EP0929385A1 - Device for cutting out parts of any shape - Google Patents

Device for cutting out parts of any shape

Info

Publication number
EP0929385A1
EP0929385A1 EP97943936A EP97943936A EP0929385A1 EP 0929385 A1 EP0929385 A1 EP 0929385A1 EP 97943936 A EP97943936 A EP 97943936A EP 97943936 A EP97943936 A EP 97943936A EP 0929385 A1 EP0929385 A1 EP 0929385A1
Authority
EP
European Patent Office
Prior art keywords
profile
block
deformation
cutting
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97943936A
Other languages
German (de)
French (fr)
Other versions
EP0929385B1 (en
Inventor
Benoit Sagot-Duvauroux
Louis Besse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esox
Original Assignee
Esox
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esox filed Critical Esox
Publication of EP0929385A1 publication Critical patent/EP0929385A1/en
Application granted granted Critical
Publication of EP0929385B1 publication Critical patent/EP0929385B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/006Cutting work characterised by the nature of the cut made; Apparatus therefor specially adapted for cutting blocs of plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/46Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having an endless band-knife or the like
    • B26D1/48Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having an endless band-knife or the like with tensioning means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/26Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
    • B26D7/2614Means for mounting the cutting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/3806Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/06Severing by using heat
    • B26F3/08Severing by using heat with heated members
    • B26F3/12Severing by using heat with heated members with heated wires

Definitions

  • the invention relates to a device for cutting pieces of any shape from a block of hot-melt material by means of a deformable resistive profile which is heated, preferably electrically, and held in tension in an appropriate initial position, the cutting being carried out by relative movement of the workpiece and the profile.
  • the cutting is carried out by relative displacement of the block of material to be cut and of the profile. It is always noted, due to the frictional forces exerted on the profile during the displacement of the block and / or the profile, that the profile takes a deflection, that is to say deforms, which harms the surface condition of the cut made. There is in particular the appearance of wavelets on the surface of the cut material. Conversely, too low a speed causes rapid deterioration of the surface of the cutting line by thickening of this cutting line. As a result, in the case of too high a speed, the deformation of the wire tends to modify the cut to be made while, in the case of a too low speed, the cutting line becomes particularly important.
  • the object of the present invention is therefore to propose a device for cutting pieces of any shape from a block of hot-melt material, this device making it possible to obtain optimum cutting quality by means of a very thin profile whose small cross-section makes it possible to offer a high-quality surface finish and a fine cut line while working at a temperature which can be constant and which can be adjusted to a high pre-calibrated threshold.
  • Another object of the present invention is to produce a cutting device making it possible to obtain parts of complex shape, directly from cutting, without adjustment retouching and without surface state rectification operation.
  • Another object of the present invention is to propose a fully automated cutting device in which the mission of an operator is facilitated, no adjustment being necessary including in the case where the material to be cut is changed.
  • Another object of the invention is to propose a cutting device in which the cutting time can be reduced by maintaining the relative speed of movement of the block of material and of the profile at the maximum speed corresponding to a speed at which one does not observe neither excessive deformation of the profile nor thickening of the cutting line.
  • the subject of the invention is a device for cutting pieces of any shape from a block of hot-melt material of any shape by means of a deformable resistive profile, such as a wire, electrically heated and kept in tension.
  • a deformable resistive profile such as a wire, electrically heated and kept in tension.
  • block of material and profile being animated by a relative displacement during which the block opposes to the profile a resistance tending to modify the deformation of the profile compared to its initial deformation
  • the installation comprises means for controlling the relative speed of movement of the profile and of the block of material to be cut at the instantaneous position of at least a portion of the profile to give the profile at each instant an optimal deformation corresponding to the previously chosen cutting position .
  • the profile can be kept fully automatic at all times in an optimal cutting position corresponding to a deformation value or to a range of pre-selected deformation values while thus generating very good cutting precision. and a perfect surface condition of the cut piece.
  • the control means include means for real-time and continuous detection of the position of at least a portion of the profile, for example a point on the profile, to produce signals representative of the deformation of the profile, means of processing in real time and continuously said signals to generate at least one control signal as output, control means for moving the block of material and / or the profile, these control means being sensitive to said control signal to increase or reduce the relative speed of movement of the block and the profile.
  • control signal can be produced for a value or a range of values of the deformation signals of the profile chosen by the operator according to the cut to be made. It thus becomes possible to voluntarily cause an arrow of the profile to allow the cutting of a block y in particular at the level of a cusp. or else to modify the acceleration or deceleration printed on the part and / or on the profile as a function of the value of said profile deformation signals with respect to the chosen reference deformation value. Such an installation therefore makes it possible to obtain a configurable deflection of the profile.
  • Figure 1 shows a schematic perspective view of an overall device for cutting parts of any shape according to one invention
  • FIGS. 2A and 2B respectively represent diagrammatically in cross section of a sensor and of the profile as well as the signals representative of the position of the profile produced by said sensor in a first position of the profile and in a second position of the profile;
  • FIG. 3 represents a schematic view in vertical section of a box mounted on the support element shown in FIGS. 1 and 4 and
  • Figure 4 shows a front view of another architecture of a device for cutting parts according to the invention.
  • the devices for cutting parts from a block 11 of hot-melt material of any shape by means of a deformable resistive profile 4 have various and varied architectures.
  • the resistive profile 4 is a wire or a blade, possibly pre-bent, the latter is connected, at each of its ends or in the vicinity of the latter, to members 5, 6 ensuring the maintenance in tension of said wire, these members 5, 6 for maintaining tension being carried by at least one support element 3 constituting at least one of the structural elements of the device.
  • the support element 3 depends on the rest of the structure defined by the general reference 1 of said device. Two embodiments of the support element 3 are provided below.
  • the support element 3 is an armature, preferably in the form of an arc, this armature being mechanically coupled to the arm 8 of a manipulator robot 9 by means of an articulated connection. 19 as shown in FIG. 1.
  • This robot 9 rests on a plate-like structure 20 bearing on the ground.
  • This structure also supports a plate 10, possibly rotatable, on which is placed the block 11 of material to be cut, of any shape.
  • the control members of the turntable 10 or of the arm 8 of the robot 9 can, in a manner known per se, be constituted by motors controlled in operation by an appropriate control signal.
  • the use of a handling robot 9 makes it possible to obtain a large number of movements of the support element 3. This is in particular shown in FIG. 1 by the arrows indicating the different possibilities of movement of the handling robot. This results in a possibility of cutting pieces of any shape.
  • the speed of movement of the profile 4 thus obtained by the combination of these different movements can be regulated, as will be described below, due to the presence of means for controlling the speed of movement of the profile 4 at the position d 'at least a portion of the profile 4. It is the same with the speed of rotation of the rotary plate 10 supporting the block 11 of material to be cut to obtain one or more pieces of any shape.
  • the support element 3 is formed by two parallel vertical rails constituting the frame of the device and along which the tension maintenance members 5, 6 (FIG. 3) move. of the profile.
  • These tension-maintaining members 5, 6 can be housed inside a box 2 shown in FIG. 3 and which will be described below, this box 2 moving to slide along the constituent rails of the element support 3.
  • the boxes 2, arranged on either side of the ends of the profile 4 move together along the vertical rails.
  • the displacement of the profile 4 along these two vertical rails ensures cutting in Y.
  • These vertical rails are themselves mobile along one or more horizontal rails. The displacement of these rails along the horizontal rails ensures the X cut of the block 11 of material.
  • the block 11 is in turn arranged on a plate 10, rotary or not, carried by a table. and disposed between the vertical rails carrying the members 5, 6 for maintaining the profile 4 in tension.
  • the members 5, 6 for maintaining the tension of the profile 4 are, for example, constituted by two jacks 5 arranged at each end of the profile 4, these jacks 5 being housed in guide bearings 7 arranged either inside a casing 2 removably mounted on said support element 3, as shown in FIG. 3, or directly in said support element 3, for example at the ends of the arms of the arch, in the case of a support element 3 constituted by an arc-shaped armature of the type shown in FIG. 1.
  • These jacks 5 can be mounted either with free movement in translation and with a stationary position which can be adjusted in translation inside said guide bearings 7, or respectively with free movement in translation and with a single stationary position inside said guide bearings 7.
  • the vee rin 5 is a cylinder with free movement in translation also called an automatic displacement cylinder.
  • This jack 5 cooperates with a return member 6 exerting an adjustable continuous permanent tension, so that the elongation of the cutting wire forming a profile 4 is compensated by the continuous movements of said jack 5 with automatic movement between two extreme positions.
  • it is further arranged, near the end of the jack 5 receiving the cutting wire 4, at least one pulley 13, preferably two pulleys 13, 14, acting as rollers tensioners. These pulleys 13, 14 fulfill several functions.
  • these pulleys 13, 14 are shaped to recognize the diameter of the wire so that, as soon as a change of wire occurs, this information is transmitted to processing means 18 which will be described below so as to take into account the new configuration of the wire, in particular when choosing the wire deformation value (s) corresponding to an optimal cut.
  • These pulleys can also allow the supply of a current for heating the wire.
  • the cooling means 12 are in this case constituted by a turbine arranged substantially in the axis of the wire inside said housing 2 as shown in FIG. 3.
  • a mechanical cylinder with adjustable stationary positions At the other end of the wire (not shown in FIG. 3) , it may for example be arranged a mechanical cylinder with adjustable stationary positions.
  • This cylinder is in this case constituted by a threaded axis carried by a thermally insulating and non-conductive bearing formed for example in a housing similar to that shown in FIG.
  • this axis comprising in the vicinity of its ends a shoulder and possibly a stop limit switch as well as a nut for adjusting the axial position.
  • said members for maintaining the profile in tension can be envisaged. Thanks to these members for maintaining the profile in tension, the deformation of the profile is produced, which occurs during the cutting of the part to be produced. This deformation of the profile results in a bending of the profile during the part / profile contact, this bending generating an elongation of the profile during cutting. This ensures, thanks to these tension holding members, an almost constant tension of the profile.
  • Profile 4 generally consists of a wire or a blade, possibly pre-curved, deformable.
  • the wires used are metallic wires, stainless steel or nickel / chrome alloy with a very small section, preferably between 40 and 200 microns. The nature and dimensions of the wire are chosen according to the heating temperature and the material to be cut.
  • the wire is heated by suitable heating means. Generally, this wire is heated by the passage of a current supplied by a dimmer, this dimmer delivering for example a voltage of 220 Volts at 50 Hertz. As shown in Figure 3, these heating means can also be integrated in a housing 2 removably mounted on said support member 3 of the structure of the installation.
  • the wire heating temperature depending on the melting temperature of the material to be cut, is generally in the range [200 - 600 ° C]. This temperature can be kept constant due to the presence in the installation of means for controlling the relative speed of movement of the profile and of the block 11 of material to be cut to the instantaneous position of at least a portion of the profile.
  • control means include means for real-time and continuous detection of the position of a portion.
  • profile 4 to produce signals representative of the deformation of profile 4, time processing means real and continuous of said signals to generate at output at least one control signal, means for controlling movement of the block 11 of material and / or of the profile, these control means being sensitive to said control signal to increase or reduce the speed relative movement of the block 11 and the section 4.
  • the detection means can affect a large number of forms.
  • the simplest detection means can consist of an all-or-nothing sensor, such as an electrically conductive eyelet forming a contactor, arranged around the profile, preferably at one end of the latter.
  • an all-or-nothing sensor such as an electrically conductive eyelet forming a contactor, arranged around the profile, preferably at one end of the latter.
  • the contacting eyelet comes into contact with a conductive element also circular incorporated in the frame of said installation thus generating a signal capable of being processed for generate an appropriate control signal to which the movement control means of the block 11 and / or of the section 4 described above are sensitive.
  • this type of detection means although applicable in the present invention, lacks precision.
  • a preferred solution therefore consists in using means of real-time and continuous detection of the position of at least a portion of the profile 4 which are made up of a transmitter-receiver assembly.
  • the transmitter consists at least of the section 4 traversed by an electromagnetic wave while the receiver consists of at least one sensor 15, disposed in the vicinity of said section, the amplitude of the signal or signals supplied by said receiver being proportional to the transmitter-receiver distance.
  • the output of the sensor 15 varies linearly with the displacement of the profile 4.
  • FIGS. 2A and 2B An example of such a sensor is shown in FIGS. 2A and 2B. In FIG.
  • the senor is formed of at least four plates 16A, 16B, 16C, 16D conductive opposite in pairs and arranged around said profile 4, preferably at least at one of the ends of the latter in the area Zl detection above.
  • These conductive plates 16A, 16B, 16C, 16D such as copper plates, transmit signals via a wire, preferably shielded, to an electronic card 17 which, after amplification and filtration, transmits a signal to appropriate processing means 18, a signal corresponding linearly to the deviation of the profile.
  • These signal processing means can be installed for example on a microcomputer, as shown in FIG. 1, controlling the machine or on the robot's control cabinet.
  • These processing means 18 in turn generate a control signal to which the movement control means of the block 11 or of the section 4 are sensitive.
  • the design of the detection means is based on the law of variation of the power of an electromagnetic wave propagating in a vacuum which varies in 1 / R 2, R being the transmitter / receiver distance.
  • the profile forming a transmitter or more particularly a transmitting antenna, is connected to electronics which supplies a carrier wave, such as a sinusoidal signal of frequency 100 kHz, on said wire.
  • a carrier wave such as a sinusoidal signal of frequency 100 kHz
  • the profile, thus traversed by this electromagnetic wave, preferably sinusoidal makes it possible to induce, thanks to the concentric magnetic field produced, in the sensor 15, signals whose values are directly proportional to the 4-plate profile distance 16A or 16B or 16C or 16D.
  • Figures 2A and 2B One such example is shown in Figures 2A and 2B.
  • FIG. 2A there are shown signals obtained from four plates when the section 4 is in the rest position, that is to say a position in which the wire is for example arranged substantially in the center of the four plates.
  • FIG. 2B on the contrary, making a cut has generated a deformation of the wire, resulting in a displacement of a portion of the profile in the direction of bringing the wire closer to two plates. This results in a variation of the signals representative of the deformation of the profile produced by each of the plates as shown in the associated signal diagrams.
  • the processing means 18 of said signals If, on the contrary, the value F of the deflection is less than the value FI of predetermined minimum deflection or greater than the value F2 of predetermined maximum deflection, the processing means 18 of said signals generate a control signal inducing at the level of the means of control, such as a stepping motor or others described above, an increase or a reduction in the relative speed of movement of the block 11 of material and of the profile 4, for example, in the second case, by reduction of the speed of displacement of the support element 3.
  • the control signal produced by said processing means 18 is sent when the measured value and / or calculated signals representative of the deformation of the profile 4 is located outside a predetermined range of values.
  • the calculation of reduction and / or increase in speed can be done in different ways. This calculation depends on the complexity of the rest of the installation. Thus, for example, in the case of a machine comprising a manipulator robot, the speed regulation means must take account of the other characteristics of said robot. To calculate the appropriate speed, these means preferentially use well-known methods in automation, such as correction with proportional integral and derivative action (PID) or simpler but nevertheless effective methods such as that described below.
  • PID proportional integral and derivative action
  • This ⁇ is added to the instantaneous speed V to obtain a speed VI .
  • the value VI then constitutes the new relative speed of movement of the block 11 and of the profile 4.
  • a control signal is therefore sent to the movement control means of the block 11 and / or of the profile 4 in order to modify the speed. The speed can thus be changed periodically with each new cycle of the control loop.
  • This periodicity is of the order of 200 milliseconds. It can be seen that, in such a detection system, the portion of the profile 4, the position of which is detected, is reduced to one point.
  • the sensor 15 shown diagrammatically in FIGS. 2A and 2B is shown housed inside the housing 2 in FIG. 3.
  • the removable housing 2 therefore integrates, in this case, both the means for heating the profile, the means cooling the profile 12, the members 5 and 6 for maintaining the profile in tension as well as part of the means for controlling the relative speed of movement of the profile and of the block of material to be cut to the instantaneous position of at least a portion of the profile, in particular the sensor 15 and the electronic card 17. Maintenance thus becomes particularly easy. It suffices, in the event of a problem, to remove said housing 2 from the support element 3 and to replace it with a new housing. The machine is thus not immobilized during the repair of said elements.
  • the air flow required for cooling the profile is between 110 and 180 liters / minute.
  • the initial thread tension is generally chosen between 300 and 700 g.
  • the minimum and maximum limits of authorized wire deformation can be fixed by way of example at respectively 0.3 mm deviation at 30 cm from the center of the sensor for the lower terminal and 0.5 mm deviation at 30 cm from the center of the sensor for the upper bound. Obviously, these limits can be modified, possibly by reprogramming, with each new cutting. It is thus possible to cut out parts with a very large permissible deflection of the profile, in particular when it is necessary to cut out cusps.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

