EP0928947B1 - Application optopyrotechnique de démolition d'une installation. - Google Patents

Application optopyrotechnique de démolition d'une installation. Download PDF

Info

Publication number
EP0928947B1
EP0928947B1 EP99400012A EP99400012A EP0928947B1 EP 0928947 B1 EP0928947 B1 EP 0928947B1 EP 99400012 A EP99400012 A EP 99400012A EP 99400012 A EP99400012 A EP 99400012A EP 0928947 B1 EP0928947 B1 EP 0928947B1
Authority
EP
European Patent Office
Prior art keywords
laser
control unit
outputs
application according
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400012A
Other languages
German (de)
English (en)
Other versions
EP0928947A1 (fr
Inventor
Robert Patrick Barbiche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardem Demolition SA
Original Assignee
Cardem Demolition SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardem Demolition SA filed Critical Cardem Demolition SA
Publication of EP0928947A1 publication Critical patent/EP0928947A1/fr
Application granted granted Critical
Publication of EP0928947B1 publication Critical patent/EP0928947B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/113Initiators therefor activated by optical means, e.g. laser, flashlight

Definitions

  • the invention relates to an installation designed to ensure demolition or destruction, using explosives, constructions such as buildings, industrial buildings, engineering structures, rocks and generally any structure natural or having been the subject of an edification preliminary (buildings, public works, works underground, quarries, etc.).
  • the global explosion is broken down into a multitude of small explosions spaced apart in time.
  • micro-delay detonators For this purpose, we usually use electric micro-delay detonators, grouped by series (for example of twenty units). Spacing over time (e.g. 25 thousandths of a second) is provided between each detonator of the same series.
  • Explosives are also usually used sequential, ensuring the ignition of several detonator lines spaced over time. Several sequential exploders can then be mated.
  • the existing installations operating on this principle include 1500 to 2000 detonators per shot. Due to spacing of explosions triggered by installation, the shot can last up to 3 to 4 seconds. This shot follows mining work and priming which can last 3 to 4 days, even a week.
  • stray currents that may occur around the initiated charges.
  • These stray currents can have different origins such as the lightning, and currents from networks electrical overhead or located in the ground, currents from neighboring electrical installations in service (electrical transformers, catenary lines of railways or trams, lighting lamps etc.) and the natural currents flowing underground in the case of tunnel drilling.
  • Unintentional ignition of charges can also originate from the use of devices electronics such as radios, walkie-talkies, cell phones, etc. close to these loads.
  • An inadvertent firing of detonators may also occur during transport or during storage, for example due to stray currents or accidents of various origins.
  • the existing demolition facilities in electric fires are also prone to failures that can affect the demolition work. These failures are mainly caused by sons cut or in contact with earths metal such as protective mesh, metallic equipment of buildings to be demolished, etc. When the building to be demolished is an important metal structure such as a thermal power plant, failures can also originate from fields electrics produced by the huge mass of scrap metal building.
  • the electric detonators used in existing demolition facilities can be stolen and easily reused as well when their transport or their storage only after their placing in place in the building to be demolished.
  • Document US-A-5 206 455 describes a system able to destroy a launcher in the event of a malfunction.
  • Laser diodes or bar laser sources pumped solids are used to ignite pyrotechnic charge initiators, through fiber optic cables.
  • Document US-A-5 031 187 proposes to carry out a planar array of laser diodes arranged in a matrix, so that they can be ordered selectively.
  • the subject of the invention is precisely a demolition facility, whose original design allows it to remove all the disadvantages of existing electrical installations, in eliminating in particular any risk of accidental ignition or malicious, both during work mining and priming than during storage and prior transportation of the system components, when said installation is applied to the demolition of buildings or natural structures.
  • the aforementioned characteristic also makes it possible to safely demolish buildings located in large urban centers despite the large number of electronic devices present in these centers.
  • detonators with optical control do not can be used in case of theft.
  • a calculator makes it possible to determine easily the place of a possible break in the optical fiber.
  • laser sources are rod sources solid pumped, operating in relaxed mode.
  • Each plant control unit then includes a single laser source and a first optical splitter coupler having a primary optical input capable of receiving the beam laser emitted by the laser source and several outputs forming the outputs of the control unit.
  • each group at least some of the optical fibers then connect several initiators pyrotechnics at one of the central power station exits control through at least a second coupler optical divider.
  • each control center includes a secondary optical input and first return means capable of directing towards the entrance of the first optical splitter coupler an additional laser beam entering the control unit by its secondary optical input.
  • An additional laser source common to all groups is then provided, so as to emit the additional laser beam, when necessary as a result of a laser source failure at one of the plants control.
  • Each control unit can also include an auxiliary control input and second return means, capable of establishing a route derivative optics between the auxiliary control input and the input of the optical splitter coupler of this central control.
  • This arrangement makes it possible in particular to control the integrity of optical fibers by means of a visible light source placed in front of the entrance control assistant.
  • Each control unit includes this preferably a retractable shutter capable of being placed between the laser source and the input of the splitter coupler optical.
  • the second return means are formed on this retractable shutter, when the latter occupies a active shutter position.
  • Each control unit can also include a standard safety switch with the laser source control switch.
  • the laser sources are laser diodes.
  • Each control unit then includes as many laser diodes as outputs and each laser diode is optically connected to one of these outputs.
  • each of the laser diodes can be mounted in series with a separate control switch in each of the control units.
  • a common safety switch is fitted in series with all the laser diodes of each control unit.
  • the laser diodes form a matrix of n rows and m columns, the laser diodes of each line being connected in series with a first control switch and the outputs of the laser diodes of each column being connected to a second control switch.
  • the demolition facility includes several groups completely independent, each comprising a control center 10 a number pyrotechnic initiators 12 with optical control, as well as optical fibers 14 connecting each of the pyrotechnic initiators 12 at one of these outputs 18 of the control unit 10 of the corresponding group.
  • Each of the control units 10 comprises in this case a single laser source 16, constituted by a laser source with a solid pumped rod, operating in relaxed mode, i.e. without triggering at using Pockels cells or any other means similar.
  • the characteristics of such a source laser are those of a relatively pulse train long (about 150 ⁇ s), capable of delivering a instantaneous power of the order of a few tens optical kilowatts.
  • This power level of laser sources 16 allows the laser beam to be divided, successively inside each control center 10, then possibly downstream of this plant.
  • first optical splitter coupler 22 Inside each of the command 10 and as illustrated more specifically the Figure 2, the division of the laser beam is ensured by a first optical splitter coupler 22.
  • This first optical splitter coupler 22 has an input single, located on the optical path of the laser source 16, so as to receive the laser beam emitted by this source.
  • the optical splitter coupler 22 includes also N outputs forming the outputs 18 of the control unit 10.
