrelation eines Signals mittels Kreuzglied-Filter sind bekannt.An embodiment of a system according to the invention is shown in FIG FIG. 5 shown. In addition to the blocks 1 to 11 described above, the system according to the invention uses adaptive cross-member decorrelation filters, namely a cross-member decorrelator 12 and a cross-member filter 13 running parallel to it. For rapid decorrelation, the cross-member filter structures known from speech signal processing prove to be particularly suitable , They are used there for linear prediction. Algorithms for decorrelating a signal using cross-link filters are known.

Der Kreuzglied-Dekorrelator 12 extrahiert aus dem echokompensierten Signal en darin enthaltene rauschartige Komponenten eM n. Parallel dazu wird im Kreuzglied-Filter 13 mit aus dem Kreuzglied-Dekorrelator 12 stammenden Koeffizienten k n das verzögerte Ausgangssignal xn in ein transformiertes Signal xM n umgewandelt. Das Besondere an dieser Anordnung ist die Vertauschung der beiden adaptiven Dekorrelationsfilter 12 und 13 gegenüber der üblichen Vorgehensweise, bei der nämlich nicht das echokompensierte Signal en, sondern das verzögerte Signal xn dekorreliert wird. Die erfindungsgemässe Anordnung hat aber den grossen Vorteil, dass die in der Hörkorrektur 4 vorhandenen spektralen Maxima im transformierten Signal xM n erhalten bleiben. Diese Maxima entsprechen meistens den für die Rückkopplung kritischsten Frequenzen, und diese sollen bei der Aufdatierung der Filterkoeffizienten w n durchaus mit der entsprechend grossen Gewichtung berücksichtigt werden.The cross-correlator member 12 extracted from the echo-compensated signal e n is given by noise-like components e M n. In parallel, the cross member filter 13 with originating from the cross-over element de-correlator 12 coefficients k n the delayed output signal x n x M n converted into a transformed signal. The special feature of this arrangement is the permutation of the two adaptive decorrelation filters 12 and 13 compared to the usual procedure, namely, not the echo-canceled signal e n , but the delayed signal x n is decorrelated. However, the arrangement according to the invention has the great advantage that the spectral maxima present in the hearing correction 4 are maintained in the transformed signal x M n . These maxima usually correspond to the most critical frequencies for the feedback, and these should definitely be taken into account in the updating of the filter coefficients w n with the correspondingly large weighting.

Die Ordnung der beiden Kreuzglied-Dekorrelationsfilter 12, 13 bestimmt sich aus einem Kompromiss zwischen gewünschtem Dekorrelationsgrad und dem damit verbundenen Rechenaufwand. Für den Spezialfall von Filtern zweiter Ordnung (M=2) wird mittels einer oberen Begrenzung des zweiten Kreuzglied-Koeffizienten k2n nochmals eine erhebliche Verbesserung des Systemverhaltens erzielt. Diese obere Begrenzung des zweiten Kreuzglied-Koeffizienten hat zur Folge, dass reine Sinustöne nicht vollständig dekorreliert werden. Das wiederum hat den grossen Vorteil, dass die bei instabilem Betrieb auftretenden Pfeiftöne wesentlich schneller kompensiert werden.The order of the two cross-link decorrelation filters 12, 13 is determined by a compromise between the desired degree of decorrelation and the associated computation effort. For the special case of second-order filters (M = 2), a considerable improvement in the system behavior is again achieved by means of an upper boundary of the second cross-member coefficient k 2n . This upper limit of the second cross-member coefficient has the consequence that pure sine tones are not completely decorrelated. This in turn has the great advantage that the whistling sounds occurring during unstable operation are compensated much faster.

Ferner enthält das erfindungsgemässe System eine Kontrolleinheit 14. Die Kontrolleinheit 14 vergleicht laufend die Leistung des Eingangssignals dn mit der Leistung des echokompensierten Signals en. Das Verhältnis der beiden Leistungen bestimmt, welcher Vergessensfaktor λn in der Aufdatierungseinheit 11 zur Anwendung kommt. Ist nämlich die Leistung des echokompensierten Signals grösser als die Leistung des Eingangssignals, so ist dies fast immer ein Indiz dafür, dass die Echoschätzung yn und somit die Koeffizienten w n des Filters 10 betragsmässig zu gross sind. Durch Setzen von λn<1 konvergieren die Koeffizienten schnell zu einem geeigneteren Wert. Im normalen Betrieb hingegen wird λn=1 gesetzt. Die beschriebene Steuerung des Vergessensfaktor λn liefert ein verbessertes Konvergenzverhalten bei schnellen Veränderungen des Rückkopplungspfades. Eine interne, temporär durch das System erzeugte Rückkopplung wird sofort erkannt und sehr schnell wieder dem externen Rückkopplungspfad angepasst.Furthermore, the system according to the invention contains a control unit 14. The control unit 14 continuously compares the power of the input signal d n with the power of the echo-compensated signal e n . The ratio of the two powers determines which forgetting factor λ n in the updating unit 11 Application comes. If the power of the echo-compensated signal is greater than the power of the input signal, this is almost always an indication that the echo estimate y n and thus the coefficients w n of the filter 10 are too large in terms of magnitude. By setting λ n <1, the coefficients rapidly converge to a more appropriate value. In normal operation, however, λ n = 1 is set. The described control of the forgetting factor λ n provides improved convergence behavior with rapid changes in the feedback path. An internal feedback generated temporarily by the system is recognized immediately and quickly adapted to the external feedback path.