The invention concerns a device for cutting out parts in a block (11) of fusible material using a resistive ductile section (4), heated, and maintained in tension in an appropriate initial position, the block (11) and the section (4) being driven in relative displacement during which the block (11) offers resistance to the section (4) tending to modify the deformation of the section with respect to its initial deformation. This device is characterised in that the installation comprises means for the automatic control of the relative displacement speed of the section (4) and of the block (11) of material at the instantaneous position of at least one portion of the section (4) for giving to the section (4) at every moment an optimal deformation corresponding to the previously selected cutting position. The invention is useful for hot-wire cutting of parts.

Description

DISPOSITIF POUR LA DECOUPE DE PIECES DE FORME QUELCONQUE DEVICE FOR CUTTING PARTS OF ANY SHAPE
L'invention concerne un dispositif pour la découpe de pièces de forme quelconque dans un bloc de matière thermofusible au moyen d'un profilé résistif déformable chauffé, de préférence électriquement, et maintenu en tension dans une position initiale appropriée, la découpe s 'effectuant par déplacement relatif de la pièce à découper et du profilé.The invention relates to a device for cutting pieces of any shape from a block of hot-melt material by means of a deformable resistive profile which is heated, preferably electrically, and held in tension in an appropriate initial position, the cutting being carried out by relative movement of the workpiece and the profile.
On connaît de nombreuses installations de découpe de pièces dans des blocs de matière thermofusible, en particulier dans des blocs de matière synthétique alvéolaire telle que polystyrène ou autre.Numerous installations are known for cutting parts from blocks of hot-melt material, in particular from blocks of cellular synthetic material such as polystyrene or the like.
Ces installations proposent, pour les matières thermofusibles, d'utiliser des profilés rectilignes ou galbés qui, chauffés électriquement, fondent la matière sur leur passage. Un tel exemple d'une installation est fourni dans le brevet FR-A-2.665.100. Toutefois, toutes les installations décrites à ce jour présentent un inconvénient commun, à savoir une absence de précision de la découpe obtenue . En effet, on sait depuis longtemps que, pour obtenir une très bonne précision de découpe et un état de surface de grande qualité, il est nécessaire d'utiliser des profilés très fins de section très faible. Ceci permet de négliger l'épaisseur du trait de coupe, de travailler sans correction de cotes et de considérer le négatif comme ayant les mêmes caractéristiques dimensionnelles que la pièce. Il devient alors possible de fabriquer des pièces particulièrement complexes par décomposition du volume et remontage. On sait également par ailleurs que les matériaux à découper ne sont pas isotropes. En effet, ils ne présentent pas une densité homogène et, par conséquent, un comportement constant à la fusion. Il en résulte que la faible tension mécanique du profilé, limitée par sa section, ne permet pas de garantir sa rectitude ni sa longévité en cas de vitesse trop élevée. En effet, la découpe s'effectue par déplacement relatif du bloc de matière à découper et du profilé. On constate toujours, du fait des forces de frottement s 'exerçant sur le profilé pendant le déplacement du bloc et/ou du profilé, que le profilé prend de la flèche, c'est-à-dire se déforme, ce qui nuit à l'état de surface de la découpe réalisée. On constate en particulier l'apparition de vaguelettes à la surface de la matière tranchée. A l'inverse, une vitesse trop faible provoque une détérioration rapide de la surface du trait de coupe par épaississement de ce trait de coupe. Il en résulte que, dans le cas d'une vitesse trop élevée, la déformation du fil tend à modifier la coupe devant être réalisée tandis que, dans le cas d'une vitesse trop faible, le trait de coupe devient particulièrement important.These installations offer, for hot-melt materials, the use of straight or curved profiles which, electrically heated, melt the material in their path. One such example of an installation is provided in patent FR-A-2,665,100. However, all the installations described to date have a common drawback, namely an absence of precision in the cutting obtained. In fact, it has been known for a long time that, in order to obtain very good cutting precision and a high quality surface finish, it is necessary to use very thin profiles of very small section. This allows to neglect the thickness of the cutting line, to work without correction of dimensions and to consider the negative as having the same dimensional characteristics as the part. It then becomes possible to manufacture particularly complex parts by decomposing the volume and reassembly. We also know that the materials to be cut are not isotropic. Indeed, they do not have a homogeneous density and, consequently, a constant behavior on fusion. As a result, the low mechanical tension of the profile, limited by its section, does not guarantee its straightness or its longevity in the event of too high a speed. Indeed, the cutting is carried out by relative displacement of the block of material to be cut and of the profile. It is always noted, due to the frictional forces exerted on the profile during the displacement of the block and / or the profile, that the profile takes a deflection, that is to say deforms, which harms the surface condition of the cut made. There is in particular the appearance of wavelets on the surface of the cut material. Conversely, too low a speed causes rapid deterioration of the surface of the cutting line by thickening of this cutting line. As a result, in the case of too high a speed, the deformation of the wire tends to modify the cut to be made while, in the case of a too low speed, the cutting line becomes particularly important.
Ces observations d'absence de précision ont déjà été mentionnées dans la littérature. Toutefois, les raisons invoquées étaient toujours erronées. Ainsi, une telle installation, mise au point pour tenter de remédier aux inconvénients précités, est décrite dans le brevet US-A- 4.601.224. Dans ce brevet, il est prévu une installation pour la découpe de matière thermofusible dans laquelle la température du profilé est asservie à la flèche du profilé. Dans ce dispositif, le principe de fonctionnement est le suivant. Lorsque les moyens de détection de la flèche détectent une flèche du fil constituant le profilé, ils génèrent une augmentation de la température du fil jusqu'à ce que la flèche détectée ait à nouveau une valeur acceptable. A l'inverse, lorsqu'ils ne détectent pas de flèche, ils diminuent la température du fil. Il en résulte les deux inconvénients suivants : l'augmentation de la température vers une limite supérieure et l'obligation pour garder une qualité du trait de coupe d'augmenter cette température "en aveugle" nuisent à la longévité du fil qui ne peut supporter très longtemps de telles variations importantes de température. En outre, l'obligation de travailler à des températures parfois élevées oblige à choisir des profilés de plus grande section. A l'inverse, le fait que l'absence de détection de flèche génère une diminution de la température peut engendrer une réduction de la température en deçà de la température nécessaire à la fusion du matériau, risquant de nuire à nouveau à l'état de surface de la coupe.These observations of lack of precision have already been mentioned in the literature. However, the reasons given were still wrong. Thus, such an installation, developed in an attempt to remedy the aforementioned drawbacks, is described in patent US-A-4,601,224. In this patent, an installation is provided for cutting hot-melt material in which the profile temperature is controlled by the profile arrow. In this device, the operating principle is as follows. When the deflection detection means detect an deflection of the wire constituting the profile, they generate an increase in the temperature of the wire until the detected deflection again has an acceptable value. Conversely, when they do not detect an arrow, they decrease the temperature of the wire. This results in the following two drawbacks: the increase in temperature towards an upper limit and the obligation to keep a quality of the cutting line to increase this temperature "blind" harm the longevity of the wire which cannot withstand very such large temperature variations for a long time. In addition, the obligation to work at sometimes high temperatures means that sections of larger section must be chosen. Conversely, the fact that the absence of deflection detection results in a decrease in temperature can cause a reduction in temperature below the temperature necessary for the melting of the material, risking again harming the state of cut surface.
Le but de la présente invention est donc de proposer un dispositif pour la découpe de pièces de forme quelconque dans un bloc de matière thermofusible, ce dispositif permettant d'obtenir une qualité de coupe optimale au moyen d'un profilé très fin dont la faible section permet d'offrir un état de surface de grande qualité et une finesse du trait de coupe tout en travaillant à une température qui peut être constante et qui peut être réglée à un seuil haut pré-étalonné.The object of the present invention is therefore to propose a device for cutting pieces of any shape from a block of hot-melt material, this device making it possible to obtain optimum cutting quality by means of a very thin profile whose small cross-section makes it possible to offer a high-quality surface finish and a fine cut line while working at a temperature which can be constant and which can be adjusted to a high pre-calibrated threshold.
Un autre but de la présente invention est de réaliser un dispositif de découpe permettant d'obtenir des pièces de forme complexe, directement de découpe, sans retouche d'ajustage et sans opération de rectification d'état de surface. Un autre but de la présente invention est de proposer un dispositif de découpe entièrement automatisable dans lequel la mission d'un opérateur est facilitée, aucun réglage n'étant nécessaire y compris dans le cas où on change de matériau à découper.Another object of the present invention is to produce a cutting device making it possible to obtain parts of complex shape, directly from cutting, without adjustment retouching and without surface state rectification operation. Another object of the present invention is to propose a fully automated cutting device in which the mission of an operator is facilitated, no adjustment being necessary including in the case where the material to be cut is changed.