  • the number of exits 18 from each of the control units 10 is understood, by example, between four and twelve. It should be noted that the number of outputs 18 of control units 10 of each group can be the same or different from one group to another, without going outside the framework of the invention.
  • the optical fibers 14 allow each of the outputs 18 of the control units 10 as the case may be one or more of the pyrotechnic initiators 12 of the group considered.
  • all the other links represented between the outputs of the control 10 and the optical inputs of the initiators pyrotechnics 12 are designed to connect several pyrotechnic initiators 12 to the same output 18.
  • the outputs are interposed 18 concerned and the initiators 12 scheduled to be connected to these outputs of the second dividing couplers optics 20.
  • each of the second optical splitter couplers 20 has one input single, which is connected to one of the outputs 18 of the corresponding control center 10 by a first fiber optic 14, as well as several outputs each of which is connected to one of the pyrotechnic initiators 12 by a corresponding optical fiber 14.
  • the second optical splitter couplers 20 used in the installation can be all identical or different types. Their number of outputs is for example, between 4 and 12.
  • the pyrotechnic initiators 12 are optically controlled detonators, capable of controlling the initiation of explosive charges placed in holes drilled in the structures of the structure to demolish.
  • Optically controlled detonators can be constituted as appropriate either by detonators to classic delays to which an entry has been adapted optical, either by existing opto-detonators designed for the space industry such as those who are described, for example, in documents FR-A-2 615 609 and FR-A-2 646 901.
  • each of the control units 10 comprises a laser source power supply circuit 16.
  • This electrical supply circuit comprises, in series between an input connector able to be connected to an external source (not shown) and the source laser 16, a safety switch 24, a low voltage / high voltage converter 26, as well a switch 28 for controlling the laser source 16.
  • this supply circuit is connected to the external electrical power source, setting work of the laser source 16 supposes the closing of each of switches 24 and 28.
  • the laser beam emitted by the laser source 16 during its implementation is transmitted to the input of the optical splitter coupler 22 by an optical adaptation 30.
  • a retractable shutter 32 is placed on the way optic which connects the laser source 16 to the input of the optical splitter coupler 22.
  • This shutter retractable 32 is controlled by a motor 34 which allows to move it between a retracted passive position, in which the shutter 32 is not placed on the aforementioned optical path, and an active position shutter, shown in Figure 2, in which the shutter is placed on this optical path.
  • the retractable shutter 32 and the switch security 24 constitute two security organs eliminating any risk of inadvertent ignition by following an unexpected closing of the command 28.
  • the retractable shutter 32 has a face tilted reflective 32a, turned towards optics adaptation 30 when the shutter occupies its position active shutter.
  • This inclined reflecting face 32a of the retractable shutter 32 constitutes means of dismissal, likely to direct towards the entry of optical splitter coupler 22 a light beam entering the control unit 10 through a auxiliary control input (not shown) or, at otherwise, direct to this auxiliary input of controls a light beam coming from one or many of the lines formed by optical fibers 14.
  • the measurement can be carried out in injecting a known power from the end of the supposedly faulty line, using possibly a conventional reflectrometry means placed opposite the auxiliary input. Possible fault can thus be located since each line is independent in the direction of its end towards the control unit 10.
  • the auxiliary control input can also be used by the operator making the connection these pyrotechnic initiators 12, to verify that it this is the right line, by simple visualization a light source 36 ( Figure 2) placed opposite the auxiliary control input and selected in the visible domain.
  • each of the control units 10 has a secondary optical input 40 and deflection means for directing a beam additional laser to the input of the splitter coupler optics 22, through the adaptation optics 30, in the case where the laser source 16 of this central command would be faulty.
  • the secondary optical input 40 is provided an appropriate adaptation lens and the means to return include a fixed return member such as a mirror 42, as well as a movable deflection member such than a mirror 44.
  • the movable return member 44 is controlled by a motor 46 which allows it to be moved between a position passive retracted ( Figure 2) and a position active. In this latter position, the mobile deflection 44 directs the additional laser beam, which enters the control center 10 by its secondary input 40, towards the input of the splitter coupler optics 22. More precisely, the laser beam additional entering the control unit 10 through secondary input 40 is returned by the device fixed return 42 to the return device mobile 44 and the latter is interposed between the output the laser source 16 and the retractable shutter 32, when placed in its active position.
  • the entire installation also includes an additional laser source 48 (FIG. 1) common to all groups, and can be used when of a shot if the laser source 16 of one of the central 10 is faulty. To this end, the additional laser source 48 is brought in front of the secondary optical input 40 of the central corresponding command.
  • This second embodiment stands out essentially from the first by the nature of laser sources, which consist of diodes laser 16. Since the power and energy delivered by a laser diode are significantly lower to those issued by a source pumped solid rod laser, as in the first described embodiment, in this case we use a separate laser source for each pyrotechnic initiator 12 and the presence of dividing couplers optics is excluded.
  • the installation is formed of a certain number of independent groups each comprising a control unit 10 with several outputs 18, pyrotechnic initiators 12, and optical fibers 14 connecting outputs 18 of each central command to the pyrotechnic initiators 12. More specifically, the number of outputs 18 is equal in this case to that of the pyrotechnic initiators 12 and a fiber optics 14 connects each of the outputs individually 18 to one of the pyrotechnic initiators 12.
  • each of the control units 10 comprises as many laser diodes 16 as outputs 18, the beam laser from each diode being directed towards a corresponding output.
  • all the diodes laser 16 are electrically connected in parallel in an electrical supply circuit intended to be connected to an external power source low voltage, illustrated at 49 in Figure 3.
  • a control switch 28 is mounted in series on each of the laser diodes 16, upstream of these.
  • the electrical circuit includes N branches parallel successively including a switch control 28 and a laser diode 16. Inside the control unit 10, all these branches are connected on a common power line which includes a safety switch 24. Downstream, the different parallel branches are connected on a return line 25 which loops the circuit towards the source low voltage power supply 49.
  • the safety switch 24, the switch 28 corresponding to this diode and the laser diode itself are connected in series.
  • each of the laser diodes 16 is controlled so independent by a separate control switch 28. There are therefore as many control switches as pyrotechnic initiators 12 to be ordered. This presents the advantage of authorizing the order of updates completely free fire.
  • FIG. 5 shows a variant of the second embodiment of the invention, making it possible to reduce the number of control switches 28.
  • each control unit 10 always comprises as many laser diodes 16 as there are outputs 18.
  • the laser diodes 16 are electrically connected together so as to form a matrix of n rows and m columns.
  • the laser diodes 16 of each line are connected in series with a first switch 28a and the outputs of the laser diodes 16 of each column are interconnected and connected to a return line 25 including a second control switch 28b.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lasers (AREA)
  • Pyridine Compounds (AREA)
  • Liquid Crystal Substances (AREA)
  • Laser Beam Processing (AREA)
  • Disintegrating Or Milling (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Road Signs Or Road Markings (AREA)
  • Sanitary Device For Flush Toilet (AREA)