Als weiteren Unterschied zu anderen Systemen enthält die Aufdatierungseinheit 11 eine Normierungseinheit 15 und eine Geschwindigkeitssteuerungseinheit 16. Die Anordnung der nachfolgend beschriebenen Blöcke ist aus der Figur 8 ersichtlich, die eine Präzisierung der Aufdatierungseinheit 11 darstellt. Die Normierungseinheit 15 ermöglicht die Anwendung des NLMS-Algorithmus (Normalized Least Mean Square). Sie berechnet die Leistung des Signals eM n. Das Spezielle an dieser Anordnung ist, dass die Normierung bezüglich eM n und nicht wie üblich bezüglich xM n erfolgt. Damit wird die Konvergenzgeschwindigkeit abhängig vom Verhältnis der Leistungen von xM n und eM n. Dieses Verhältnis ist im Wesentlichen gegeben durch die in der Hörkorrektur 4 enthaltene Verstärkung. Die Verstärkung in der Hörkorrektur ist im allgemeinen, nichtlinearen Fall (z. B. Kompressionsverfahren) zeitlich nicht konstant. Beim erfindungsgemässen Verfahren ist also das Konvergenzverhalten des die Rückkopplungscharakteristik 7 modellierenden adaptiven Filters 10 vom zeitlichen Verhalten der Hörkorrektur 4, d. h. vom zeitlichen Verlauf von deren Verstärkung und Frequenzgang, abhängig. In Zeiten grosser Verstärkung mit besonders kritischem Rückkopplungsverhalten erfolgt eine schnelle Anpassung der Koeffizienten w n und in Zeiten kleiner Verstärkung mit unkritischem Rückkopplungsverhalten erfolgt eine entsprechend langsamere Anpassung. Die Aufdatierung erfolgt also hauptsächlich in den Zeiten, wo es tatsächlich nötig ist. Dieses Vorgehen vereinigt eine schnelle Konvergenz im kritischen Fall mit einer annähernd verzerrungsfreien Verarbeitung im unkritischen Fall.As a further difference from other systems, the updating unit 11 includes a normalization unit 15 and a speed control unit 16. The arrangement of the blocks described below is shown in FIG FIG. 8 which illustrates a specification of the updating unit 11. The normalization unit 15 allows the application of the NLMS algorithm (Normalized Least Mean Square). It calculates the power of the signal e M n . The special feature of this arrangement is that the normalization with respect to e M n and not as usual with respect to x M n . Thus, the convergence speed becomes dependent on the ratio of the powers of x M n and e M n . This ratio is essentially given by the gain contained in the hearing correction 4. The gain in the hearing correction is not constant in the general, non-linear case (eg compression method). In the method according to the invention, therefore, the convergence behavior of the adaptive filter 10 modeling the feedback characteristic 7 depends on the temporal behavior of the hearing correction 4, ie on the temporal course of its amplification and frequency response. In times of high gain with particularly critical feedback behavior, a fast adaptation of the coefficients w n occurs and in times of small amplification with uncritical feedback behavior a correspondingly slower adaptation takes place. The updating takes place mainly in the times when it is actually necessary. This approach combines rapid convergence in the critical case with an approximately distortion-free processing in the uncritical case.

Die Geschwindigkeitssteuerungseinheit 16 liefert einen Schrittweitefaktor βn für den NLMS-Algorithmus. Die Geschwindigkeitssteuerungseinheit 16 liefert Werte für βn beginnend beim Startwert βmax und innerhalb der ersten Sekunden nach dem Aufstarten schrittweise abnehmend bis zum Endwert βmin. Dieses Vorgehen erlaubt nach dem Aufstarten eine sehr schnelle Konvergenz der Filterkoeffizienten w n von Null auf ihre Sollwerte. Die dadurch entstehenden anfänglichen Signalverzerrungen sind weniger gravierend als das andernfalls viel länger andauernde Rückkopplungspfeifen.The speed control unit 16 provides a step factor β n for the NLMS algorithm. The speed control unit 16 delivers values for β n beginning at the start value β max and within the first seconds after start-up gradually decreasing to the final value β min . This procedure allows a very fast convergence of the filter coefficients w n from zero to their nominal values after startup. The resulting initial signal distortions are less severe than the otherwise much longer-lasting feedback whistles.