Un autre but de l'invention est de proposer un dispositif de découpe dans lequel le temps de découpe peut être réduit en maintenant la vitesse de déplacement relatif du bloc de matière et du profilé à la vitesse maximale correspondant à une vitesse à laquelle on ne constate ni déformation excessive du profilé ni épaississement du trait de coupe.Another object of the invention is to propose a cutting device in which the cutting time can be reduced by maintaining the relative speed of movement of the block of material and of the profile at the maximum speed corresponding to a speed at which one does not observe neither excessive deformation of the profile nor thickening of the cutting line.
A cet effet, l'invention a pour objet un dispositif pour la découpe de pièces de forme quelconque dans un bloc de matière thermofusible de forme quelconque au moyen d'un profilé résistif déformable, tel qu'un fil, chauffé électriquement et maintenu en tension dans une position initiale appropriée, bloc de matière et profilé étant animés d'un déplacement relatif au cours duquel le bloc oppose au profilé une résistance tendant à modifier la déformation du profilé par rapport à sa déformation initiale, caractérisé en ce que l'installation comporte des moyens d'asservissement de la vitesse de déplacement relatif du profilé et du bloc de matière à découper à la position instantanée d'au moins une portion du profilé pour donner à chaque instant au profilé une déformation optimale correspondant à la position de découpe préalablement choisie.To this end, the subject of the invention is a device for cutting pieces of any shape from a block of hot-melt material of any shape by means of a deformable resistive profile, such as a wire, electrically heated and kept in tension. in an appropriate initial position, block of material and profile being animated by a relative displacement during which the block opposes to the profile a resistance tending to modify the deformation of the profile compared to its initial deformation, characterized in that the installation comprises means for controlling the relative speed of movement of the profile and of the block of material to be cut at the instantaneous position of at least a portion of the profile to give the profile at each instant an optimal deformation corresponding to the previously chosen cutting position .
Grâce à cette disposition générale, le profilé peut être maintenu à chaque instant de manière entièrement automatique dans une position de découpe optimale correspondant à une valeur de déformation ou à une plage de valeurs de déformation préalablement choisies tout en générant ainsi une très bonne précision de découpe et un état de surface parfait de la pièce découpée. Selon une forme de réalisation préférée de l'invention, les moyens d'asservissement incluent des moyens de détection en temps réel et en continu de la position d'au moins une portion du profilé, par exemple un point du profilé, pour produire des signaux représentatifs de la déformation du profilé, des moyens de traitement en temps réel et en continu desdits signaux pour générer en sortie au moins un signal de commande, des moyens de commande en déplacement du bloc de matière et/ou du profilé, ces moyens de commande étant sensibles audit signal de commande pour augmenter ou réduire la vitesse de déplacement relatif du bloc et du profilé.Thanks to this general arrangement, the profile can be kept fully automatic at all times in an optimal cutting position corresponding to a deformation value or to a range of pre-selected deformation values while thus generating very good cutting precision. and a perfect surface condition of the cut piece. According to a preferred embodiment of the invention, the control means include means for real-time and continuous detection of the position of at least a portion of the profile, for example a point on the profile, to produce signals representative of the deformation of the profile, means of processing in real time and continuously said signals to generate at least one control signal as output, control means for moving the block of material and / or the profile, these control means being sensitive to said control signal to increase or reduce the relative speed of movement of the block and the profile.
Grâce à cette combinaison, le signal de commande peut être produit pour une valeur ou une plage de valeurs des signaux de déformation du profilé choisies par l'opérateur en fonction de la coupe à effectuer. Il devient ainsi possible de provoquer volontairement une flèche du profilé pour permettre la découpe d'un blocy notamment au niveau d'une zone de rebroussement . ou bien encore de modifier l'accélération ou la décélération imprimées à la pièce et/ou au profilé en fonction de la valeur desdits signaux de déformation du profilé par rapport à la valeur de déformation de référence choisie. Une telle installation permet donc l'obtention d'une flèche paramétrable du profilé.Thanks to this combination, the control signal can be produced for a value or a range of values of the deformation signals of the profile chosen by the operator according to the cut to be made. It thus becomes possible to voluntarily cause an arrow of the profile to allow the cutting of a block y in particular at the level of a cusp. or else to modify the acceleration or deceleration printed on the part and / or on the profile as a function of the value of said profile deformation signals with respect to the chosen reference deformation value. Such an installation therefore makes it possible to obtain a configurable deflection of the profile.
L'invention sera bien comprise à la lecture de la description suivante d'un exemple de réalisation, en référence au dessin annexé dans lequel :The invention will be clearly understood on reading the following description of an exemplary embodiment, with reference to the appended drawing in which:
la figure 1 représente une vue en perspective schématique d'ensemble d'un dispositif pour la découpe de pièces de forme quelconque conforme à 1 ' invention ;Figure 1 shows a schematic perspective view of an overall device for cutting parts of any shape according to one invention;
les figures 2A et 2B représentent respectivement schématiquement en coupe transversale d'un capteur et du profilé ainsi que les signaux représentatifs de la position du profilé produits par ledit capteur dans une première position du profilé et dans une seconde position du profilé ;FIGS. 2A and 2B respectively represent diagrammatically in cross section of a sensor and of the profile as well as the signals representative of the position of the profile produced by said sensor in a first position of the profile and in a second position of the profile;
la figure 3 représente une vue schématique en coupe verticale d'un boîtier monté sur l'élément support représenté aux figures 1 et 4 etFIG. 3 represents a schematic view in vertical section of a box mounted on the support element shown in FIGS. 1 and 4 and
la figure 4 représente une vue de face d'une autre architecture d'un dispositif pour la découpe de pièces conforme à l'invention.Figure 4 shows a front view of another architecture of a device for cutting parts according to the invention.
Les dispositifs pour la découpe de pièces dans un bloc 11 de matière thermofusible de forme quelconque au moyen d'un profilé 4 résistif déformable présentent des architectures diverses et variées. Dans le cas où le profilé 4 résistif est un fil ou une lame, éventuellement prégalbé, celui-ci est relié, à chacune de ses extrémités ou au voisinage de ces dernières, à des organes 5, 6 assurant le maintien en tension dudit fil, ces organes 5, 6 de maintien en tension étant portés par au moins un élément support 3 constituant au moins l'un des éléments structurels du dispositif.The devices for cutting parts from a block 11 of hot-melt material of any shape by means of a deformable resistive profile 4 have various and varied architectures. In the case where the resistive profile 4 is a wire or a blade, possibly pre-bent, the latter is connected, at each of its ends or in the vicinity of the latter, to members 5, 6 ensuring the maintenance in tension of said wire, these members 5, 6 for maintaining tension being carried by at least one support element 3 constituting at least one of the structural elements of the device.
La configuration de l'élément support 3 est fonction du reste de la structure définie par la référence générale 1 dudit dispositif. Deux exemples de réalisation de l'élément support 3 sont fournis ci-après. Ainsi, dans l'exemple représenté à la figure 1, l'élément support 3 est une armature, de préférence en forme d'arc, cette armature étant couplée mécaniquement au bras 8 d'un robot manipulateur 9 au moyen d'une liaison articulée 19 comme le montre la figure 1. Ce robot 9 repose sur une structure 20 de type plateau en appui au sol. Cette structure supporte également un plateau 10, éventuellement rotatif, sur lequel est placé le bloc 11 de matière à découper, de forme quelconque. Ainsi, grâce à une telle architecture du dispositif, il est possible, au cours de la découpe, de déplacer relativement le profilé 4 et le bloc 11 de matière à découper. Les organes de commande du plateau rotatif 10 ou du bras 8 du robot 9 peuvent, de manière en soi connue, être constitués par des moteurs commandés en fonctionnement par un signal de commande approprié. L'utilisation d'un robot manipulateur 9 permet d'obtenir un grand nombre de mouvements de l'élément support 3. Ceci est notamment représenté à la figure 1 par les flèches indiquant les différentes possibilités de mouvement du robot manipulateur. Il en résulte une possibilité de découpe de pièces de forme quelconque. La vitesse de déplacement du profilé 4 ainsi obtenue par la combinaison de ces différents mouvements peut être régulée, comme cela sera décrit ci-après, du fait de la présence de moyens d'asservissement de la vitesse de déplacement du profilé 4 à la position d'au moins une portion du profilé 4. Il en est de même de la vitesse de rotation du plateau rotatif 10 support du bloc 11 de matière à découper pour obtenir une ou plusieurs pièces de forme quelconque.The configuration of the support element 3 depends on the rest of the structure defined by the general reference 1 of said device. Two embodiments of the support element 3 are provided below. Thus, in the example shown in FIG. 1, the support element 3 is an armature, preferably in the form of an arc, this armature being mechanically coupled to the arm 8 of a manipulator robot 9 by means of an articulated connection. 19 as shown in FIG. 1. This robot 9 rests on a plate-like structure 20 bearing on the ground. This structure also supports a plate 10, possibly rotatable, on which is placed the block 11 of material to be cut, of any shape. Thus, thanks to such an architecture of the device, it is possible, during cutting, to relatively move the profile 4 and the block 11 of material to be cut. The control members of the turntable 10 or of the arm 8 of the robot 9 can, in a manner known per se, be constituted by motors controlled in operation by an appropriate control signal. The use of a handling robot 9 makes it possible to obtain a large number of movements of the support element 3. This is in particular shown in FIG. 1 by the arrows indicating the different possibilities of movement of the handling robot. This results in a possibility of cutting pieces of any shape. The speed of movement of the profile 4 thus obtained by the combination of these different movements can be regulated, as will be described below, due to the presence of means for controlling the speed of movement of the profile 4 at the position d 'at least a portion of the profile 4. It is the same with the speed of rotation of the rotary plate 10 supporting the block 11 of material to be cut to obtain one or more pieces of any shape.