Description

Domaine technique
L'invention concerne une installation conçue pour assurer la démolition ou la destruction, à l'aide d'explosifs, de constructions telles que des immeubles, des bâtiments industriels, des ouvrages d'art, de roches et d'une manière générale de toute structure naturelle ou ayant fait l'objet d'une édification préalable (bâtiments, travaux publics, travaux souterrains, carrières, etc.).
Etat de la technique
Lorsque des constructions, ouvrages d'art, matériaux, etc. sont détruits à l'aide d'explosifs, un grand nombre de petites charges explosives est placé dans des trous forés dans les structures des ouvrages à démolir.
Actuellement, ces petites charges sont amorcées par des détonateurs électriques de moyenne ou haute intensité, qui sont mis à feu électriquement à l'aide d'exploseurs.
Plus précisément, afin de limiter les nuisances telles que les vibrations, le souffle, le bruit, etc., l'explosion globale est décomposée en une multitude de petites explosions espacées entre elles dans le temps.
A cet effet, on utilise habituellement des détonateurs électriques à micro-retard, groupés par séries (par exemple de vingt unités). Un espacement dans le temps (par exemple de 25 millièmes de seconde) est prévu entre chaque détonateur d'une même série.
On utilise aussi habituellement des exploseurs de type séquentiel, assurant la mise à feu de plusieurs lignes de détonateurs de façon espacée dans le temps. Plusieurs exploseurs séquentiels peuvent alors être accouplés.
Lorsqu'elles sont destinées à assurer la démolition d'un immeuble d'habitation, les installations existantes fonctionnant selon ce principe comprennent 1500 à 2000 détonateurs par tir. Du fai de l'espacement des explosions déclenchées par l'installation, le tir peut durer jusqu'à 3 à 4 secondes. Ce tir fait suite à des travaux de minage et d'amorçage préalables qui peuvent durer 3 à 4 jours, voire une semaine.
Avec les installations actuelles, des amorçages intempestifs ou des avaries peuvent se produire pendant toute la durée des travaux préalables de minage et d'amorçage.
Le principal risque d'amorçage intempestif résulte des courants vagabonds pouvant se produire autour des charges amorcées. Ces courants vagabonds peuvent avoir différentes origines telles que la foudre, et les courants provenant de réseaux électriques aériens ou situés dans le sol, les courants provenant d'installations électriques voisines en service (transformateurs électriques, lignes caténaires de chemins de fer ou de tramways, lampes d'éclairage etc.) et les courants naturels circulant en sous-sol dans le cas de forages de tunnels.
La mise à feu intempestive des charges peut aussi avoir pour origine l'utilisation d'appareils électroniques tels que des radios, des talkies-walkies, des téléphones portables, etc. à proximité de ces charges.
Une mise à feu intempestive des détonateurs peuvent aussi se produire lors du transport ou lors du stockage, par exemple en raison de courants vagabonds ou d'accidents d'origines diverses.
Etant donné que les travaux de minage peuvent durer 3 à 4 jours voire une semaine, il existe également un risque pour que des charges préalablement installées soient mises à feu de façon malintentionnée, à l'aide d'une simple pile électrique ou d'une batterie.
D'autre part, lorsque la construction à démolir concerne l'industrie nucléaire, comme c'est notamment le cas pour la démolition d'une centrale nucléaire, les installations de démolition existantes à mise à feu électrique ne peuvent être utilisées, compte tenu des perturbations qui existent dans un milieu radioactif intense.
Les installations de démolition existantes à mise à feu électrique sont également sujettes à des ratés qui peuvent affecter le travail de démolition. Ces ratés ont notamment pour origine des fils électriques coupés ou en contact avec des masses métalliques telles que des grillages de protection, des équipements métalliques des immeubles à démolir, etc.. Lorsque la construction à démolir est un important ouvrage métallique tel qu'une centrale thermique, les ratés peuvent aussi avoir pour origine des champs électriques produits par l'énorme masse de ferraille du bâtiment.
En outre, les détonateurs électriques utilisés dans les installations de démolition existantes peuvent être volés et facilement réutilisés aussi bien lors de leur transport ou de leur stockage qu'après leur mise en place dans la construction à démolir.
Enfin, il est à noter que lorsqu'une telle installation de démolition présente des anomalies dans les circuits, ces anomalies sont très longues et dangereuses à détecter. En effet, s'il est possible de savoir quelle ligne est défectueuse, l'endroit exact de la rupture du circuit, ne peut être connu avec précision.
Le document US-A-5 206 455 décrit un système apte à détruire un lanceur, en cas de dysfonctionnement. Des diodes laser ou des sources laser à barreau solide pompé sont utilisées pour mettre à feu des initiateurs pyrotechniques de charges, au travers de câbles à fibres optiques.
Le document US-A-5 031 187 propose de réaliser un réseau plan de diodes laser agencées en matrice, de façon à pouvoir être commandées sélectivement.
Expose de l'invention
L'invention a précisément pour objet une installation de démolition, dont la conception originale lui permet de supprimer tous les inconvénients des installations existantes à commande électrique, en éliminant notamment tout risque de mise à feu accidentelle ou malintentionnée, aussi bien lors des travaux de minage et d'amorçage que lors du stockage et du transport préalables des composants de l'installation, lorsque ladite installation est appliquée à la démolition de bâtiments ou de structures naturelles.
Conformément à l'invention, ce résultat est obtenu au moyen d'une application à la démolition de bâtiments ou de structure naturelles, d'une installation comprenant au moins deux groupes indépendants de composants, incluant chacun :
  • une centrale de commande à plusieurs sorties, comportant au moins une source laser et au moins un interrupteur de commande de ladite source laser, dont une fermeture provoque l'émission, par la source laser, d'un premier faisceau laser à au moins l'une desdites sorties ;
  • des initiateurs pyrotechniques à commande optique, disposés en des emplacements déterminés d'une structure à détruire ; et
  • des fibres optiques reliant chacun des initiateurs pyrotechniques à l'une des sorties de la centrale de commande.
Dans une installation ainsi conçue, la mise à feu des initiateurs pyrotechniques s'effectue uniquement par voie optique au travers des fibres optiques. Cette mise à feu est donc totalement insensible aux courants vagabonds. Cela procure une sécurité optimale, notamment lorsque la construction à démolir est située dans ou à proximité de postes électriques, ou sous des lignes caténaires. D'autre part, un temps orageux est sans influence sur l'avancement et la sécurité des travaux.