Die Aufdatierungseinheit 11 kann so ausgeführt werden, dass zu jedem diskreten Zeitpunkt jeweils nur ein bestimmter kleiner, zyklisch wechselnder Teil der (N+1) Filterkoeffizienten aufdatiert wird. Dies reduziert den benötigten Rechenaufwand beträchtlich. Das System muss dabei nicht zusätzlich langsamer gemacht werden, als es zur Verhinderung von hörbaren Verzerrungen ohnehin sein muss.The updating unit 11 can be designed so that only a certain small, cyclically changing part of the (N + 1) filter coefficients is updated at each discrete point in time. This considerably reduces the required computing effort. The system does not have to be made slower than it needs to be to prevent audible distortion anyway.

Im folgenden wird eine spezielle Ausführungsform der vorliegenden Erfindung ausgehend von Figur 5 ausführlicher beschrieben. Das Mikrophon 1, der AD-Wandler 2, der DA-Wandler 5 und der Hörer 6 werden in der Betrachtung als ideal angenommen. Die Charakteristiken der realen akustischen und elektrischen Wandler können als Teil der Rückkopplungscharakteristik 7 betrachtet werden. Für den AD-Wandler 2 und den DA-Wandler 5 gelten die nachfolgenden Beziehungen. Dabei bezeichnen T und fs die Abtastperiode bzw. Abtastfrequenz und der Index n den diskreten Zeitpunkt. d n = d n T u n T = u n

Figure imgb0001
T = 1 / f s f s = 16 kHz
Figure imgb0002
Für den Subtrahierer 3 und die Hörkorrektur 4 gelten die nachfolgenden Beziehungen. Die Funktion f() steht für eine beliebige nichtlineare Funktion ihrer Argumente. Sie ergibt sich aufgrund des ausgewählten Verfahrens zur Korrektur des individuellen Hörverlustes. e n = d n - y n
Figure imgb0003
u n = f e 0 e 1 e 2 e n
Figure imgb0004
In the following, a specific embodiment of the present invention is based on FIG. 5 described in more detail. The microphone 1, the AD converter 2, the DA converter 5 and the handset 6 are considered ideal in the consideration. The characteristics of the real acoustic and electrical transducers can be considered as part of the feedback characteristic 7. For the AD converter 2 and the DA converter 5, the following relationships apply. Here, T and f s denote the sampling period and the subscript n the discrete time. d n = d n T u n T = u n
Figure imgb0001
T = 1 / f s f s = 16 kHz
Figure imgb0002
For the subtractor 3 and the hearing correction 4, the following relationships apply. The function f () stands for any nonlinear function of its arguments. It results from the selected procedure for correcting individual hearing loss. e n = d n - y n
Figure imgb0003
u n = f e 0 e 1 e 2 ... e n
Figure imgb0004

Die akustische Übertragungsstrecke wird mittels der Rückkopplungscharakteristik 7 und einem Addierer 8 modelliert. Dabei ist der Operator * als Faltungsoperator zu verstehen und h(τ) steht für die Impulsantwort der Rückkopplung. Das von aussen einfallende Signal ist mit s(t) bezeichnet. y t = a out t * h τ

Figure imgb0005
a in t = s t + y t
Figure imgb0006
The acoustic transmission path is modeled by means of the feedback characteristic 7 and an adder 8. The operator * is to be understood as a convolution operator and h (τ) stands for the impulse response of the feedback. The externally incident signal is denoted by s (t). y t = a out t * H τ
Figure imgb0005
a in t = s t + y t
Figure imgb0006

Das Verzögerungselement 9 ist in Figur 6 dargestellt, und es gelten die nachfolgenden Beziehungen. Die Verzögerungslänge L muss auf die Summe der Verzögerungen der akustischen und elektrischen Wandler abgestimmt sein. x n = u n - L

Figure imgb0007
L = 16 24 L T = 1 ms 15 ms
Figure imgb0008
The delay element 9 is in FIG. 6 and the following relationships apply. The delay length L must be matched to the sum of the delays of the acoustic and electrical converters. x n = u n - L
Figure imgb0007
L = 16 ... 24 L T = 1 ms ... 15 ms
Figure imgb0008

Das Filter 10 ist in Figur 7 dargestellt, und es gelten die nachfolgenden Beziehungen. Dabei bedeuten unterstrichene Grössen die zu Vektoren zusammengefassten gleichartigen Elemente. Der Faktor r erlaubt eine Bereichswahl, so dass die Filterkoeffizienten unabhängig von der Hörkorrektur 4 immer im Bereich -1 ≤ wkn < 1 gehalten werden können. Die Filterordnung N muss auf die Länge der Impulsantwort h(τ) abgestimmt sein. y n = r w ̲ n T x ̲ n = r k = 0 N w k , n x n - k