Dans une autre configuration, conforme à celle représentée à la figure 4, l'élément support 3 est formé de deux rails verticaux parallèles constitutifs du bâti du dispositif et le long desquels se déplacent les organes 5, 6 (figure 3) de maintien en tension du profilé. Ces organes de maintien en tension 5, 6 peuvent être logés à l'intérieur d'un boîtier 2 représenté à la figure 3 et qui sera décrit ci- après, ce boîtier 2 se déplaçant à coulissement le long des rails constitutifs de l'élément support 3. Dans ce cas, les boîtiers 2, disposés de part et d'autre des extrémités du profilé 4, se déplacent ensemble le long des rails verticaux. Le déplacement du profilé 4 le long de ces deux rails verticaux assure la découpe en Y. Ces rails verticaux sont eux-mêmes mobiles le long d'un ou plusieurs rails horizontaux. Le déplacement de ces rails le long des rails horizontaux assure la coupe en X du bloc 11 de matière. Généralement, ces déplacements sont assurés par des moteurs pas à pas dont la commande en fonctionnement sera décrite ci-après. Le bloc 11 est quant à lui disposé sur un plateau 10, rotatif ou non, porté par une table . et disposé entre les rails verticaux portant les organes 5 , 6 de maintien en tension du profilé 4.In another configuration, in accordance with that shown in FIG. 4, the support element 3 is formed by two parallel vertical rails constituting the frame of the device and along which the tension maintenance members 5, 6 (FIG. 3) move. of the profile. These tension-maintaining members 5, 6 can be housed inside a box 2 shown in FIG. 3 and which will be described below, this box 2 moving to slide along the constituent rails of the element support 3. In this case, the boxes 2, arranged on either side of the ends of the profile 4, move together along the vertical rails. The displacement of the profile 4 along these two vertical rails ensures cutting in Y. These vertical rails are themselves mobile along one or more horizontal rails. The displacement of these rails along the horizontal rails ensures the X cut of the block 11 of material. Generally, these movements are provided by stepping motors whose control in operation will be described below. The block 11 is in turn arranged on a plate 10, rotary or not, carried by a table. and disposed between the vertical rails carrying the members 5, 6 for maintaining the profile 4 in tension.
Dans les deux architectures de dispositif précitées, les organes 5, 6 de maintien en tension du profilé 4 sont, par exemple, constitués de deux vérins 5 disposés à chacune des extrémités du profilé 4, ces vérins 5 étant logés dans des paliers guides 7 disposés soit à l'intérieur d'un boîtier 2 monté amovible sur ledit élément support 3, tel que représenté à la figure 3, soit directement dans ledit élément support 3, par exemple aux extrémités des branches de l'arc, dans le cas d'un élément support 3 constitué par une armature en forme d'arc du type de celle représentée à la figure 1. Ces vérins 5 peuvent être montés soit respectivement à déplacement libre en translation et à position stationnaire réglable en translation à l'intérieur desdits paliers guides 7, soit respectivement à déplacement libre en translation et à position stationnaire unique à l'intérieur desdits paliers guides 7. Ainsi, dans le cas représenté à la figure 3, le vérin 5 est un vérin à déplacement libre en translation encore appelé vérin à déplacement automatique. Ce vérin 5 coopère avec un organe de rappel 6 exerçant une tension permanente continue réglable, de manière telle que 1 ' élongation du fil de coupe formant profilé 4 est compensée par les déplacements continus dudit vérin 5 à déplacement automatique entre deux positions extrêmes. Dans l'exemple représenté à la figure 3, il est en outre disposé, au voisinage de l'extrémité du vérin 5 recevant le fil de coupe 4, au moins une poulie 13, de préférence deux poulies 13, 14, faisant office de galets tendeurs. Ces poulies 13, 14 remplissent plusieurs fonctions. Elles permettent d'une part d'assurer, dans une zone située au voisinage de la zone de détection Zl de la position du fil de coupe 4 qui sera décrite ci-après, une position horizontale du fil 4 indépendamment de la position des organes 5, 6 de maintien en tension du fil. En outre, ces poulies 13, 14 sont conformées pour reconnaître le diamètre du fil de telle sorte que, dès qu'un changement de fil intervient, cette information est transmise à des moyens de traitement 18 qui seront décrits ci-après de manière à prendre en compte la nouvelle configuration du fil, en particulier lors du choix de la ou des valeurs de déformation du fil correspondant à une découpe optimale. Ces poulies peuvent en outre permettre l'amenée d'un courant servant au chauffage du fil. Grâce à la présence de ces poulies, il est ainsi possible de ne plus maintenir dans l'axe du fil les organes 5, 6 de maintien en tension du fil 4, ce qui permet de refroidir plus aisément ce fil. Les moyens de refroidissement 12 sont dans ce cas constitués par une turbine disposée sensiblement dans l'axe du fil à l'intérieur dudit boîtier 2 comme représenté à la figure 3. A l'autre extrémité du fil (non représentée à la figure 3), il peut être par exemple disposé un vérin mécanique à positions stationnaires réglables. Ce vérin est dans ce cas constitué d'un axe fileté porté par un palier thermiquement isolant et non conducteur ménagé par exemple dans un boîtier analogue à celui représenté à la figure 3, cet axe comportant au voisinage de ses extrémités un épaulement et éventuellement une butée de fin de course ainsi qu'un écrou de réglage de la position axiale. Bien évidemment, d'autres modes de réalisation desdits organes de maintien en tension du profilé peuvent être envisagés. Grâce à ces organes de maintien en tension du profilé, on accompagne la déformation du profilé qui se produit au cours de la découpe de la pièce à réaliser. Cette déformation du profilé se traduit par un fléchissement du profilé lors du contact pièce/profilé, ce fléchissement générant un allongement du profilé au cours de la coupe. On assure ainsi, grâce à ces organes de maintien en tension, une tension quasi-constante du profilé.In the two aforementioned device architectures, the members 5, 6 for maintaining the tension of the profile 4 are, for example, constituted by two jacks 5 arranged at each end of the profile 4, these jacks 5 being housed in guide bearings 7 arranged either inside a casing 2 removably mounted on said support element 3, as shown in FIG. 3, or directly in said support element 3, for example at the ends of the arms of the arch, in the case of a support element 3 constituted by an arc-shaped armature of the type shown in FIG. 1. These jacks 5 can be mounted either with free movement in translation and with a stationary position which can be adjusted in translation inside said guide bearings 7, or respectively with free movement in translation and with a single stationary position inside said guide bearings 7. Thus, in the case shown in FIG. 3, the vee rin 5 is a cylinder with free movement in translation also called an automatic displacement cylinder. This jack 5 cooperates with a return member 6 exerting an adjustable continuous permanent tension, so that the elongation of the cutting wire forming a profile 4 is compensated by the continuous movements of said jack 5 with automatic movement between two extreme positions. In the example shown in Figure 3, it is further arranged, near the end of the jack 5 receiving the cutting wire 4, at least one pulley 13, preferably two pulleys 13, 14, acting as rollers tensioners. These pulleys 13, 14 fulfill several functions. On the one hand, they make it possible to ensure, in a zone located in the vicinity of the detection zone Z1 of the position of the cutting wire 4 which will be described below, a horizontal position of the wire 4 independently of the position of the members 5 , 6 for maintaining thread tension. In addition, these pulleys 13, 14 are shaped to recognize the diameter of the wire so that, as soon as a change of wire occurs, this information is transmitted to processing means 18 which will be described below so as to take into account the new configuration of the wire, in particular when choosing the wire deformation value (s) corresponding to an optimal cut. These pulleys can also allow the supply of a current for heating the wire. Thanks to the presence of these pulleys, it is thus possible to no longer maintain in the axis of the wire the members 5, 6 for maintaining the tension of the wire 4, which makes it possible to cool this wire more easily. The cooling means 12 are in this case constituted by a turbine arranged substantially in the axis of the wire inside said housing 2 as shown in FIG. 3. At the other end of the wire (not shown in FIG. 3) , it may for example be arranged a mechanical cylinder with adjustable stationary positions. This cylinder is in this case constituted by a threaded axis carried by a thermally insulating and non-conductive bearing formed for example in a housing similar to that shown in FIG. 3, this axis comprising in the vicinity of its ends a shoulder and possibly a stop limit switch as well as a nut for adjusting the axial position. Obviously, other embodiments of said members for maintaining the profile in tension can be envisaged. Thanks to these members for maintaining the profile in tension, the deformation of the profile is produced, which occurs during the cutting of the part to be produced. This deformation of the profile results in a bending of the profile during the part / profile contact, this bending generating an elongation of the profile during cutting. This ensures, thanks to these tension holding members, an almost constant tension of the profile.