La caractéristique précitée permet également de démolir sans risque des constructions situées dans des grands centres urbains, malgré le grand nombre d'appareils électroniques présents dans ces centres.
Par ailleurs, une mise à feu déclenchée par des personnes malintentionnées est exclue, car il faudrait que ces personnes possèdent un laser et que celui-ci soit compatible avec la fréquence précise du laser employé dans l'installation.
Etant donné que la commande de mise à feu s'effectue par voie optique, aucune masse métallique ne peut perturber l'amorçage. La sécurité pendant le transport et pendant le stockage des composants est également assurée.
De plus, les détonateurs à commande optique ne peuvent être utilisés en cas de vol.
Enfin, un calculateur permet de déterminer aisément l'endroit d'une rupture éventuelle dans les fibres optiques.
Dans une première forme de réalisation de l'invention, les sources laser sont des sources à barreau solide pompé, fonctionnant en mode relaxé. Chaque centrale de commande comprend alors une seule source laser et un premier coupleur diviseur optique présentant une entrée optique primaire apte à recevoir le faisceau laser émis par la source laser et plusieurs sorties formant les sorties de la centrale de commande.
Dans chacun des groupes, au moins certaines des fibres optiques relient alors plusieurs initiateurs pyrotechniques à l'une des sorties de la centrale de commande au travers d'au moins un deuxième coupleur diviseur optique.
Avantageusement, chaque centrale de commande comprend une entrée optique secondaire et des premiers moyens de renvoi aptes à diriger vers l'entrée du premier coupleur diviseur optique un faisceau laser supplémentaire pénétrant dans la centrale de commande par son entrée optique secondaire. Une source laser supplémentaire commune à tous les groupes est alors prévue, de façon à émettre le faisceau laser supplémentaire, lorsque cela s'avère nécessaire par suite d'une défaillance de la source laser de l'une des centrales de commande.
Chaque centrale de commande peut aussi comprendre une entrée auxiliaire de contrôle et des deuxièmes moyens de renvoi, aptes à établir un trajet optique dérivé entre l'entrée auxiliaire du contrôle et l'entrée du coupleur diviseur optique de cette centrale de commande. Cet agencement permet notamment de contrôler l'intégrité des fibres optiques au moyen d'une source de lumière visible placée devant l'entrée auxiliaire de contrôle.
Chaque centrale de commande comprend ce préférence un obturateur escamotable apte à être placé entre la source laser et l'entrée du coupleur diviseur optique.
Les deuxièmes moyens de renvoi sont formés sur cet obturateur escamotable, lorsque celui-ci occupe une position active d'obturation.
Chaque centrale de commande peut aussi comprendre un interrupteur de sécurité monté en série avec l'interrupteur de commande de la source laser.
Dans une deuxième forme de réalisation de l'invention, les sources laser sont des diodes laser. Chaque centrale de commande comprend alors autant de diodes laser que de sorties et chaque diode laser est reliée optiquement à l'une de ces sorties.
Dans cette deuxième forme de réalisation de l'invention, chacune des diodes laser peut être montée en série avec un interrupteur de commande distinct dans chacune des centrales de commande. Dans ce cas, un interrupteur commun de sécurité est monté en série avec toutes les diodes laser de chaque centrale de commande.
En variante, dans chacune des centrales de commande, les diodes laser forment une matrice de n lignes et m colonnes, les diodes laser de chaque ligne étant montées en série avec un premier interrupteur de commande et les sorties des diodes laser de chaque colonne étant reliées à un deuxième interrupteur de commande.
Brève description des dessins
On décrira à présent, à titre d'exemples non limitatifs, différentes formes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels :
  • la figure 1 représente schématiquement une installation de démolition de constructions, illustrant une première forme de réalisation de l'invention ;
  • la figure 2 représente schématiquement les éléments constitutifs de l'un ces blocs de commande de l'installation de la figure 1 ;
  • la figure 3 est une vue schématique comparable à la figure 1, illustrant une deuxième forme de réalisation de l'invention ;
  • la figure 4 est une vue qui représente schématiquement une première réalisation possible d'une centrale de commande dans l'installation de la figure 3 ; et
  • la figure 5 est une vue comparable à la figure 4, illustrant schématiquement une variante de réalisation d'une centrale de commande équipant l'installation de la figure 3.
Description de formes de réalisation préférées de l'invention
Dans la première forme de réalisation de l'invention illustrée sur les figures 1 et 2, l'installation de démolition comprend plusieurs groupes totalement indépendants, comprenant chacune une centrale de commande 10, un certain nombre d'initiateurs pyrotechniques 12 à commande optique, ainsi que des fibres optiques 14 reliant chacun des initiateurs pyrotechniques 12 à l'une ces sorties 18 de la centrale de commande 10 du groupe corresoondant.
Sur la figure 1, on a représenté seulement deux groupes indépendants d'une installation de démolition conforme à l'invention. Dans la pratique, le nombre de groupes indépendants de l'installation n'est pas limité et peut être un nombre quelconque supérieur ou égal à 2. Par convention, on appelle K le nombre de groupes indépendants de l'installation.
Chacune des centrales de commande 10 comprend dans ce cas une seule source laser 16, constituée par une source laser à barreau solide pompé, fonctionnant en mode relaxé, c'est-à-dire sans déclenchement à l'aide de cellules de Pockels ou de tout autre moyen similaire. Les caractéristiques d'une telle source laser sont celles d'un train d'impulsions relativement long (environ 150 µs), capable de délivrer une puissance instantanée de l'ordre de quelques dizaines de kilowatts optiques.
Ce niveau de puissance des sources laser 16 autorise la division du faisceau laser , successivement à l'intérieur même de chaque centrale de commande 10, puis éventuellement en aval de cette centrale.
A l'intérieur de chacune des centrales de commande 10 et comme l'illustre plus précisément la figure 2, la division du faisceau laser est assurée par un premier coupleur diviseur optique 22. Ce premier coupleur diviseur optique 22 présente une entrée unique, située sur le chemin optique de la source laser 16, de façon à recevoir le faisceau laser émis par cette source. Le coupleur diviseur optique 22 comprend également N sorties formant les sorties 18 de la centrale de commande 10.
Dans la pratique, le nombre des sorties 18 de chacune des centrales de commande 10 est compris, par exemple, entre quatre et douze. Il est à noter que le nombre de sorties 18 des centrales de commande 10 de chacun des groupes peut être identique ou différent d'un groupe à l'autre, sans sortir du cadre de l'invention.