Figure imgb0009
r = 1 / 128 , 1 / 64 , 1 / 32 , 1 / 16 , 1 / 8 , 1 / 4 , 1 / 2 , 1 / 1 N = 32 64 N T = 2 ms 4 ms
Figure imgb0010
The filter 10 is in FIG. 7 and the following relationships apply. Underlined sizes mean the similar elements combined into vectors. The factor r allows range selection, so that the filter coefficients are independent of the hearing correction 4 can always be kept in the range -1 ≤ w kn <1. The filter order N must be matched to the length of the impulse response h (τ). y n = r w n T x n = r Σ k = 0 N w k . n x n - k
Figure imgb0009
r = 1 / 128 . 1 / 64 . 1 / 32 . 1 / 16 . 1 / 8th . 1 / 4 . 1 / 2 . 1 / 1 N = 32 ... 64 N T = 2 ms ... 4 ms
Figure imgb0010

Die Aufdatierungseinheit 11 ist in Figur 8 dargestellt, und es gelten die nachfolgenden Beziehungen. Die Formel ist in Vektorschreibweise und in Elementschreibweise angegeben. w ̲ n + 1 = λ n w ̲ n + β n e n M n n x ̲ n M

Figure imgb0011
w k , n + 1 = λ n w k , n + β n e n M n n x n - k M
Figure imgb0012
The updating unit 11 is in FIG. 8 and the following relationships apply. The formula is given in vector notation and element notation. w n + 1 = λ n w n + β n e n M n n x n M
Figure imgb0011
w k . n + 1 = λ n w k . n + β n e n M n n x n - k M
Figure imgb0012

In der bevorzugten Ausführungsform werden nicht alle (N+1) Filterkoeffizienten gleichzeitig aufdatiert, sondern jeweils nur K. Es gelten die nachfolgenden Beziehungen unter der Annahme, dass K ein ganzzahliger Teiler von (N+1) ist. Die Variable cn wird als Zählvariable verwendet. k = K int c n - 1 K , , K int c n - 1 K + K - 1

Figure imgb0013
c n = c n - 1 + 2 mod N + 1 N = 47 K = 4
Figure imgb0014
In the preferred embodiment, not all (N + 1) filter coefficients are updated simultaneously, but only K at a time. The following relationships hold, assuming that K is an integer divisor of (N + 1). The variable c n is used as a count variable. k = K int c n - 1 K . ... . K int c n - 1 K + K - 1
Figure imgb0013
c n = c n - 1 + 2 mod N + 1 N = 47 K = 4
Figure imgb0014

Die Aufdatierungseinheit 11 enthält ihrerseits die Normierungseinheit 15 und die Geschwindigkeitssteuerungseinheit 16. Die Normierungseinheit 15 ist in Figur 9 dargestellt, und es gelten die nachfolgenden Beziehungen. Die Koeffizienten g und h bestimmen die Länge des Zeitintervalls, über das eine Mittelung der Leistung von eM n stattfindet. n n = g n n - 1 + h e n M 2

Figure imgb0015
g = 63 / 64 h = 1 - g = 1 / 64
Figure imgb0016
The updating unit 11 in turn includes the normalization unit 15 and the speed control unit 16. The normalization unit 15 is shown in FIG FIG. 9 and the following relationships apply. The coefficients g and h determine the length of the time interval over which an averaging of the power of e M n takes place. n n = G n n - 1 + H e n M 2
Figure imgb0015
G = 63 / 64 H = 1 - G = 1 / 64
Figure imgb0016

Die Geschwindigkeitssteuerungseinheit 16 ist in Figur 10 dargestellt, und es gelten die nachfolgenden Beziehungen. Der Schrittweitefaktor βn wird ausgehend von βmax schrittweise um den Faktor 0.5 verkleinert bis βmin. Die optimalen Werte für βmax und βmin hängen von der individuellen Hörkorrektur (4) ab. Die Variable cn wird als Zählvariable verwendet. β - 1 = β max

Figure imgb0017
β n = { β n - 1 c n 0 max 0.5 β n - 1 , β min ( c n = 0 )
Figure imgb0018
c n = c n - 1 + 1 mod P
Figure imgb0019
P = 4096 P T = 256 ms
Figure imgb0020
The speed control unit 16 is in FIG. 10 and the following relationships apply. The step size factor β n is gradually reduced by a factor of 0.5 starting from β max to β min . The optimal values for β max and β min depend on the individual hearing correction (4). The variable c n is used as a count variable. β - 1 = β Max
Figure imgb0017
β n = { β n - 1 c n 0 Max 0.5 β n - 1 . β min ( c n = 0 )
Figure imgb0018
c n = c n - 1 + 1 mod P
Figure imgb0019
P = 4096 P T = 256 ms
Figure imgb0020