Le profilé 4 est généralement constitué d'un fil ou d'une lame, éventuellement pré-galbés, déformables. Généralement, les fils utilisés sont des fils métalliques, en inox ou en alliage nickel/chrome avec une section très faible, de préférence comprise entre 40 et 200 microns. La nature et les dimensions du fil sont choisies en fonction de la température de chauffage et de la matière à découper. Le fil est chauffé par des moyens de chauffage appropriés. Généralement, ce fil est chauffé par le passage d'un courant fourni par un gradateur, ce gradateur délivrant par exemple une tension de 220 Volts sous 50 Hertz. Comme représenté à la figure 3, ces moyens de chauffage peuvent également être intégrés dans un boîtier 2 monté de manière amovible sur ledit élément support 3 de la structure de l'installation. La température de chauffage du fil, fonction de la température de fusion de la matière à découper, est généralement comprise dans la plage [200 - 600 °C]. Cette température peut être maintenue constante du fait de la présence dans l'installation de moyens d'asservissement de la vitesse de déplacement relatif du profilé et du bloc 11 de matière à découper à la position instantanée d'au moins une portion du profilé.Profile 4 generally consists of a wire or a blade, possibly pre-curved, deformable. Generally, the wires used are metallic wires, stainless steel or nickel / chrome alloy with a very small section, preferably between 40 and 200 microns. The nature and dimensions of the wire are chosen according to the heating temperature and the material to be cut. The wire is heated by suitable heating means. Generally, this wire is heated by the passage of a current supplied by a dimmer, this dimmer delivering for example a voltage of 220 Volts at 50 Hertz. As shown in Figure 3, these heating means can also be integrated in a housing 2 removably mounted on said support member 3 of the structure of the installation. The wire heating temperature, depending on the melting temperature of the material to be cut, is generally in the range [200 - 600 ° C]. This temperature can be kept constant due to the presence in the installation of means for controlling the relative speed of movement of the profile and of the block 11 of material to be cut to the instantaneous position of at least a portion of the profile.
Comme il a déjà été précisé ci-dessus, lors de la découpe d'un bloc 11 de matière thermofusible de forme quelconque, bloc 11 et profilé 4 sont animés d'un déplacement relatif, c'est-à-dire que le bloc 11 et/ou le profilé 4 sont déplacés. Au cours de ce déplacement, le profilé 4 est engagé dans le bloc 11 de matière et génère, du fait de sa température, une fusion du matériau constitutif du bloc 11. Cet engagement génère en outre, du fait de la résistance opposée par le bloc 11 au profilé, une déformation du profilé se traduisant généralement par un fléchissement du profilé. Ce fléchissement génère les inconvénients préalablement cités. Pour éliminer ce fléchissement, il convient de réduire la vitesse de déplacement relatif du bloc 11 et du profilé 4. Pour atteindre ce but, les moyens d'asservissement incluent des moyens de détection en temps réel et en continu de la position d'une portion du profilé 4 pour produire des signaux représentatifs de la déformation du profilé 4, des moyens de traitement en temps réel et en continu desdits signaux pour générer en sortie au moins un signal de commande, des moyens de commande en déplacement du bloc 11 de matière et/ou du profilé, ces moyens de commande étant sensibles audit signal de commande pour augmenter ou réduire la vitesse de déplacement relatif du bloc 11 et du profilé 4.As has already been specified above, during the cutting of a block 11 of hot-melt material of any shape, block 11 and profile 4 are moved relative, that is to say that block 11 and / or the section 4 are moved. During this movement, the section 4 is engaged in the block 11 of material and generates, due to its temperature, a fusion of the material constituting the block 11. This engagement also generates, due to the resistance opposed by the block 11 to the profile, a deformation of the profile generally resulting in a bending of the profile. This decline generates the disadvantages previously mentioned. To eliminate this deflection, the relative speed of movement of the block 11 and of the profile 4 should be reduced. To achieve this goal, the control means include means for real-time and continuous detection of the position of a portion. profile 4 to produce signals representative of the deformation of profile 4, time processing means real and continuous of said signals to generate at output at least one control signal, means for controlling movement of the block 11 of material and / or of the profile, these control means being sensitive to said control signal to increase or reduce the speed relative movement of the block 11 and the section 4.
Les moyens de détection peuvent affecter un grand nombre de formes. Le moyen de détection le plus simple peut être constitué par un capteur tout ou rien, tel qu'un oeillet électriquement conducteur formant contacteur, disposé autour du profilé, de préférence à une extrémité de ce dernier. Lors d'une déformation, par exemple par fléchissement du fil de coupe 4, au cours de la découpe, l'oeillet contacteur vient en contact avec un élément conducteur également circulaire incorporé au bâti de ladite installation générant ainsi un signal apte à être traité pour générer un signal de commande approprié auquel les moyens de commande en déplacement du bloc 11 et/ou du profilé 4 décrits ci-dessus sont sensibles. Toutefois, ce type de moyen de détection, bien qu'applicable dans la présente invention, manque de précision. En particulier, il ne permet pas de déterminer une borne inférieure qui correspondrait à une quasi-absence de déformation du fil. Or, cette absence de déformation du fil peut également générer des inconvénients. Il est donc préféré un capteur dont les signaux générés permettent de mesurer avec une précision généralement supérieure au dixième de millimètre la déformation du profilé par rapport à sa déformation initiale dite de repos. Avec un tel capteur, il est possible de compenser en temps réel la déformation du fil, encore appelée flèche du fil, par modification de la vitesse de déplacement relatif du bloc 11 et du profilé 4 et donc d'envisager l'automatisation de la découpe.The detection means can affect a large number of forms. The simplest detection means can consist of an all-or-nothing sensor, such as an electrically conductive eyelet forming a contactor, arranged around the profile, preferably at one end of the latter. During a deformation, for example by bending of the cutting wire 4, during cutting, the contacting eyelet comes into contact with a conductive element also circular incorporated in the frame of said installation thus generating a signal capable of being processed for generate an appropriate control signal to which the movement control means of the block 11 and / or of the section 4 described above are sensitive. However, this type of detection means, although applicable in the present invention, lacks precision. In particular, it does not make it possible to determine a lower bound which would correspond to a virtual absence of deformation of the wire. However, this absence of deformation of the wire can also generate drawbacks. It is therefore preferred a sensor whose generated signals make it possible to measure with a precision generally greater than one tenth of a millimeter the deformation of the profile relative to its initial deformation called rest. With such a sensor, it is possible to compensate in real time for the deformation of the wire, also called wire deflection, by modifying the relative speed of movement of the block 11 and of the profile 4 and therefore of considering the automation of the cutting. .
Une solution préférée consiste donc à utiliser des moyens de détection en temps réel et en continu de la position d'au moins une portion du profilé 4 qui sont constitués d'un ensemble émetteur-récepteur. L'émetteur est constitué au moins par le profilé 4 parcouru par une onde électromagnétique tandis que le récepteur est constitué par au moins un capteur 15, disposé au voisinage dudit profilé, l'amplitude du ou des signaux fournis par ledit récepteur étant proportionnelle à la distance émetteur-récepteur. Dans un tel cas, la sortie du capteur 15 varie linéairement au déplacement du profilé 4. Un exemple d'un tel capteur est représenté aux figures 2A et 2B. Dans la figure 2A, le capteur est formé d'au moins quatre plaques 16A, 16B, 16C, 16D conductrices opposées deux à deux et disposées autour dudit profilé 4, de préférence au moins à l'une des extrémités de ce dernier dans la zone de détection Zl précitée. Ces plaques conductrices 16A, 16B, 16C, 16D, telles que des plaques de cuivre, transmettent des signaux par l'intermédiaire d'un fil, de préférence blindé, à une carte électronique 17 qui, elle-même, après amplification et filtration, transmet un signal à des moyens de traitement 18 appropriés, signal correspondant linéairement à la déviation du profilé. Ces moyens de traitement des signaux peuvent être installés par exemple sur un microordinateur, tel que représenté à la figure 1, pilotant la machine ou sur l'armoire de commande du robot. Ces moyens de traitement 18 génèrent à leur tour un signal de commande auxquels les moyens de commande en déplacement du bloc 11 ou du profilé 4 sont sensibles.A preferred solution therefore consists in using means of real-time and continuous detection of the position of at least a portion of the profile 4 which are made up of a transmitter-receiver assembly. The transmitter consists at least of the section 4 traversed by an electromagnetic wave while the receiver consists of at least one sensor 15, disposed in the vicinity of said section, the amplitude of the signal or signals supplied by said receiver being proportional to the transmitter-receiver distance. In such a case, the output of the sensor 15 varies linearly with the displacement of the profile 4. An example of such a sensor is shown in FIGS. 2A and 2B. In FIG. 2A, the sensor is formed of at least four plates 16A, 16B, 16C, 16D conductive opposite in pairs and arranged around said profile 4, preferably at least at one of the ends of the latter in the area Zl detection above. These conductive plates 16A, 16B, 16C, 16D, such as copper plates, transmit signals via a wire, preferably shielded, to an electronic card 17 which, after amplification and filtration, transmits a signal to appropriate processing means 18, a signal corresponding linearly to the deviation of the profile. These signal processing means can be installed for example on a microcomputer, as shown in FIG. 1, controlling the machine or on the robot's control cabinet. These processing means 18 in turn generate a control signal to which the movement control means of the block 11 or of the section 4 are sensitive.