Comme on l'a représenté schématiquement et seulement de façon partielle sur la figure 1, les fibres optiques 14 permettent de relier chacune des sorties 18 des centrales de commande 10 selon le cas à un ou plusieurs des initiateurs pyrotechniques 12 du groupe considéré.
Ainsi, on a représenté dans le haut de la figure 1 le cas d'un initiateur pyrotechnique 12 dont l'entrée optique est reliée directement à l'une ces sorties 18 de la centrale de commande 10 correspondante par une fibre optique 14, sans qu'aucun organe ne soit interposé sur le trajet de la fibre optique.
Au contraire, toutes les autres liaisons représentées entre les sorties des centrales de commande 10 et les entrées optiques des initiateurs pyrotechniques 12 sont conçues de façon à relier plusieurs initiateurs pyrotechniques 12 à une même sortie 18. A cet effet, on interpose entre les sorties 18 concernées et les initiateurs 12 prévus pour être reliés à ces sorties des deuxièmes coupleurs diviseurs optiques 20.
De façon plus précise, chacun des deuxièmes coupleurs diviseurs optiques 20 présente une entrée unique, qui est reliée à l'une des sorties 18 de la centrale de commande 10 correspondante par une première fibre optique 14, ainsi que plusieurs sorties dont chacune est reliée à l'un des initiateurs pyrotechniques 12 par une fibre optique correspondante 14.
Les deuxièmes coupleurs diviseurs optiques 20 utilisés dans l'installation peuvent être tous identiques ou de types différents. Leur nombre de sorties est compris, par exemple, entre 4 et 12.
En choisissant le nombre des sorties des coupleurs diviseurs 22 et 20, on doit veiller à ce que la puissance et l'énergie acheminées à chacun des initiateurs pyrotechniques 12 soit suffisante pour en assurer la mise à feu. En effet, la puissance et l'énergie acheminées dépendent des caractéristiques de la source laser 16 contenue dans la centrale de commande 10 et de l'atténuation totale découlant de la mise en cascade de plusieurs coupleurs diviseurs sur la ou les voies considérées.
Cette observation est confirmée par l'expression approchée de la puissance PD (en dBω) disponible pour un initiateur 12 quelconque, qui est donnée par la formule suivante, dans le cas d'un groupe comprenant une centrale de commande à N sorties 18 et un deuxième coupieur diviseur optique 20 à M sorties interposé entre l'une des sorties de la centrale de commande 10 et l'initiateur pyrotechnique 12 considéré : PD = PS + 10 log 1N + 10 log 1X + Σ,
  • PS représente la puissance délivrée par la source laser (en dBω) et
  • Σ représente la somme des pertes imputables à la liaison optique et aux coupleurs optiques.
Les initiateurs pyrotechniques 12 sont des détonateurs à commande optique, aptes à commander l'amorçage de charges explosives mises en place dans des trous forés dans les structures de la structure à démolir. Les détonateurs à commande optique peuvent être constitués selon le cas soit par des détonateurs à retard classiques auxquels on a adapté une entrée optique, soit par des opto-détonateurs existants conçus pour l'industrie spatiale tels que ceux qui sont décrits, par exemple, dans les documents FR-A-2 615 609 et FR-A-2 646 901.
Dans l'architecture de l'installation de démolition ainsi conçue, tous les initiateurs d'un même groupe sont mis à feu simultanément. En revanche, l'indépendance entre les groupes permet de les commander séparément avec des retards programmés. De même, il est ainsi possible d'assurer une redondance des initiateurs pyrotechniques en plaçant en des emplacements voisins des initiateurs appartenant à des groupes différents.
Comme l'illustre plus précisément la figure 2, chacune des centrales de commande 10 comprend un circuit d'alimentation électrique de la source laser 16. Ce circuit d'alimentation électrique comprend, en série entre un connecteur d'entrée apte à être raccordé à une source extérieure (non représentée) et la source laser 16, un interrupteur de sécurité 24, un convertisseur basse tension/haute tension 26, ainsi qu'un interrupteur 28 de commande de la source laser 16. Lorsque ce circuit d'alimentation est relié à la source d'alimentation électrique extérieure, la mise en oeuvre de la source laser 16 suppose la fermeture de chacun des interrupteurs 24 et 28.
Le faisceau laser émis par la source laser 16 lors de sa mise en oeuvre est transmis à l'entrée du coupleur diviseur optique 22 par une optique d'adaptation 30.
En amont de l'optique d'adaptation 30, un obturateur escamotable 32 est placé sur le chemin optique qui relie la source laser 16 à l'entrée du coupleur diviseur optique 22. Cet obturateur escamotable 32 est commandé par un moteur 34 qui permet de le déplacer entre une position passive escamotée, dans laquelle l'obturateur 32 n'est pas placé sur le chemin optique précité, et une position active d'obturation, représentée sur la figure 2, dans laquelle l'obturateur est placé sur ce chemin optique.
L'obturateur escamotable 32 et l'interrupteur de sécurité 24 constituent deux organes de sécurité supprimant tout risque de mise à feu intempestive par suite d'une fermeture inopinée de l'interrupteur de commande 28.
Comme l'illustre schématiquement la figure 2, l'obturateur escamotable 32 présente une face réfléchissante inclinée 32a, tournée vers l'optique d'adaptation 30 lorsque l'obturateur occupe sa position active d'obturation. Cette face réfléchissante inclinée 32a de l'obturateur escamotable 32 constitue des moyens de renvoi, susceptibles de diriger vers l'entrée du coupleur diviseur optique 22 un faisceau lumineux pénétrant dans la centrale de commande 10 par une entrée auxiliaire de contrôle (non représentée) ou, au contraire, de diriger vers cette entrée auxiliaire de contrôle un faisceau lumineux en provenance d'une ou plusieurs des lignes formées par les fibres optiques 14.
Cet agencement permet de contrôler, de différentes manières, l'intégrité de l'installation. Ainsi, une puissance connue, limitée, peut être injectée par l'entrée auxiliaire de contrôle. La mesure de la fraction restituée sur chacune des sorties optiques peut alors être comparée au calcul prévisionnel pour effectuer un premier contrôle.
A l'inverse, la mesure peut être effectuée en injectant une puissance connue à partir de l'extrémité de la ligne supposée défaillante, en utilisant éventuellement un moyen de réflectrométrie classique placé en face de l'entrée auxiliaire. Un éventuel défaut peut ainsi être localisé puisque chaque ligne est indépendante dans le sens de son extrémité vers le bloc de commande 10.
L'entrée auxiliaire de contrôle peut en outre être utilisée par l'opératour effectuant la connexion ces initiateurs pyrotechniques 12, pour vérifier qu'il s'agit de la bonne ligne, par simple visualisation d'une source lumineuse 36 (figure 2) placée en face de l'entrée auxiliaire de contrôle et choisie dans le domaine du visible.
En outre, chacune des centrales de commande 10 est munie d'une entrée optique secondaire 40 et de moyens de renvoi permettant de diriger un faisceau laser supplémentaire vers l'entrée du coupleur diviseur optique 22, au travers de l'optique d'adaptation 30, dans le cas où la source laser 16 de cette centrale de commande serait défaillante.
Comme on l'a illustré schématiquement sur la figure 2, l'entrée optique secondaire 40 est munie d'une optique d'adaptation appropriée et les moyens de renvoi comprennent un organe de renvoi fixe tel qu'un miroir 42, ainsi qu'un organe de renvoi mobile tel qu'un miroir 44.
L'organe de renvoi mobile 44 est commandé par un moteur 46 qui permet de le déplacer entre une position passive escamotée (figure 2) et une position active. Dans cette dernière position, le dispositif de renvoi mobile 44 dirige le faisceau laser supplémentaire, qui pénètre dans la centrale de commande 10 par son entrée secondaire 40, vers l'entrée du coupleur diviseur optique 22. Plus précisément, le faisceau laser supplémentaire rentrant dans la centrale de commande 10 par l'entrée secondaire 40 est renvoyé par le dispositif de renvoi fixe 42 vers le dispositif de renvoi mobile 44 et ce dernier est interposé entre la sortie de la source laser 16 et l'obturateur escamotable 32, lorsqu'il est placé dans sa position active.
L'ensemble de l'installation comprend en outre une source laser supplémentaire 48 (figure 1) commune à tous les groupes, et susceptible d'être utilisée lors d'un tir si la source laser 16 de l'une des centrales de commande 10 s'avère défaillante. A cet effet, la source laser supplémentaire 48 est amenée en face de l'entrée optique secondaire 40 de la centrale de commande 10 correspondante.
On décrira à présent, en se référant aux figures 3 à 5, une deuxième forme de réalisation de l'invention.
Cette deuxième forme de réalisation se distingue essentiellement de la première par la nature des sources laser, qui sont constituées par des diodes laser 16. Etant donné que la puissance et l'énergie délivrées par une diode laser sont sensiblement inférieures à celles qui sont délivrées par une source laser à barreau solide pompé, comme dans la première forme de réalisation décrite, on utilise dans ce cas une source laser distincte pour chaque initiateur pyrotechnique 12 et la présence de coupleurs diviseurs optiques est exclue.
Comme l'illustre la figure 3, l'architecture générale de l'installation reste toutefois très proche de celle décrite précédemment en se référant à la figure 1. Ainsi, l'installation est formée d'un certain nombre de groupes indépendants comprenant chacun une centrale de commande 10 à plusieurs sorties 18, des initiateurs pyrotechniques 12, et des fibres optiques 14 reliant les sorties 18 de chaque centrale de commande aux initiateurs pyrotechniques 12. Plus précisément, le nombre des sorties 18 est égal dans ce cas à celui des initiateurs pyrotechniques 12 et une fibre optique 14 relie individuellement chacune des sorties 18 à l'un des initiateurs pyrotechniques 12.
Dans la solution de base de cette deuxième forme de réalisation de l'invention, illustrée sur la figure 4, chacune des centrales de commande 10 comprend autant de diodes laser 16 que de sorties 18, le faisceau laser issu de chaque diode étant dirigé vers une sortie correspondante. Par ailleurs, toutes les diodes laser 16 sont montées électriquement en parallèle dans un circuit électrique d'alimentation prévu pour être connecté à une source extérieure d'alimentation électrique basse tension, illustrée en 49 sur la figure 3.
Plus précisément, un interrupteur de commande 28 est monté en série sur chacune des diodes laser 16, en amont de celles-ci. En d'autres termes, si l'on désigne par N le nombre de sorties 18 de la centrale de commande 10, le circuit électrique comprend N branches parallèles incluant successivement un interrupteur de commande 28 et une diode laser 16. A l'intérieur de la centrale de commande 10, toutes ces branches sont raccordées sur une ligne d'alimentation commune qui comprend un interrupteur de sécurité 24. En aval, les différentes branches parallèles sont raccordées sur une ligne de retour 25 qui boucle le circuit vers la source d'alimentation électrique basse tension 49.
Pour chacune des diodes laser 16 considérée individuellement, l'interrupteur de sécurité 24, l'interrupteur de commande 28 correspondant à cette diode et la diode laser elle-même sont montés en série.
Dans l'architecture illustrée sur la figure 4, chacune des diodes laser 16 est commandée de façon indépendante par un interrupteur de commande 28 séparé. Il y a donc autant d'interrupteurs de commande que d'initiateurs pyrotechniques 12 à commander. Cela présente l'avantage d'autoriser la commande des mises à feu de manière totalement libre.
Sur la figure 5, on a représenté une variante de la deuxième forme de réalisation de l'invention, permettant de réduire le nombre des interrupteurs de commande 28. Dans ce cas, chaque centrale de commande 10 comprend toujours autant de diodes laser 16 que de sorties 18. Toutefois, au lieu d'être montées sur des branches parallèles séparées dans le circuit électrique, les diodes laser 16 sont connectées électriquement entre elles de façon à former une matrice de n lignes et m colonnes.
Plus précisément, les diodes laser 16 de chaque ligne sont montées en série avec un premier interrupteur de commande 28a et les sorties des diodes laser 16 de chaque colonne sont reliées entre elles et connectées à une ligne de retour 25 incluant un deuxième interrupteur de commande 28b.
Dans cet agencement, il est possible ce commander individuellement les diodes laser 16 de la colonne la plus à gauche en fermant l'interrupteur 28a de la ligne correspondante et l'interrupteur 28b raccordé sur la sortie de cette colonne. En revanche, la commande individuelle des diodes laser 16 situées dans les autres colonnes n'est pas possible. Ainsi, La commande d'une diode laser quelconque de la matrice ne peut se fait qu'en commandant simultanément toutes les diodes laser situées sur la même ligne et en amont, c'est-à-dire à gauche de la diode laser considérée sur la figure 5.
L'agencement qui vient d'être décrit en se référant à la figure 5 a toutefois pour avantage de réduire sensiblement le nombre d'interrupteurs de commande, puisqu'au lieu d'être égal au nombre total des diodes (par exemple, environ 100 pour chaque groupe) il est égal dans ce cas à la somme du nombre de lignes et du nombre de colonnes de la matrice de diodes laser (par exemple, environ 20).
Dans la deuxième forme de réalisation qui vient d'être décrite en se référant aux figures 3 à 5, une défaillance supposée de l'une des lignes peut être détectée depuis l'extrémité de celle-ci, au moyen de dispositifs ce contrôle conventionnels (réflectrométrie, échométrie).

Claims (12)

  1. Application à la démolition de bâtiments ou de structures naturelles d'une installation comprenant au moins deux groupes indépendants de composants, incluant chacun :
    une centrale de commande (10) à plusieurs sorties (18), comportant au moins une source laser (16) et au moins un interrupteur (28) de commande de ladite source laser, dont une fermeture provoque l'émission, par la source laser, d'un premier faisceau laser à au moins l'une desdites sorties (18) ;
    des initiateurs pyrotechniques (12) à commande optique, disposés en des emplacements déterminés d'une structure à détruire ; et
    des fibres optiques (14) reliant chacun des initiateurs (12) pyrotechniques à l'une des sorties (18) de la centrale de commande (10).
  2. Application selon la revendication 1, dans laquelle les sources laser (16) sont des sources à barreau solide pompé, fonctionnant en mode relaxé, chaque centrale de commande (10) comprenant une seule source laser et un premier coupleur diviseur optique (22) présentant une entrée optique primaire (30) apte à recevoir le faisceau laser émis par la source laser, et plusieurs sorties formant les sorties (18) de la centrale de commande (10).
  3. Application selon la revendication 2, dans laquelle, dans chacun des groupes, au moins certaines des fibres optiques (14) relient plusieurs initiateurs pyrotechniques (12) à l'une des sorties de la centrale de commande (10) au travers d'au moins un deuxième coupleur diviseur optique (20).
  4. Application selon l'une quelconque des revendications 2 et 3, dans laquelle chaque centrale de commande (10) comprend une entrée optique secondaire (40) et des premiers moyens de renvoi (42,44) aptes à diriger un faisceau laser supplémentaire pénétrant dans la centrale de commande par son entrée optique secondaire (40), vers l'entrée optique primaire (30) du premier coupleur diviseur optique (22) de cette centrale de commande, une source laser supplémentaire (48) commune à tous les groupes étant apte à émettre ledit faisceau laser supplémentaire.
  5. Application selon l'une quelconque des revendications 2 à 4, dans laquelle chaque centrale de commande (10) comprend une entrée auxiliaire de contrôle et des deuxièmes moyens de renvoi (32), aptes à établir un trajet optique dérivé entre l'entrée auxiliaire de contrôle et l'entrée optique primaire (30) du coupleur diviseur optique (22) de cette centrale de commande.
  6. Application selon l'une quelconque des revendications 2 à 5, dans laquelle chaque centrale de commande (10) comprend un obturateur escamotable (32), apte à être placé entre la source laser (16) et l'entrée optique primaire (30) du coupleur diviseur optique (22).
  7. Application selon les revendications 5 et 6 combinées, dans laquelle les deuxièmes moyens de renvoi sont formés sur l'obturateur escamotable (32) lorsque ce dernier occupe une position active d'obturation.
  8. Application selon l'une quelconque des revendications 2 à 7, dans laquelle chaque centrale de commande (10) comprend un interrupteur de sécurité (24) monté en série avec l'interrupteur (28) de commande de la source laser (16).
  9. Application selon la revendication 1, dans laquelle les sources laser sont des diodes laser (16), chaque centrale de commande (10) comprenant autant de
  10. Application selon la revendication 9, dans laquelle, dans chacune des centrales de commande (10), chaque diode laser (16) est montée en série avec un interrupteur (28) de commande distinct.
  11. Application selon la revendication 10, dans laquelle un interrupteur commun de sécurité (24) est monté en série avec toutes les diodes laser (16) de chaque centrale de commande (10).
  12. Application selon la revendication 9, dans laquelle, dans chacune des centrales de commande (10), les diodes laser (16) forment une matrice de n lignes et m colonnes, les diodes laser de chaque ligne étant montées en série avec un premier interrupteur (28a) de commande et les sorties des diodes laser de chaque colonne étant connectées à un deuxième interrupteur (28b) de commande.
EP99400012A 1998-01-07 1999-01-05 Application optopyrotechnique de démolition d'une installation. Expired - Lifetime EP0928947B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9800084 1998-01-07
FR9800084A FR2773394B1 (fr) 1998-01-07 1998-01-07 Installation optopyrotechnique de demolition

Publications (2)

Publication Number Publication Date
EP0928947A1 EP0928947A1 (fr) 1999-07-14
EP0928947B1 true EP0928947B1 (fr) 2003-08-06

Family

ID=9521567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400012A Expired - Lifetime EP0928947B1 (fr) 1998-01-07 1999-01-05 Application optopyrotechnique de démolition d'une installation.

Country Status (8)

Country Link
US (1) US6199483B1 (fr)
EP (1) EP0928947B1 (fr)
JP (1) JP4184517B2 (fr)
AT (1) ATE246796T1 (fr)
DE (1) DE69910087T2 (fr)
ES (1) ES2205715T3 (fr)
FR (1) FR2773394B1 (fr)
PT (1) PT928947E (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662953A (zh) * 2018-04-13 2018-10-16 北京航天自动控制研究所 一种多路脉冲点火激光起爆系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021216B1 (en) * 1999-04-20 2006-04-04 Orica Explosives Technology Pty. Ltd. Method of and system for controlling a blasting network
CA2410874C (fr) * 2000-06-02 2009-04-14 Smi Technology (Pty) Limited Systeme a double redondance pour detonateurs electriques
US6460460B1 (en) * 2000-06-29 2002-10-08 University Of Maryland Laser-activated grenade with agile target effects
SE0100864L (sv) * 2001-03-14 2002-09-03 Bofors Bepab Ab Sätt och anordning för initiering av explosivämnesladdningar
US6718881B2 (en) * 2001-09-07 2004-04-13 Alliant Techsystems Inc. Ordnance control and initiation system and related method
US7201103B1 (en) 2002-02-25 2007-04-10 Bofors Bepab Ab Method for initiation and ignition of explosive charges through self-destruction of a laser source
FR2864217B1 (fr) * 2003-12-19 2008-02-08 Tda Armements Sas Dispositif de mise a feu optique notamment pour la protection active de vehicules.
PE20060926A1 (es) 2004-11-02 2006-09-04 Orica Explosives Tech Pty Ltd Montajes de detonadores inalambricos, aparatos de voladura correspondientes y metodos de voladura
MX2018005443A (es) * 2015-11-09 2018-08-01 Detnet South Africa Pty Ltd Detonador inalambrico.
US11209257B2 (en) * 2019-12-12 2021-12-28 Northrop Grumman Systems Corporation Voltage polarity immunity using reverse parallel laser diodes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618526A (en) * 1969-09-26 1971-11-09 Us Navy Pyrotechnic pumped laser for remote ordnance initiation system
US3812783A (en) * 1972-08-03 1974-05-28 Nasa Optically detonated explosive device
US4391195A (en) * 1979-08-21 1983-07-05 Shann Peter C Detonation of explosive charges and equipment therefor
GB2055930B (en) * 1979-08-21 1983-03-16 Sightworth Ltd Detonation of explosive charges
GB2063964B (en) * 1979-08-21 1983-04-07 Sightworth Ltd Detonation of explosive charges
FR2615609B1 (fr) 1987-05-20 1991-12-20 Aerospatiale Dispositif d'amorcage photopyrotechnique et chaine photopyrotechnique utilisant ce dispositif
US4917014A (en) * 1989-04-24 1990-04-17 Kms Fusion, Inc. Laser ignition of explosives
FR2646901B1 (fr) 1989-05-12 1994-04-29 Aerospatiale Dispositif d'amorcage photopyrotechnique comportant une microlentille sertie par un materiau a memoire de forme et chaine pyrotechnique utilisant ce dispositif
US5031187A (en) * 1990-02-14 1991-07-09 Bell Communications Research, Inc. Planar array of vertical-cavity, surface-emitting lasers
US5206455A (en) * 1991-03-28 1993-04-27 Quantic Industries, Inc. Laser initiated ordnance systems
US5138946A (en) * 1991-06-21 1992-08-18 Mcdonnell Douglas Corporation Laser diode apparatus for initiation of explosive devices
US5204490A (en) * 1991-06-21 1993-04-20 Mcdonnell Douglas Corporation Laser diode apparatus for initiation of explosive devices
US5756924A (en) * 1995-09-28 1998-05-26 The Regents Of The University Of California Multiple laser pulse ignition method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108662953A (zh) * 2018-04-13 2018-10-16 北京航天自动控制研究所 一种多路脉冲点火激光起爆系统
CN108662953B (zh) * 2018-04-13 2020-03-24 北京航天自动控制研究所 一种多路脉冲点火激光起爆系统

Also Published As

Publication number Publication date
ES2205715T3 (es) 2004-05-01
JPH11248396A (ja) 1999-09-14
DE69910087T2 (de) 2004-04-15
EP0928947A1 (fr) 1999-07-14
FR2773394A1 (fr) 1999-07-09
FR2773394B1 (fr) 2000-02-11
ATE246796T1 (de) 2003-08-15
US6199483B1 (en) 2001-03-13
JP4184517B2 (ja) 2008-11-19
PT928947E (pt) 2003-12-31
DE69910087D1 (de) 2003-09-11

Similar Documents

Publication Publication Date Title
EP0928947B1 (fr) Application optopyrotechnique de démolition d'une installation.
US5206455A (en) Laser initiated ordnance systems
EP0292383B1 (fr) Dispositif d'amorçage photopyrotechnique et chaîne photopyrotechnique utilisant ce dispositif
FR2786262A1 (fr) Dispositif de protection active d'une paroi de vehicule ou de structure
WO2006111684A2 (fr) Dispositif de generation d'impulsions laser amplifiees par fibres optiques a couches photoniques
FR2478809A1 (fr) Mine antichar a grande surface d'action
RU91421U1 (ru) Комплекс оптико-электронной защиты-коэз
EP0148674A1 (fr) Dispositif et procédé de localisation de défauts de câbles
CA2080290A1 (fr) Dispositif d'amorcage pour charge explosive secondaire
FR2462715A1 (fr) Systeme de localisation de defaut pour circuit de transmission bidirectionnelle simultanee a repeteurs
RU2362270C2 (ru) Волоконно-оптическая система передачи для чрезвычайных ситуаций
FR3050815A1 (fr) Systeme d'allumage et dispositif d'entrainement mecanique associe
EP3552324B1 (fr) Réseau de communication embarqué optique en anneau pour aéronef
RU2684259C1 (ru) Способ и система инициирования зарядов
FR2523733A1 (fr) Dispositif pour la transmission et la distribution de rayonnement lumineux
FR2864217A1 (fr) Dispositif de mise a feu optique notamment pour la protection active de vehicules.
RU2107256C1 (ru) Способ инициирования зарядов
FR2835134A1 (fr) Methode de securisation d'un reseau de telecommunication optique en anneau ainsi que noeud de communication, noeud de communication a amplification et concentrateur de trafic d'un reseau securise de telecommunication optique en anneau
EP0353162B1 (fr) Système de largage de charges lourdes à partir d'aéronefs
Thompson Development of a Safe, Reliable, and Versatile Explosive Demolition Initiation System
WO1995000816A1 (fr) Chaine d'amorçage de securite pour charge explosive
Lien et al. Opto-pyrotechnics for space applications
GB2063964A (en) Detonation of explosive charges
EP0303539A1 (fr) Dispositif de selection et de déclenchement de circuit de mise à feu
BE859361R (fr) Installation pour faire exploser des corps tels que des roches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU MC PT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991217

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI LU MC PT

17Q First examination report despatched

Effective date: 20011005

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: OPTO-PYROTECHNIC DEMOLITION APPLICATION OF AN INSTALLATION.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE ES FR GB IT LI LU MC PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69910087

Country of ref document: DE

Date of ref document: 20030911

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2205715

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20101214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20110113

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20101230

Year of fee payment: 13

Ref country code: CH

Payment date: 20110124

Year of fee payment: 13

Ref country code: DE

Payment date: 20110121

Year of fee payment: 13

Ref country code: AT

Payment date: 20110113

Year of fee payment: 13

Ref country code: FR

Payment date: 20110202

Year of fee payment: 13

Ref country code: IT

Payment date: 20110126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110104

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110125

Year of fee payment: 13

Ref country code: GB

Payment date: 20110120

Year of fee payment: 13

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120705

BERE Be: lapsed

Owner name: S.A. *CARDEM DEMOLITION

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69910087

Country of ref document: DE

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120705

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 246796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105