Der Kreuzglied-Dekorrelator 12 ist in Figur 11 dargestellt, und es gelten die nachfolgenden Beziehungen. Neben den Rekursionsformeln für die Berechnung von ei n und bi n müssen auf jeder Stufe auch die Grössen di n und ni n ermittelt werden für die Nachführung der Koeffizienten kin. Die Filterordnung M ergibt sich aus einem Kompromiss zwischen gewünschtem Dekorrelationsgrad und dem benötigten Rechenaufwand. e n 0 = e n

Figure imgb0021
b n 0 = e n
Figure imgb0022
e n i = e n i - 1 + k i , n b n - 1 i - 1 b n i = k i , n e n i - 1 + b n - 1 i - 1 d n i = g d n - 1 i + h e n i - 1 2 + b n - 1 i - 1 2 n n i = g n n - 1 i + h - 2 e n i - 1 b n - 1 i - 1 k i , n + 1 = n n i d n i } 1 i M
Figure imgb0023
g = 63 / 64 h = 1 - g = 1 / 64
Figure imgb0024
M = 2 8
Figure imgb0025
The cross-member decorrelator 12 is in FIG. 11 and the following relationships apply. In addition to the recursion formulas for the calculation of e i n and b i n , the quantities d i n and n i n must also be determined at each stage for tracking the coefficients k in . The filter order M results from a compromise between the desired degree of decorrelation and the required computational effort. e n 0 = e n
Figure imgb0021
b n 0 = e n
Figure imgb0022
e n i = e n i - 1 + k i . n b n - 1 i - 1 b n i = k i . n e n i - 1 + b n - 1 i - 1 d n i = G d n - 1 i + H e n i - 1 2 + b n - 1 i - 1 2 n n i = G n n - 1 i + H - 2 e n i - 1 b n - 1 i - 1 k i . n + 1 = n n i d n i } 1 i M
Figure imgb0023
G = 63 / 64 H = 1 - G = 1 / 64
Figure imgb0024
M = 2 ... 8th
Figure imgb0025

In der bevorzugten Ausführungsform mit Filterordnung M=2 wird eine vollständige Dekorrelation durch Begrenzung des zweiten Koeffizienten k2n verhindert. Es gelten die nachfolgenden Beziehungen. k 2 , n = min k 2 , n k max

Figure imgb0026
k max = 0.921875
Figure imgb0027
In the preferred embodiment with filter order M = 2, a complete decorrelation is prevented by limiting the second coefficient k 2n . The following relationships apply. k 2 . n = min k 2 . n k Max
Figure imgb0026
k Max = 0.921875
Figure imgb0027

Das Kreuzglied-Filter 13 ist in Figur 12 dargestellt, und es gelten die nachfolgenden Beziehungen. x n 0 = x n

Figure imgb0028
b n 0 = x n
Figure imgb0029
x n i = x n i - 1 + k i , n b n - 1 i - 1 b n i = k i , n x n i - 1 + b n - 1 i - 1 } 1 i M
Figure imgb0030
The cross-member filter 13 is in FIG. 12 and the following relationships apply. x n 0 = x n
Figure imgb0028
b n 0 = x n
Figure imgb0029
x n i = x n i - 1 + k i . n b n - 1 i - 1 b n i = k i . n x n i - 1 + b n - 1 i - 1 } 1 i M
Figure imgb0030

Die Kontrolleinheit 14 ist in Figur 13 dargestellt, und es gelten die nachfolgenden Beziehungen. Der Vergessensfaktor λn ergibt sich aus dem Verhältnis der beiden Leistungen nd n und ne n. Im mittleren Bereich ist eine Hysterese vorhanden. n n d = g n n - 1 d + h d n 2

Figure imgb0031
n n e = g n n - 1 e + h e n 2
Figure imgb0032
λ n = { λ off n n e n n d λ n - 1 n n d < n n e 2 n n d λ on n n e > 2 n n d
Figure imgb0033
g = 63 / 64 h = 1 - g = 1 / 64
Figure imgb0034
λ off = 1.0 λ on = 0.99 0.9999
Figure imgb0035
The control unit 14 is in FIG. 13 and the following relationships apply. The forgetting factor λ n results from the ratio of the two powers n d n and n e n . There is a hysteresis in the middle area. n n d = G n n - 1 d + H d n 2
Figure imgb0031
n n e = G n n - 1 e + H e n 2
Figure imgb0032
λ n = { λ off n n e n n d λ n - 1 n n d < n n e 2 n n d λ on n n e > 2 n n d
Figure imgb0033
G = 63 / 64 H = 1 - G = 1 / 64
Figure imgb0034
λ off = 1.0 λ on = 0.99 ... 0.9999
Figure imgb0035

Die bevorzugte Ausführungsform kann problemlos auf einem handelsüblichen Signalprozessor programmiert oder in einer integrierten Schaltung realisiert werden. Dazu müssen alle Variablen geeignet quantisiert und die Operationen auf die vorhandenen Architekturblöcke hin optimiert werden. Ein besonderes Augenmerk gilt dabei der Behandlung der quadratischen Grössen (Leistungen) und den Divisionsoperationen. Abhängig vom Zielsystem gibt es dazu optimierte Vorgehensweisen. Diese sind aber an und für sich nicht Gegenstand der vorliegenden Erfindung.The preferred embodiment can be easily programmed on a commercial signal processor or implemented in an integrated circuit. All variables must be suitably quantized and the operations optimized to the existing architecture blocks. Special attention is given to the treatment of the quadratic quantities (powers) and the division operations. Depending on the target system, there are optimized procedures for this. However, these are not in and of themselves subject of the present invention.

Claims (10)

  1. Circuit for the adaptive suppression of acoustic feedback in an acoustic system having at least one microphone (1) for producing an electric input signal (d(t)), at least one loudspeaker or receiver (6) respectively and an interposed electronic signal processing part, incorporating a filter (10) for modeling a feedback characteristic (7), an updating unit (11) for calculating actual coefficients (wn) for the filter (10), a A/D-converter (2) for converting the electric input signal (d(t)) into a digital input signal (dn), a subtracter (3) for calculating an echo-compensated input signal (en) by subtracting an echo estimate (yn) delivered by the filter (10) from the digital input signal (dn), a delay element (9) for calculating a delayed output signal (xn), a first adaptive de-correlation filter (12) for de-correlation of the echo-compensated input signal (en) as well as a second adaptive de-correlation filter (13) for de-correlation of the delayed output signal (xn), characterized in that the two de-correlation filters (12, 13) are designed as lattice de-correlation filters, wherein the second de-correlation filter (13) is arranged for de-correlation of the delayed output signal (xn) by means of coefficients (k n) from the first de-correlation filter (12), and wherein the two de-correlation filters (12, 13) are configured for calculating their lattice coefficients (k n) by adaptive de-correlation of the echo-compensated input signal (en).
  2. Circuit according to claim 1, characterized by a normalization unit (15) arranged in the updating unit (11) for normalization of a de-correlated, echo-compensated input signal (eM n) delivered by the first de-correlation filter (12).
  3. Circuit according to Claim 1 or 2, characterized by a control unit (14) for monitoring the ratio of the powers of the digital input signal (dn) and the echo-compensated input signal (en) and for controlling a forget factor (λn) in the updating unit (11).
  4. Circuit according to one of the claims 1 to 3, characterized by a speed control unit (16) for calculating a step size factor (βn) in the updating unit (11).
  5. Method for the adaptive suppression of acoustic feedback, implementable by means of the circuit according to claim 1, wherein an electric input signal (d(t)) is produced by at least one microphone (1), a feedback characteristic (7) is modelled with a filter (10), actual coefficients (wn) for the filter (10) are calculated by an updating unit (11), an echo-compensated input signal (en) is calculated by a subtracter (3) by subtraction of an echo estimate (yn) delivered by the filter (10) from the digital input signal (dn) and a delayed output signal (xn) is calculated with a delay element (9), wherein this is converted into a digital input signal by means of a A/D-converter (2), the echo-compensated input signal (en) is de-correlated with a first lattice de-correlation filter (12) and the delayed output signal (xn) is de-correlated by a second lattice de-correlation filter (13), characterized in that with the second lattice de-correlation filter (13) the delayed output signal (xn) by means of coefficients (k n) from the first lattice de-correlation filter (12), and that the lattice coefficients (k n) of the two de-correlation filters (12, 13)are calculated by the adaptive de-correlation of the echo-compensated input signal (en)
  6. Method according to claim 5, characterized in that there is a normalizeation of a de-correlated, echo-compensated input signal (eM n) delivered by the first de-correlation filter (12) in the updating unit (11).
  7. Method according to claim 5 or 6, characterized in that a control unit (14) monitors the ratio of the powers of the digital input signal (dn) and the echo-compensated input signal (en) and controls a forget factor (λn) in the updating unit (11).
  8. Method according to one of the claims 5 to 7, characterized in that in the updating unit (11) a step size factor £ is reduced stepwise from a starting value following the starting up of the hearing aid until the optimum operating value is reached.
  9. Method according to one of the claims 5 to 8, characterized in that second order lattice de-correlation filters (12, 13) are used and there is an upper limitation to the second lattice coefficient k2n.
  10. Method according to one of the claims 5 to 9, characterized in that all the filter coefficients (wn) are not simultaneously updated in the updating unit (11) and instead only a small, cyclically changing part thereof is updated.
EP98811273A 1998-01-14 1998-12-30 Circuit and method for adaptive suppression of acoustic feedback Expired - Lifetime EP0930801B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6498 1998-01-14
CH6498 1998-01-14

Publications (3)

Publication Number Publication Date
EP0930801A2 EP0930801A2 (en) 1999-07-21
EP0930801A3 EP0930801A3 (en) 2006-05-24
EP0930801B1 true EP0930801B1 (en) 2008-11-05

Family

ID=4178488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811273A Expired - Lifetime EP0930801B1 (en) 1998-01-14 1998-12-30 Circuit and method for adaptive suppression of acoustic feedback

Country Status (5)

Country Link
US (1) US6611600B1 (en)
EP (1) EP0930801B1 (en)
AU (1) AU745946B2 (en)
DE (1) DE59814316D1 (en)
DK (1) DK0930801T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362687A2 (en) 2010-02-26 2011-08-31 Siemens Medical Instruments Pte. Ltd. Hearing aid with parallel feedback reduction filters and method

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480610B1 (en) * 1999-09-21 2002-11-12 Sonic Innovations, Inc. Subband acoustic feedback cancellation in hearing aids
ATE417483T1 (en) * 2000-02-02 2008-12-15 Bernafon Ag CIRCUIT AND METHOD FOR ADAPTIVE NOISE CANCELLATION
US6829289B1 (en) * 2000-12-05 2004-12-07 Gossett And Gunter, Inc. Application of a pseudo-randomly shuffled hadamard function in a wireless CDMA system
US8385470B2 (en) * 2000-12-05 2013-02-26 Google Inc. Coding a signal with a shuffled-Hadamard function
US7545849B1 (en) 2003-03-28 2009-06-09 Google Inc. Signal spectrum spreading and combining system and method
US8374218B2 (en) * 2000-12-05 2013-02-12 Google Inc. Combining signals with a shuffled-hadamard function
US6982945B1 (en) 2001-01-26 2006-01-03 Google, Inc. Baseband direct sequence spread spectrum transceiver
US7453921B1 (en) * 2001-12-11 2008-11-18 Google Inc. LPC filter for removing periodic and quasi-periodic interference from spread spectrum signals
US7352833B2 (en) * 2002-11-18 2008-04-01 Google Inc. Method and system for temporal autocorrelation filtering
US7627129B2 (en) 2002-11-21 2009-12-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for suppressing feedback
DE10254407B4 (en) * 2002-11-21 2006-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for suppressing feedback
AU2003236382B2 (en) 2003-08-20 2011-02-24 Phonak Ag Feedback suppression in sound signal processing using frequency transposition
US7756276B2 (en) 2003-08-20 2010-07-13 Phonak Ag Audio amplification apparatus
AU2004201374B2 (en) 2004-04-01 2010-12-23 Phonak Ag Audio amplification apparatus
KR100884968B1 (en) * 2003-12-24 2009-02-23 노키아 코포레이션 A method for efficient beamforming using a complementary noise separation filter
US20050147258A1 (en) * 2003-12-24 2005-07-07 Ville Myllyla Method for adjusting adaptation control of adaptive interference canceller
DE602004028502D1 (en) * 2004-12-22 2010-09-16 Televic Nv Method and apparatus for estimating a room impulse response
JP2006197075A (en) * 2005-01-12 2006-07-27 Yamaha Corp Microphone and loudspeaker
JP4215015B2 (en) * 2005-03-18 2009-01-28 ヤマハ株式会社 Howling canceller and loudspeaker equipped with the same
US20070104335A1 (en) * 2005-11-09 2007-05-10 Gpe International Limited Acoustic feedback suppression for audio amplification systems
EP1793645A3 (en) 2005-11-09 2008-08-06 GPE International Limited Acoustical feedback suppression for audio amplification systems
US8767972B2 (en) * 2006-08-16 2014-07-01 Apherma, Llc Auto-fit hearing aid and fitting process therefor
WO2007125132A2 (en) * 2007-05-22 2007-11-08 Phonak Ag Method for feedback cancelling in a hearing device and a hearing device
EP2071873B1 (en) * 2007-12-11 2017-05-03 Bernafon AG A hearing aid system comprising a matched filter and a measurement method
WO2015044915A1 (en) 2013-09-26 2015-04-02 Universidade Do Porto Acoustic feedback cancellation based on cesptral analysis
US9380387B2 (en) 2014-08-01 2016-06-28 Klipsch Group, Inc. Phase independent surround speaker
US10751524B2 (en) * 2017-06-15 2020-08-25 Cochlear Limited Interference suppression in tissue-stimulating prostheses

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520148A (en) * 1975-10-09 1978-08-02 Standard Telephones Cables Ltd Adaptive lattice filter
JPH02278926A (en) * 1989-04-19 1990-11-15 Nec Corp Fir lattice hybrid echo canceller
US5259033A (en) 1989-08-30 1993-11-02 Gn Danavox As Hearing aid having compensation for acoustic feedback
US5680467A (en) 1992-03-31 1997-10-21 Gn Danavox A/S Hearing aid compensating for acoustic feedback
DK170600B1 (en) * 1992-03-31 1995-11-06 Gn Danavox As Hearing aid with compensation for acoustic feedback
DK169958B1 (en) 1992-10-20 1995-04-10 Gn Danavox As Hearing aid with compensation for acoustic feedback
EP0585976A3 (en) * 1993-11-10 1994-06-01 Phonak Ag Hearing aid with cancellation of acoustic feedback
US5991418A (en) * 1996-12-17 1999-11-23 Texas Instruments Incorporated Off-line path modeling circuitry and method for off-line feedback path modeling and off-line secondary path modeling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2362687A2 (en) 2010-02-26 2011-08-31 Siemens Medical Instruments Pte. Ltd. Hearing aid with parallel feedback reduction filters and method
DE102010009459A1 (en) * 2010-02-26 2011-09-01 Siemens Medical Instruments Pte. Ltd. Hearing device with parallel operated feedback reduction filters and method
DE102010009459B4 (en) * 2010-02-26 2012-01-19 Siemens Medical Instruments Pte. Ltd. Hearing device with parallel operated feedback reduction filters and method
US8737656B2 (en) 2010-02-26 2014-05-27 Siemens Medical Instruments Pte. Ltd. Hearing device with feedback-reduction filters operated in parallel, and method

Also Published As

Publication number Publication date
DK0930801T3 (en) 2009-02-23
EP0930801A2 (en) 1999-07-21
US6611600B1 (en) 2003-08-26
AU745946B2 (en) 2002-04-11
DE59814316D1 (en) 2008-12-18
AU9826598A (en) 1999-08-05
EP0930801A3 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
EP0930801B1 (en) Circuit and method for adaptive suppression of acoustic feedback
DE60004539T2 (en) SUBBAND SUPPRESSION OF ACOUSTIC FEEDBACK IN HEARING AID
DE69933141T2 (en) TONE PROCESSOR FOR ADAPTIVE DYNAMIC RANGE IMPROVEMENT
DE60028779T2 (en) FEEDBACK CANCELLATION WITH LOW FREQUENCY INPUT
DE69906560T2 (en) COCHLEA COMPRESSION MODEL-BASED HEARING AID
DE69922940T3 (en) Apparatus and method for combining audio compression and feedback cancellation in a hearing aid
DE60037034T2 (en) HEARING GEAR WITH SIGNAL PROCESSING TECHNIQUES
EP0656737B1 (en) Hearing aid with cancellation of acoustic feedback
EP1307072B1 (en) Method for operating a hearing aid and hearing aid
DE102006047965A1 (en) Method for the reduction of occlusion effects with acoustic device locking an auditory passage, involves using signal from transmission path of audio signal, and transmission function is observed by output of output converter
DE69731573T2 (en) Noise reduction arrangement
EP1103956B1 (en) Exponential reduction of echo and noise during speech pauses
EP2226795B1 (en) Hearing aid and method for reducing noise in a hearing aid
EP1189419B1 (en) Method and device for eliminating the loudspeaker interference on microphone signals
DE60004863T2 (en) A METHOD FOR REGULATING THE DIRECTIVE EFFECT OF THE SOUND RECEIVING CHARACTERISTICS OF A HEARING AID AND A HEARING AID FOR IMPLEMENTING THE METHOD
DE102017206788B3 (en) Method for operating a hearing aid
EP1542500B1 (en) Hearing aid with noise suppression and corresponding method for noise suppression
EP1155561B1 (en) Method and device for suppressing noise in telephone devices
DE102018117557B4 (en) ADAPTIVE FILTERING
DE60317368T2 (en) NONLINEAR ACOUSTIC ECHO COMPENSATOR
EP1154674B1 (en) Circuit and method for adaptive noise suppression
EP1055317A1 (en) Method for improving acoustic noise attenuation in hand-free devices
DE602004006912T2 (en) A method for processing an acoustic signal and a hearing aid
EP1351550B1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
EP1453355A1 (en) Signal processing in a hearing aid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20061121

AKX Designation fees paid

Designated state(s): CH DE DK FR GB LI

17Q First examination report despatched

Effective date: 20070611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59814316

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20101222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101229

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120118

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111227

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121230

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814316

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102