La conception des moyens de détection repose sur la loi de variation de la puissance d'une onde électromagnétique se propageant dans le vide qui varie en 1/R 2 , R étant la distance émetteur/récepteur. Ainsi, le profilé, formant émetteur ou plus particulièrement antenne é ettrice, est relié à une électronique qui fournit une onde porteuse, telle qu'un signal sinusoïdal de fréquence 100 khz, sur ledit fil. Le profilé, ainsi parcouru par cette onde électromagnétique, de préférence sinusoïdale, permet d'induire, grâce au champ magnétique concentrique produit, dans le capteur 15, des signaux dont les valeurs sont directement proportionnelles à la distance profilé 4-plaque 16A ou 16B ou 16C ou 16D. Un tel exemple est représenté aux figures 2A et 2B. Dans la figure 2A, il est représenté des signaux obtenus à partir de quatre plaques lorsque le profilé 4 est en position de repos, c'est-à-dire une position dans laquelle le fil est par exemple disposé sensiblement au centre des quatre plaques. Dans la figure 2B, au contraire, la réalisation d'une découpe a généré une déformation du fil se traduisant par un déplacement d'une portion du profilé dans le sens d'un rapprochement du fil de deux plaques. Il en résulte une variation des signaux représentatifs de la déformation du profilé produits par chacune des plaques comme le montrent les schémas de signaux associés. Les valeurs de la position du profilé 4 fournies par les deux paires de plaques correspondant à deux tensions, représentées par exemple en x et y à la figure 2A et en x' et y1 à la figure 2B, sont traitées par calcul pour déterminer par extrapolation la flèche du fil, c'est-à-dire sa déformation. Cette flèche peut être obtenue notamment à partir de la valeur Z qui est égale à - x ' 2 + γ ' . Cette valeur Z permet de déterminer par extrapolation la valeur F de la flèche du fil correspondant à la déformation de ce dernier. Si cette valeur de la flèche est comprise dans une plage de valeurs FI, F2 de flèche préalablement choisies par l'utilisateur et correspondant à la découpe choisie, aucun signal de commande n'est produit. Si, au contraire, la valeur F de la flèche est inférieure à la valeur FI de flèche minimale prédéterminée ou supérieure à la valeur F2 de flèche maximale prédéterminée, les moyens de traitement 18 desdits signaux génèrent un signal de commande induisant au niveau des moyens de commande, tels que moteur pas à pas ou autres décrits ci-dessus, une augmentation ou une réduction de la vitesse de déplacement relatif du bloc 11 de matière et du profilé 4, par exemple, dans le second cas, par réduction de la vitesse de déplacement de l'élément support 3. En résumé, le signal de commande, produit par lesdits moyens de traitement 18, est émis lorsque la valeur mesurée et/ou calculée des signaux représentatifs de la déformation du profilé 4 est située en dehors d'une -plage de valeurs prédéterminée .The design of the detection means is based on the law of variation of the power of an electromagnetic wave propagating in a vacuum which varies in 1 / R 2, R being the transmitter / receiver distance. Thus, the profile, forming a transmitter or more particularly a transmitting antenna, is connected to electronics which supplies a carrier wave, such as a sinusoidal signal of frequency 100 kHz, on said wire. The profile, thus traversed by this electromagnetic wave, preferably sinusoidal, makes it possible to induce, thanks to the concentric magnetic field produced, in the sensor 15, signals whose values are directly proportional to the 4-plate profile distance 16A or 16B or 16C or 16D. One such example is shown in Figures 2A and 2B. In Figure 2A, there are shown signals obtained from four plates when the section 4 is in the rest position, that is to say a position in which the wire is for example arranged substantially in the center of the four plates. In FIG. 2B, on the contrary, making a cut has generated a deformation of the wire, resulting in a displacement of a portion of the profile in the direction of bringing the wire closer to two plates. This results in a variation of the signals representative of the deformation of the profile produced by each of the plates as shown in the associated signal diagrams. The values of the position of the profile 4 supplied by the two pairs of plates corresponding to two voltages, represented for example in x and y in FIG. 2A and in x 'and y 1 in FIG. 2B, are processed by calculation to determine by extrapolation of the wire arrow, that is to say its deformation. This arrow can be obtained in particular from the value Z which is equal to - x ' 2 + γ'. This value Z makes it possible to determine by extrapolation the value F of the deflection of the wire corresponding to the deformation of the latter. If this deflection value is included in a range of deflection values F1, F2 previously chosen by the user and corresponding to the selected cut, no control signal is produced. If, on the contrary, the value F of the deflection is less than the value FI of predetermined minimum deflection or greater than the value F2 of predetermined maximum deflection, the processing means 18 of said signals generate a control signal inducing at the level of the means of control, such as a stepping motor or others described above, an increase or a reduction in the relative speed of movement of the block 11 of material and of the profile 4, for example, in the second case, by reduction of the speed of displacement of the support element 3. In summary, the control signal produced by said processing means 18 is sent when the measured value and / or calculated signals representative of the deformation of the profile 4 is located outside a predetermined range of values.
Le calcul de la réduction et/ou de l'augmentation de la vitesse peut être effectué de différentes manières. Ce calcul est fonction de la complexité du reste de l'installation. Ainsi, par exemple, dans le cas d'une machine comportant un robot manipulateur, les moyens de régulation de la vitesse devront tenir compte des autres caractéristiques dudit robot. Pour calculer la vitesse appropriée, ces moyens utilisent préférentiellement des méthodes bien connues en automatisme, telles que la correction à action proportionnelle intégrale et dérivée (PID) ou des méthodes plus simples mais toutefois efficaces telles que celle décrite ci-après.The calculation of reduction and / or increase in speed can be done in different ways. This calculation depends on the complexity of the rest of the installation. Thus, for example, in the case of a machine comprising a manipulator robot, the speed regulation means must take account of the other characteristics of said robot. To calculate the appropriate speed, these means preferentially use well-known methods in automation, such as correction with proportional integral and derivative action (PID) or simpler but nevertheless effective methods such as that described below.
Lorsque la valeur F de la flèche du profilé est située en dehors de la plage de valeurs FI, F2 précitées, les moyens de traitement calculent une variable Δ qui est égale à : Δ = 1 + V/K, V correspondant à la vitesse instantanée de déplacement relatif du bloc 11 et du profilé 4 au moment où la position du profilé 4 est détectée et K étant une constante déterminée de manière empirique et comprise entre 20 et 80. Ce Δ est ajouté à la vitesse instantanée V pour obtenir une vitesse VI. La valeur VI constitue alors la nouvelle vitesse de déplacement relatif du bloc 11 et du profilé 4. Un signal de commande est donc adressé aux moyens de commande en déplacement du bloc 11 et/ou du profilé 4 pour procéder à la modification de la vitesse. La vitesse peut ainsi être modifiée périodiquement à chaque nouveau cycle de la boucle d'asservissement. Cette périodicité est de l'ordre de 200 millisecondes. On constate que, dans un tel système de détection, la portion du profilé 4, dont la position est détectée, est réduite à un point. Le capteur 15 représenté de manière schématique aux figures 2A et 2B est représenté logé à 1 ' intérieur du boîtier 2 dans la figure 3. Le boîtier 2 amovible intègre donc, dans ce cas, à la fois les moyens de chauffage du profilé, les moyens de refroidissement 12 du profilé, les organes 5 et 6 de maintien en tension du profilé ainsi qu'une partie des moyens d'asservissement de la vitesse de déplacement relatif du profilé et du bloc de matière à découper à la position instantanée d'au moins une portion du profilé, en particulier le capteur 15 et la carte électronique 17. La maintenance devient ainsi particulièrement aisée. Il suffit, en cas de problème, d'enlever ledit boîtier 2 de l'élément support 3 et de le remplacer par un nouveau boîtier. La machine n'est ainsi pas immobilisée au cours de la réparation desdits éléments.When the value F of the deflection of the profile is located outside the range of values FI, F2 mentioned above, the processing means calculate a variable Δ which is equal to: Δ = 1 + V / K, V corresponding to the instantaneous speed relative displacement of the block 11 and of the profile 4 at the moment when the position of the profile 4 is detected and K being a constant determined empirically and between 20 and 80. This Δ is added to the instantaneous speed V to obtain a speed VI . The value VI then constitutes the new relative speed of movement of the block 11 and of the profile 4. A control signal is therefore sent to the movement control means of the block 11 and / or of the profile 4 in order to modify the speed. The speed can thus be changed periodically with each new cycle of the control loop. This periodicity is of the order of 200 milliseconds. It can be seen that, in such a detection system, the portion of the profile 4, the position of which is detected, is reduced to one point. The sensor 15 shown diagrammatically in FIGS. 2A and 2B is shown housed inside the housing 2 in FIG. 3. The removable housing 2 therefore integrates, in this case, both the means for heating the profile, the means cooling the profile 12, the members 5 and 6 for maintaining the profile in tension as well as part of the means for controlling the relative speed of movement of the profile and of the block of material to be cut to the instantaneous position of at least a portion of the profile, in particular the sensor 15 and the electronic card 17. Maintenance thus becomes particularly easy. It suffices, in the event of a problem, to remove said housing 2 from the support element 3 and to replace it with a new housing. The machine is thus not immobilized during the repair of said elements.
Il est à noter que, généralement, le débit d'air nécessaire au refroidissement du profilé est compris entre 110 et 180 litres/minutes. La tension initiale du fil est généralement choisie entre 300 et 700 g. Les bornes minimale et maximale de déformation autorisée du fil peuvent être fixées à titre d'exemple à respectivement 0,3 mm de déviation à 30 cm du centre du capteur pour la borne inférieure et 0,5 mm de déviation à 30 cm du centre du capteur pour la borne supérieure. Bien évidemment, ces bornes peuvent être modifiées, éventuellement par reprogrammation, à chaque nouvelle découpe. Il est ainsi possible de découper des pièces avec une flèche admissible du profilé très importante, en particulier quand il est nécessaire de découper des zones de rebroussement . It should be noted that, generally, the air flow required for cooling the profile is between 110 and 180 liters / minute. The initial thread tension is generally chosen between 300 and 700 g. The minimum and maximum limits of authorized wire deformation can be fixed by way of example at respectively 0.3 mm deviation at 30 cm from the center of the sensor for the lower terminal and 0.5 mm deviation at 30 cm from the center of the sensor for the upper bound. Obviously, these limits can be modified, possibly by reprogramming, with each new cutting. It is thus possible to cut out parts with a very large permissible deflection of the profile, in particular when it is necessary to cut out cusps.

Claims

REVENDICATIONS
1. Dispositif pour la découpe de pièces de forme quelconque dans un bloc (11) de matière thermofusible de forme quelconque au moyen d'un profilé (4) résistif déformable, tel qu'un fil, chauffé électriquement, et maintenu en tension dans une position initiale appropriée, bloc de matière (11) et profilé (4) étant animés d'un déplacement relatif au cours duquel le bloc (11) oppose au profilé (4) une résistance tendant à modifier la déformation du profilé (4) par rapport à sa déformation initiale, caractérisé en ce que l'installation comporte des moyens d'asservissement de la vitesse de déplacement relatif du profilé (4) et du bloc (11) de matière à découper à la position instantanée d'au moins une portion du profilé (4) pour donner à chaque instant au profilé (4) une déformation optimale correspondant à la position de découpe préalablement choisie.1. Device for cutting pieces of any shape from a block (11) of hot-melt material of any shape by means of a deformable resistive profile (4), such as a wire, electrically heated, and kept in tension in a appropriate initial position, block of material (11) and profile (4) being animated by a relative movement during which the block (11) opposes the profile (4) a resistance tending to modify the deformation of the profile (4) relative at its initial deformation, characterized in that the installation comprises means for controlling the speed of relative movement of the profile (4) and of the block (11) of material to be cut to the instantaneous position of at least a portion of the profile (4) to give the profile (4) an optimal deformation at all times corresponding to the previously selected cutting position.
2. Dispositif selon la revendication 1, caractérisé en ce que les moyens d'asservissement incluent des moyens de détection en temps réel et en continu de la position d'au moins une portion du profilé (4), par exemple un point du profilé, pour produire des signaux représentatifs de la déformation du profilé (4), des moyens de traitement (18) en temps réel et en continu desdits signaux pour générer en sortie au moins un signal de commande, des moyens de commande en déplacement du bloc (11) de matière et/ou du profilé (4), ces moyens de commande étant sensibles audit signal de commande pour augmenter ou réduire la vitesse de déplacement relatif du bloc (11) et du profilé (4).2. Device according to claim 1, characterized in that the control means include means for real-time and continuous detection of the position of at least a portion of the profile (4), for example a point of the profile, for producing signals representative of the deformation of the profile (4), means (18) for processing in real time and continuously said signals for generating at least one control signal, means for controlling the movement of the block (11 ) of material and / or of the profile (4), these control means being sensitive to said control signal to increase or reduce the relative speed of movement of the block (11) and the profile (4).
3. Dispositif selon l'une des revendications 1 et 2 , caractérisé en ce que le signal de commande produit par lesdits moyens de traitement (18) est émis lorsque la valeur mesurée et/ou calculée des signaux représentatifs de la déformation du profilé (4) est située en dehors d'une plage de valeurs prédéterminée.3. Device according to one of claims 1 and 2, characterized in that the control signal produced by said processing means (18) is transmitted when the measured and / or calculated value of the signals representative of the deformation of the profile (4) is located outside a predetermined range of values.
4. Dispositif selon la revendication 2, caractérisé en ce que les moyens de détection en temps réel et en continu de la position d'au moins une portion du profilé (4) sont constitués d'un ensemble émetteur- récepteur, l'émetteur étant constitué au moins par le profilé (4) parcouru par une onde électromagnétique, tandis que le récepteur est constitué par au moins un capteur (15) disposé au voisinage dudit profilé (4), l'amplitude du ou des signaux fournis par ledit récepteur étant proportionnelle à la distance émetteur ( 4 ) -récepteur (15).4. Device according to claim 2, characterized in that the means of real-time and continuous detection of the position of at least a portion of the profile (4) consist of a transmitter-receiver assembly, the transmitter being constituted at least by the profile (4) traversed by an electromagnetic wave, while the receiver is constituted by at least one sensor (15) disposed in the vicinity of said profile (4), the amplitude of the signal or signals supplied by said receiver proportional to the transmitter (4) - receiver (15) distance.
5. Dispositif selon la revendication 4, caractérisé en ce que le capteur (15) est formé d'au moins quatre plaques conductrices (16A, 16B, 16C, 16D) opposées deux à deux et disposées autour dudit profilé (4), de préférence au moins à l'une des extrémités de ce dernier.5. Device according to claim 4, characterized in that the sensor (15) is formed of at least four conductive plates (16A, 16B, 16C, 16D) opposite in pairs and arranged around said profile (4), preferably at least at one end of the latter.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le profilé (4) est un fil de coupe relié à chacune de ses extrémités, ou au voisinage de ces dernières, à des organes (5, 6) assurant le maintien en tension dudit fil, ces organes (5, 6) de maintien en tension étant portés par au moins un élément support (3) constituant au moins l'un des éléments structurels du dispositif.6. Device according to one of claims 1 to 5, characterized in that the profile (4) is a cutting wire connected to each of its ends, or in the vicinity of the latter, to members (5, 6) ensuring maintaining said wire in tension, these tension holding members (5, 6) being carried by at least one support element (3) constituting at least one of the structural elements of the device.
7. Dispositif selon la revendication 6, caractérisé en ce que l'élément support (3) est une armature, de préférence en forme d'arc, cette armature étant couplée mécaniquement au bras (8) d'un robot manipulateur (9) au moyen d'une liaison articulée (19).7. Device according to claim 6, characterized in that the support element (3) is an armature, preferably in the form of an arc, this armature being mechanically coupled to the arm (8) of a manipulator robot (9) at by means of an articulated connection (19).
8. Dispositif selon la revendication 6, caractérisé en ce que l'élément support (3) est formé de deux rails verticaux constitutifs du bâti du dispositif et le long desquels se déplacent lesdits organes (5, 6) de maintien en tension du profilé.8. Device according to claim 6, characterized in that the support element (3) is formed by two vertical rails constituting the frame of the device and along which move said members (5, 6) for maintaining the profile in tension.
9. Dispositif selon l'une des revendications 6 à 8, caractérisé en ce que les organes (5, 6) de maintien en tension du profilé (4) sont incorporés à l'intérieur d'un boîtier (2) renfermant en outre au moins une partie des moyens d'asservissement de la vitesse de déplacement relatif du profilé (4) et du bloc (11) de matière à découper à la position instantanée d'au moins une portion du profilé, des moyens de refroidissement (12) dudit profilé (4), des moyens de chauffage dudit profilé, ledit boîtier (2) étant monté amovible sur ledit élément support (3). 9. Device according to one of claims 6 to 8, characterized in that the members (5, 6) for maintaining the profile in tension (4) are incorporated inside a housing (2) further containing the at least part of the means for controlling the relative speed of movement of the profile (4) and of the block (11) of material to be cut at the instantaneous position of at least a portion of the profile, cooling means (12) of said profile (4), means for heating said profile, said housing (2) being removably mounted on said support element (3).
EP97943936A 1996-10-03 1997-10-03 Device for cutting out parts of any shape Expired - Lifetime EP0929385B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9612051A FR2754208B1 (en) 1996-10-03 1996-10-03 DEVICE FOR CUTTING PARTS OF ANY SHAPE
FR9612051 1996-10-03
PCT/FR1997/001755 WO1998014311A1 (en) 1996-10-03 1997-10-03 Device for cutting out parts of any shape

Publications (2)

Publication Number Publication Date
EP0929385A1 true EP0929385A1 (en) 1999-07-21
EP0929385B1 EP0929385B1 (en) 2004-06-23

Family

ID=9496318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943936A Expired - Lifetime EP0929385B1 (en) 1996-10-03 1997-10-03 Device for cutting out parts of any shape

Country Status (5)

Country Link
EP (1) EP0929385B1 (en)
AU (1) AU4559797A (en)
DE (1) DE69729642D1 (en)
FR (1) FR2754208B1 (en)
WO (1) WO1998014311A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062861A1 (en) * 2003-01-13 2004-07-29 Peter David Hurley Method and apparatus for manufacturing a three dimensional element sculpture
DE102004050867B4 (en) * 2004-10-18 2007-03-01 Christoph Sobotta Styroporschneider
AT501715B1 (en) * 2005-08-17 2006-11-15 Schluesselbauer Johann Ing DEVICE FOR PROCESSING THE PLATED SURFACE OF A NEGATIVE FORM FOR A BAY BASE SUBSTANCE FORMING A THERMOPLASTIC FOAM FORM PROFILE
AT503649B1 (en) 2006-06-16 2007-12-15 Schluesselbauer Johann Ing DEVICE FOR PROCESSING A NEGATIVE FORM OF A GRINDER CONNECTION OF A GRATING CONTAINER OF A SHAFT-GROUNDING UNIT OF THERMOPLASTIC FOAM
EP1977868A1 (en) * 2007-04-02 2008-10-08 Santos Ortiz Casar Cutting machine with a sphere fixed in the space by electromagnets
DE202008002669U1 (en) * 2008-02-26 2009-07-09 Kuka Systems Gmbh processing device
EP2402125A1 (en) * 2010-06-29 2012-01-04 Siemens Aktiengesellschaft Method of producing test components by a hot wire cutter
ITTO20111130A1 (en) * 2011-12-09 2012-03-09 Michele Caboni CNC COMPACT MACHINING CENTER EQUIPPED WITH HOT CUTTING BLADES AND MILLS, FOR PROCESSING EXPANDED OR EXTRUDED MATERIALS IN GENERAL, IN PARTICULAR FOR ICF PANELS.
WO2017157917A1 (en) 2016-03-14 2017-09-21 Danmarks Tekniske Universitet Robotic system and method for manufacturing of objects
EP3562633B1 (en) * 2016-12-27 2024-02-14 Nettuno Sistemi Di Ascone Salvatore & C. S.A.S. An equipment for cutting polystyrene blocks in automated way
CN112060202A (en) * 2020-08-25 2020-12-11 杭州床邢科技有限公司 A filler apparatus for producing for furniture processing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067312A (en) * 1976-09-08 1978-01-10 Elberton Granite Association, Inc. Automatic feedback control for wire saw
FR2522296A1 (en) * 1982-03-01 1983-09-02 Roset Sa APPARATUS FOR CUTTING BLOCKS OF FOAM
DE3444612A1 (en) * 1984-12-07 1986-06-12 Recticel Deutschland GmbH, 5342 Rheinbreitbach Vertical cutting machine for foams
FR2665100A1 (en) * 1990-07-27 1992-01-31 Croma Sarl METHOD AND APPARATUS FOR CUTTING BLOCKS AND PLATES OF CELLULAR SYNTHETIC MATERIALS.
NL9002832A (en) * 1990-12-20 1992-07-16 Medical Q Metal-irradiation-shield mould - has plastic plate cut by heated wire moved by electrically-controlled plotter
US5191824A (en) * 1991-12-04 1993-03-09 Luxaire Cushion Co. Method and apparatus for forming a contoured surface
DE9301122U1 (en) * 1993-01-28 1993-03-18 Schenke, Guenter, 4000 Duesseldorf, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9814311A1 *

Also Published As

Publication number Publication date
FR2754208A1 (en) 1998-04-10
WO1998014311A1 (en) 1998-04-09
FR2754208B1 (en) 1998-12-11
DE69729642D1 (en) 2004-07-29
AU4559797A (en) 1998-04-24
EP0929385B1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
EP0929385B1 (en) Device for cutting out parts of any shape
CH630586A5 (en) APPARATUS FOR WINDING A THREAD.
EP2550135B1 (en) Device for controlling the relative positioning of two elements, such as the blades of secateur-type cutting tools, and a cutting tool comprising same
EP0566434B1 (en) Adjustment method for a continuously tunable light-source
FR2503115A1 (en) METHOD AND DEVICE FOR FEEDING A WIRE FROM A STORAGE COIL, ESPECIALLY A WIRE FROM ELECTROEROSION MACHINE
CA2087689C (en) Device for laying a thin metal wire in a straight line on the surface of a laminated-glass glazing thermoplastic film
EP0559799B1 (en) Device for detecting longitudinal slits on slabs, particularly steel slabs
WO1990015730A1 (en) Air-cushion pantograph
EP0055648A2 (en) Machine for work-pieces having a curved surface of a given shape
EP1008415B1 (en) Cutting device for metallic workpieces comprising a cutting gun and a capacitive sensor
EP0390648B1 (en) Multidirectional contact sensor for control machines
FR2548060A1 (en) MACHINE TOOL, ESPECIALLY LATHE, FOR MACHINING NON-CIRCULAR PROFILES
FR2499442A1 (en) Groove cutter for lens - has rotary diamond cutter with rotating lens holder holding lens at centre
EP0631842A1 (en) Spectacle glass grinding machine
CH670974A5 (en)
EP0861204B1 (en) Stacking pressure control device for a horizontal book stacking device
FR2580870A1 (en) APPARATUS FOR CONTROLLING THE CHARACTERISTICS OF A LIGHT BEAM, IN PARTICULAR A POWER LASER
FR2652294A2 (en) Improved device for adjusting the grinding weight for a machine for grinding ophthalmic lenses
FR2679817A1 (en) DEVICE FOR CUTTING A SOAP BREAD.
BE842093A (en) AUTOMATIC CONTROL UNIT FOR DIAMOND SAWING MACHINE.
FR2535706A1 (en) Process and device for cutting an optical fibre.
EP0387741A1 (en) Process and device for machining a workpiece using a laser beam
EP0061401B1 (en) Method and means to position a member laterally with regard to a discontinuity between two displaced metal surfaces
BE509978A (en)
BE668759A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17P Request for examination filed

Effective date: 19990426

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20040623

REF Corresponds to:

Ref document number: 69729642

Country of ref document: DE

Date of ref document: 20040729

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040924

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST