EP0928365A1 - Steam turbine, steam turbine plant and method of cooling a steam turbine - Google Patents

Steam turbine, steam turbine plant and method of cooling a steam turbine

Info

Publication number
EP0928365A1
EP0928365A1 EP97943771A EP97943771A EP0928365A1 EP 0928365 A1 EP0928365 A1 EP 0928365A1 EP 97943771 A EP97943771 A EP 97943771A EP 97943771 A EP97943771 A EP 97943771A EP 0928365 A1 EP0928365 A1 EP 0928365A1
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
cooling fluid
steam turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97943771A
Other languages
German (de)
French (fr)
Other versions
EP0928365B1 (en
Inventor
Edwin Gobrecht
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0928365A1 publication Critical patent/EP0928365A1/en
Application granted granted Critical
Publication of EP0928365B1 publication Critical patent/EP0928365B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling

Definitions

  • the invention relates to a steam turbine with a steam inlet area, an exhaust steam area and an axially interposed blading area surrounded by a turbine housing.
  • the invention further relates to a method for cooling a steam turbine with a turbine housing.
  • DE-PS 324 204 describes a method and a device for cooling an idling steam or gas turbine.
  • An ejector connected to the steam flow line via a valve is specified for this cooling. This ejector draws steam through the inflow line in the opposite direction to the normal flow.
  • the extracted steam can be tapped or exhaust steam from a further turbine as well as wet or saturated fresh steam.
  • the US-PS 3,173,654 relates to a steam turbine with a high-pressure turbine and a double-flow low-pressure turbine, which is operated in stand-by mode.
  • a cooling system is provided, through which water is injected from the condenser into the partial turbine under high pressure through a large number of lines both in the low-pressure partial turbine and in the high-pressure partial turbine. This water evaporates completely and, since the vacuum pumps are in operation, is returned to the condenser.
  • the amount of water injected is regulated separately for each injection line as a function of the temperature in the partial turbines, using a corresponding valve.
  • the two above-mentioned documents therefore relate in each case to the cooling of idling or running in standby mode Steam turbines.
  • the cooling takes place exclusively via steam, which is either supplied directly or is created by evaporating water.
  • the two above documents therefore relate to a steam turbine in such a state in which externally generated heat is dissipated, this heat being generated by friction in a turbine running at an operating speed of, for example, 3000 rpm. If the heat were not removed, the temperature in the steam turbine would be far above the operating temperature.
  • a steam turbine in particular a high-pressure turbine or a medium-pressure turbine with upstream intermediate superheating, temperatures up to above 500 ° C. occur during a power operation.
  • the turbine housing and the turbine rotor and other turbine components such as live steam valve, quick-closing valve, turbine blade, etc., are heated to a high temperature.
  • the turbine rotor of each turbine can be rotated at a reduced speed for a predetermined period of time by means of a rotating device and the steam atmosphere can be evacuated via an evacuation device.
  • the object of the invention is to provide a steam turbine and a steam turbine system which can be rapidly cooled by means of forced cooling.
  • Another object of the invention is to provide a method for cooling a steam turbine.
  • the object directed to a steam turbine is achieved in that the turbine housing can be connected to a cooling fluid inlet for the inflow of cooling fluid, the cooling fluid inlet being closable and releasable by a sealing member, and a suction device for extracting cooling fluid from the turbine housing.
  • the cooling fluid inlet is preferably closed during normal power operation of the steam turbine, in which action steam enters the turbine into a steam inlet area, through which a blading area drives the turbine shaft and flows out of an exhaust area from the steam turbine.
  • cooling fluid inlet is released through the closure element, so that cooling fluid, in particular air, from the air atmosphere surrounding the steam turbine flows into the steam turbine.
  • the inflowing cooling fluid is sucked out of the turbine housing via a suction device, for example an evacuation device, which generates a vacuum.
  • the cooling fluid inlet is preferably a separate opening, for example an air inlet connector on the turbine, with a flow cross section which is dimensioned such that sufficient cooling fluid reaches the turbine for rapid cooling.
  • Several cooling fluid inlets can also be provided.
  • the closure member can be an opening blind flange, a valve or the like.
  • the closure member can be opened automatically, for example by a motor, via a first control unit, for example.
  • a manually opening closure member could also be used.
  • the suction device for example an evacuation unit, which serves to generate negative pressure in a condenser, is preferably connected to a control unit for controlling its suction power.
  • the control unit can also be used to automatically open a fluidic connection between the suction device and the turbine housing. In the case of a high-pressure steam turbine, a fluidic connection between the turbine housing and the suction device is preferably prevented during normal power operation.
  • the cooling fluid inlet is preferably connected to a steam feed opening into the steam inlet area.
  • the cooling fluid inlet is preferably connected to a control valve for regulating the amount of live steam, which also enables this control valve to cool after the steam turbine has finished operating.
  • the suction device is preferably connected to an outflow line opening into the evaporation area.
  • the outflow line can be shut off during the cooling process by a non-return valve, so that the entire amount of cooling fluid flowing through the steam turbine is passed through the suction device.
  • the suction device is preferably connected to a condenser, in particular the steam area of a condensate container. It is thus possible to use an evacuation device already used during power operation for cooling the steam turbine and other steam turbine components after shutdown, such as control valve, quick-closing valve etc., as the suction device. Such an evacuation device could be used, for example, to evacuate the steam space in the condensate container or to evacuate the steam atmosphere in the steam turbine after the power operation has ended.
  • each sub-turbine is cooled by the fact that cooling fluid, in particular air, flows into the housing of the respective sub-turbine via the respective cooling fluid inlet and is sucked out of the sub-turbine by the suction device, which is connected to both the sub-turbine and a condenser .
  • the suction device preferably generates a negative pressure which causes the cooling fluid, the air, to flow through the partial turbines and corresponding components, such as control valves and quick-closing valves.
  • the air absorbs heat in each turbine, which cools the turbine.
  • the suction device can be an evacuation unit which is used to evacuate the steam atmosphere in each turbine section immediately after the steam turbine system has been switched off.
  • the cooling of the partial turbines of the steam turbine system is thus possible without additional units, for example compressed air storage or a compressed air pump, cooling fluid inlets with a respective shut-off device and a limited number of lines for guiding the cooling fluid only being provided at desired locations.
  • the object directed to a method for cooling a steam turbine with a turbine housing is achieved in that, after the load has been switched off, a cooling fluid inlet is connected in terms of flow technology to the turbine housing and cooling fluid flowing in through the cooling fluid inlet, in particular air, is guided by means of a suction device with heat absorption through the turbine housing becomes.
  • a cooling fluid inlet is connected in terms of flow technology to the turbine housing and cooling fluid flowing in through the cooling fluid inlet, in particular air, is guided by means of a suction device with heat absorption through the turbine housing becomes.
  • Air inlets are opened on the high-pressure turbine and a medium-pressure turbine.
  • On the high-pressure turbine connecting pieces on the fresh steam side and a connecting line between the exhaust pipe of the high-pressure turbine and a condenser can be opened.
  • the condenser is connected to the evacuation units, so that air sucked in through the air inlet nozzle is sucked through the turbine blades and over the connecting line into the condenser. This causes the high pressure turbine to cool down.
  • nozzles can also be opened in the area of the steam inlet.
  • the air flowing in through the connecting pieces can be sucked into the condenser by the evacuation units via the medium-pressure blading and optionally a low-pressure turbine connected downstream.
  • the medium pressure wave and the medium internal and / or medium external pressure housing, the medium pressure blading, the control valve and the quick-closing valve of the medium pressure turbine are cooled. It is also possible to conduct the air via a corresponding connecting line from the exhaust steam area of the medium-pressure turbine, bypassing a downstream low-pressure turbine, to the condenser.
  • the high-pressure turbine and the medium-pressure turbine are preferably cooled to a temperature lower than 150 ° C.
  • the cooling process can be carried out on the basis of temperature measurement values which are determined within the steam turbine, for example by means of temperatures provided for the power operation. peraturmeß ⁇ tellen be checked. Depending on the progress of the cooling, the cooling process can be accelerated or slowed down by the suction power of the suction device.
  • the cooling process is carried out in such a way that predetermined maximum expansion differences, in particular between the turbine rotor and the inner and / or outer casing of the steam turbine, are not exceeded.
  • the figure shows, in a partially schematic and not to scale illustration, a steam turbine system 20 with a high-pressure sub-turbine 1 a and a medium-pressure sub-turbine 1 b in a longitudinal section. Further components of the steam turbine plant 20 are shown schematically for the sake of clarity.
  • the high-pressure sub-turbine 1 a has a steam inlet area 2, an exhaust steam area 3 and an axially intermediate blading area 4.
  • the control valve 17 has a cooling fluid inlet 7, into which an air line 18 opens.
  • the air line 18 there is a closure element 8, in particular a valve, which is connected to a first control unit 9.
  • the first control unit 9 enables the closure member 8 to be opened or closed, so that the cooling fluid inlet 7 can be released or closed for the inflow of cooling fluid 6, in particular air.
  • the closure member 8 is closed and during a tendon 11 Process opened so that cooling fluid 6 can flow into the control valve 17 during the latter.
  • the turbine rotor 26a is arranged inside the high-pressure housing 5a, which comprises an inner and outer housing which is not specified in any more detail.
  • An exhaust line 13 is connected to the exhaust steam area 3 and leads through an intermediate superheater 21 to the steam inlet area 2 of the medium-pressure sub-turbine 1b.
  • a non-return valve 22 is arranged downstream of the evaporation region 3 in the outflow line 13.
  • a connecting line 16a which leads to a condenser 14, opens into the outflow lines 13 between the evaporation area 3 and the backflow flap 22.
  • the connecting line 16a is closed by a closure element 8a during normal power operation of the high-pressure turbine section 16.
  • a combination of control valve 17 and quick-flow valve 24 is also arranged in a medium-pressure feed line 23 between steam inlet area 2 of medium-pressure sub-turbine 1b and intermediate-superheater 21. As already described above, an air line 18 leads into this combination into a cooling fluid inlet 7.
  • the medium-pressure turbine part 1b is designed with two passages and has a medium-pressure housing 5b comprising an unspecified inner and outer housing, in which the turbine runner 26b and a blading area 4 are arranged.
  • action steam (not shown) flows from the reheater 21 into a steam inlet area 2, divides into two areas in the blading area 4, comes from a respective exhaust steam area 3 into one or more discharge lines 13 which lead to one or more leads or lead low-pressure partial turbines not shown.
  • a connecting line 16b leads from the outflow lines 13 into the condenser 14.
  • a further line, not specified in more detail, also leads from a low-pressure partial turbine, not shown, into the condenser 14.
  • the connecting line 16b can be omitted, so that during a Cooling operation through the control valve 7 Cooling fluid 6 flowing into the medium-pressure sub-turbine reaches the condenser 14 via the low-pressure sub-turbine, not shown.
  • the condenser 14 is followed by a condensate container 25, which is connected via a suction line 15 to a suction device 10, for example an evacuation unit, a jet pump or the like.
  • the suction device 10 can be controlled in its suction power via a second control unit 11, so that in the cooling process the amount of air drawn in and thus the speed of the cooling can be adjusted.
  • a connecting line 16a, 16b without the cooling fluid 6 having to be passed through the condenser 14.
  • the invention is characterized by a forced cooling of a steam turbine after the end of the power operation, in which a cooling fluid inlet and a suction line are opened after the load has been switched off. Via a suction device connected to the suction line, air which flows into the steam turbine via the cooling fluid inlet is led out again with the absorption of heat.
  • existing components of the steam turbine such as, for example, evacuation units and steam lines, can be used. If necessary, only corresponding cooling fluid inlets (e.g. air inlet ports) and branches from existing steam discharge lines are to be provided in order to ensure forced air flow through the steam turbine.
  • the method enables rapid cooling, in particular a high-pressure steam turbine, in which cooling of up to 400 K can be achieved within 24 hours.

Abstract

The invention concerns a steam turbine (1) comprising a steam-inlet region (2), an exhaust steam region (3) and a blading region (4) which is disposed axially therebetween and is surrounded by a turbine housing (5). Further provided is a cooling fluid inlet (7) which can be closed and opened by a closure member (8) and through which the cooling fluid (6) can be introduced into the turbine housing (5). The introduced cooling fluid (6) can be discharged from the turbine housing (5) again via a suction device (10) for drawing off cooling fluid (6). The invention further concerns a steam turbine plant (20), and a method of cooling a steam turbine (1).

Description

Beschreibungdescription
Dampfturbine, Dampf urbinenanlage sowie Verfahren zur Abkühlung einer DampfturbineSteam turbine, steam turbine system and method for cooling a steam turbine
Die Erfindung betrifft eine Dampfturbine mit einem Dampfeinlaßbereich, einem Abdampfbereich und einem von einem Turbi- nengehäuεe umgebenen axial dazwischen angeordneten Beschaufe- lungsbereich. Die Erfindung betrifft weiterhin ein Verfahren zum Abkühlen einer Dampfturbine mit einem Turbinengehäuse.The invention relates to a steam turbine with a steam inlet area, an exhaust steam area and an axially interposed blading area surrounded by a turbine housing. The invention further relates to a method for cooling a steam turbine with a turbine housing.
In der DE-PS 324 204 ist ein Verfahren sowie eine Vorrichtung zur Kühlung einer leerlaufenden Dampf- oder Gasturbine beschrieben. Zur Durchführung dieser Kühlung ist ein mit der DampfStrömleitung über ein Ventil verbundener Ejektor angegeben. Durch diesen Ejektor wird Dampf entgegen der normalen Strömungsrichtung durch die Einströmleitung abgesaugt. Bei dem abgesaugten Dampf kann es sich um Anzapf- oder Abdampf einer weiteren Turbine sowie um nassen oder gesättigten Friεchdampf handeln.DE-PS 324 204 describes a method and a device for cooling an idling steam or gas turbine. An ejector connected to the steam flow line via a valve is specified for this cooling. This ejector draws steam through the inflow line in the opposite direction to the normal flow. The extracted steam can be tapped or exhaust steam from a further turbine as well as wet or saturated fresh steam.
Die US-PS 3,173,654 betrifft eine Dampfturbine mit einer Hochdruck-Teilturbine und einer zweiflutigen Niederdruck- Teilturbine, welche im Stand-by-Betrieb gefahren wird. Zur Vermeidung einer Überhitzung der Turbinenschaufein ist ein Kühlεystem vorgesehen, über welches durch eine Vielzahl von Leitungen sowohl in der Niederdruck-Teilturbine als auch in der Hochdruck-Teilturbine Wasser unter hohem Druck aus dem Kondensator in die Teilturbine eingedüst wird. Dieses Wasser verdampft vollständig und wird, da die Vakuumpumpen in Betrieb sind, wieder in den Kondensator zurückgeführt. Die Menge des eingedüεten Wassers wird in Abhängigkeit der Temperatur in den Teilturbinen für jede Eindüsleitung jeweils separat über ein entsprechendes Ventil geregelt.The US-PS 3,173,654 relates to a steam turbine with a high-pressure turbine and a double-flow low-pressure turbine, which is operated in stand-by mode. To prevent the turbine blades from overheating, a cooling system is provided, through which water is injected from the condenser into the partial turbine under high pressure through a large number of lines both in the low-pressure partial turbine and in the high-pressure partial turbine. This water evaporates completely and, since the vacuum pumps are in operation, is returned to the condenser. The amount of water injected is regulated separately for each injection line as a function of the temperature in the partial turbines, using a corresponding valve.
Die beiden oben genannten Schriften betreffen mithin jeweils die Kühlung leerlaufender bzw. im Stand-by-Betrieb laufender Dampfturbinen. Die Kühlung erfolgt hierbei ausschließlich über Dampf, der entweder unmittelbar zugeführt wird, oder durch verdampfendes Wasser entsteht. Die beiden obigen Schriften betreffen mithin eine Dampfturbine in einem solchen Zustand, in dem extern erzeugte Wärme abgeführt wird, wobei diese Wärme durch Reibung in einer mit Betriebεdrehzahl von beispielsweise 3000 U/min laufenden Turbine entsteht. Würde die Wärme nicht abgeführt werden, so läge die Temperatur in der Dampfturbine weit über der Betriebstemperatur.The two above-mentioned documents therefore relate in each case to the cooling of idling or running in standby mode Steam turbines. The cooling takes place exclusively via steam, which is either supplied directly or is created by evaporating water. The two above documents therefore relate to a steam turbine in such a state in which externally generated heat is dissipated, this heat being generated by friction in a turbine running at an operating speed of, for example, 3000 rpm. If the heat were not removed, the temperature in the steam turbine would be far above the operating temperature.
In einer Dampfturbine, insbesondere einer Hochdruckturbine oder einer Mitteldruckturbine mit vorgeschalteter Zwischen- überhitzung, treten während eines Leiεtungsbetriebeε Temperaturen bis oberhalb 500°C auf. ährend eines Leiεtungsbetrie- bes, beispielsweise unter Vollast, der einige Wochen oder Monate dauern kann, werden das Turbinengehäuεe sowie der Turbinenläufer und andere Turbinenkomponenten, wie Frischdampfven- til, Schnellschlußventil, Turbinenschaufel etc., auf eine hohe Temperatur aufgeheizt. Nach Abschalten der gesamten Dampfturbinenanlage kann der Turbinenläufer jeder Turbine mit verminderter Drehzahl mittels einer Dreheinrichtung über eine vorgegebene Zeitdauer hinweg weitergedreht und die Dampfat- mosphäre über eine Evakuierungseinrichtung evakuiert werden. Um möglichst frühzeitig nach Abschalten der Dampfturbine War- tungs- oder Kontrollarbeiten sowie gegebenenfalls Nachrüstar- beiten durchführen zu können, kann es unter Umständen wünschenswert sein, die Dampfturbine unter Einhaltung vorgegebener Grenzen für auftretende Dehnungsunterschiede zwischen Turbinenläufer und beispielsweise Turbinengehäuse möglichst schnell abzukühlen.In a steam turbine, in particular a high-pressure turbine or a medium-pressure turbine with upstream intermediate superheating, temperatures up to above 500 ° C. occur during a power operation. During a power operation, for example under full load, which can take a few weeks or months, the turbine housing and the turbine rotor and other turbine components, such as live steam valve, quick-closing valve, turbine blade, etc., are heated to a high temperature. After the entire steam turbine system has been switched off, the turbine rotor of each turbine can be rotated at a reduced speed for a predetermined period of time by means of a rotating device and the steam atmosphere can be evacuated via an evacuation device. In order to be able to carry out maintenance or control work and, if necessary, retrofitting work as soon as possible after the steam turbine has been switched off, it may be desirable to cool the steam turbine as quickly as possible while observing predetermined limits for occurring expansion differences between the turbine rotor and, for example, the turbine housing.
Aufgabe der Erfindung ist es eine Dampfturbine, sowie eine Dampfturbinenanlage anzugeben, die über eine Zwangskühlung zügig abkühlbar ist. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Abkühlung einer Dampfturbine anzugeben. Erfindungsgemäß wird die auf eine Dampfturbine gerichtete Aufgabe dadurch gelöst, daß das Turbinengehäuse mit einem Kühlfluideinlaß zur Einströmung von Kuhlfluid verbindbar ist, wobei der Kühlfluideinlaß durch ein Verεchlußorgan ver- schließbar und freigebbar ist, und eine Saugeinrichtung zur Absaugung von Kuhlfluid aus dem Turbinengehäuse vorgesehen ist. Der Kühlfluideinlaß ist vorzugsweise während eines normalen Leistungsbetriebes der Dampfturbine, bei dem Aktions- dampf in einen Dampfeinlaßbereich in die Turbine eintritt, einen Beschaufelungεbereich die Turbinenwelle antreibend durchströmt und aus einem Abdampfbereich aus der Dampfturbine herausströmt, verschlossen. Während des Leistungsbetriebes gelangt hierdurch kein Kuhlfluid in die Dampfturbine hinein. Nach Abschalten der Dampfturbine, diese wird nun nicht mehr von Aktionsdampf durchströmt, wird der Kühlfluideinlaß durch das Verschlußorgan freigegeben, so daß Kuhlfluid, insbesondere Luft, aus der die Dampfturbine umgebenden Luftatmosphäre, in die Dampfturbine einströmt. Das einströmende Kuhlfluid wird über eine Saugeinrichtung, beispielsweise eine Evakuierungseinrichtung, welche einen Unterdruck erzeugt, aus dem Turbinengehäuεe abgesaugt . Hierdurch ist eine schnelle Abkühlung der Dampfturbine (Gehäuse und Welle) auf unter 200 °C, insbesondere 150 °C bis 180 °C, in unter 40 Stunden, vorzugsweise in ca. 24 Stunden, ermöglicht. Der Kühlfluidein- laß ist vorzugsweise eine separate Öffnung, z.B. ein Lufteinlaßstutzen an der Turbine, mit einem Strömungsquerschnitt, der so bemessen ist, daß hinreichend Kuhlfluid für eine Schnellabkühlung in die Turbine gelangt . Es können auch mehrere Kühlfluideinlässe vorgesehen sein.The object of the invention is to provide a steam turbine and a steam turbine system which can be rapidly cooled by means of forced cooling. Another object of the invention is to provide a method for cooling a steam turbine. According to the invention, the object directed to a steam turbine is achieved in that the turbine housing can be connected to a cooling fluid inlet for the inflow of cooling fluid, the cooling fluid inlet being closable and releasable by a sealing member, and a suction device for extracting cooling fluid from the turbine housing. The cooling fluid inlet is preferably closed during normal power operation of the steam turbine, in which action steam enters the turbine into a steam inlet area, through which a blading area drives the turbine shaft and flows out of an exhaust area from the steam turbine. As a result, no cooling fluid enters the steam turbine during power operation. After switching off the steam turbine, which is no longer flowed through by action steam, the cooling fluid inlet is released through the closure element, so that cooling fluid, in particular air, from the air atmosphere surrounding the steam turbine flows into the steam turbine. The inflowing cooling fluid is sucked out of the turbine housing via a suction device, for example an evacuation device, which generates a vacuum. This enables rapid cooling of the steam turbine (housing and shaft) to below 200 ° C, in particular 150 ° C to 180 ° C, in under 40 hours, preferably in about 24 hours. The cooling fluid inlet is preferably a separate opening, for example an air inlet connector on the turbine, with a flow cross section which is dimensioned such that sufficient cooling fluid reaches the turbine for rapid cooling. Several cooling fluid inlets can also be provided.
Das Verschlußorgan kann ein zu öffnender Blindflansch, ein Ventil oder ähnliches sein. Das Verεchlußorgan kann beispielsweise über eine erste Steuereinheit automatisch, beispielsweise motorgetrieben, geöffnet werden. Es könnte auch ein manuell zu öffnendes Verschlußorgan verwendet werden. Die Saugeinrichtung, beispielsweise ein Evakuierungsaggregat, welches der Unterdruckerzeugung in einem Kondensator dient, ist vorzugsweise mit einer Steuereinheit zum Steuern ihrer Saugleistung verbunden. Die Steuereinheit kann zudem einem automatischen Öffnen einer strömungεtechnischen Verbindung der Saugeinrichtung mit dem Turbinengehäuεe dienen. Vorzugs- weise ist bei einer Hochdruck-Dampfturbine eine strömungs- techniεche Verbindung zwischen Turbinengehäuse und Saugeinrichtung während des normalen Leiεtungεbetriebes unterbunden.The closure member can be an opening blind flange, a valve or the like. The closure member can be opened automatically, for example by a motor, via a first control unit, for example. A manually opening closure member could also be used. The suction device, for example an evacuation unit, which serves to generate negative pressure in a condenser, is preferably connected to a control unit for controlling its suction power. The control unit can also be used to automatically open a fluidic connection between the suction device and the turbine housing. In the case of a high-pressure steam turbine, a fluidic connection between the turbine housing and the suction device is preferably prevented during normal power operation.
Der Kühlfluideinlaß ist vorzugsweise mit einer in den Dampfeinlaßbereich mündenden DampfZuführung verbunden. Vorzugsweise ist der Kühlfluideinlaß mit einem Stellventil zur Regelung der Frischdampfmenge verbunden, wodurch ebenfalls eine Abkühlung dieses Stellventiles nach Beendigung des Leiεtungε- betriebeε der Dampfturbine ermöglicht ist.The cooling fluid inlet is preferably connected to a steam feed opening into the steam inlet area. The cooling fluid inlet is preferably connected to a control valve for regulating the amount of live steam, which also enables this control valve to cool after the steam turbine has finished operating.
Die Saugeinrichtung ist vorzugsweise mit einer in den Abdampfbereich mündenden Abεtrömleitung verbunden. Die Abström- leitung kann hierbei während des Abkühlvorgangs durch eine Rückschlagklappe abgesperrt sein, so daß die gesamte durch die Dampfturbine εtrömende Menge an Kuhlfluid durch die Saugeinrichtung geführt wird. Vorzugεweise ist die Saugeinrichtung εtrörrvungstechniεch mit einem Kondensator, inεbeεondere dem Dampfbereich eineε Kondensatbehälters, verbunden. Es iεt somit möglich, alε Saugeinrichtung ein bereits während des Leistungsbetriebes eingesetztes Evakuierungsgerät auch für die Abkühlung der Dampfturbine sowie weiterer Dampfturbi- nenkomponenten nach Abschalten, wie Stellventil, Schnell- schlußventil etc., zu verwenden. Ein solcheε Evakuierungsgerät könnte beispielsweise der Evakuierung des Dampfraumes in dem Kondensatbehälter, oder der Evakuierung der Dampfatmo- sph re in der Dampfturbine nach Beendigung des Leistungsbe- triebeε dienen.The suction device is preferably connected to an outflow line opening into the evaporation area. The outflow line can be shut off during the cooling process by a non-return valve, so that the entire amount of cooling fluid flowing through the steam turbine is passed through the suction device. The suction device is preferably connected to a condenser, in particular the steam area of a condensate container. It is thus possible to use an evacuation device already used during power operation for cooling the steam turbine and other steam turbine components after shutdown, such as control valve, quick-closing valve etc., as the suction device. Such an evacuation device could be used, for example, to evacuate the steam space in the condensate container or to evacuate the steam atmosphere in the steam turbine after the power operation has ended.
Die auf eine Dampfturbinenanlage mit einer Hochdruck-Teilturbine und zumindest einer Mitteldruck-Teilturbine gerichtete Aufgabe wird dadurch gelöst, daß die Turbinengehäuse der Teilturbinen jeweils mit einem Kühlfluideinlaß verbunden sind und eine Saugeinrichtung vorgesehen ist, die über eine Saugleitung mit einem Kondensator und über eine jeweilige Verbin- dungsleitung mit den Teilturbinen verbunden ist. Nach Abschalten der Dampfturbinenanlage erfolgt eine Kühlung jeder Teilturbine dadurch, daß über den jeweiligen Kühlfluideinlaß Kuhlfluid, inεbeεondere Luft, in das Gehäuse der jeweiligen Teilturbine einströmt und durch die Saugeinrichtung, welche sowohl mit der Teilturbine als auch einem Kondensator verbunden ist, auε der Teilturbine abgeεaugt wird. Die Saugeinrichtung erzeugt vorzugsweise einen Unterdruck, durch den eine Durchεtrömung der Teilturbinen sowie entsprechender Komponenten, wie Stellventile und Schnellεchlußventile, von dem Kühl- fluid, der Luft, hervorgerufen wird. Die Luft nimmt in jeder Teilturbine Wärme auf, wodurch die Teilturbine abgekühlt wird. Die Saugeinrichtung kann hierbei ein Evakuierungsaggregat sein, das bereits zur Evakuierung der Dampfatmoεphäre in jeder Teilturbine unmittelbar nach Abεchalten der Dampfturbi- nenanlage eingeεetzt wird. Die Abkühlung der Teilturbinen der Dampfturbinenanlage iεt somit ohne Zuεatzaggregate, beispielsweise Druckluftspeicher oder Druckluftpumpe möglich, wobei lediglich an gewünschten Stellen Kühlfluideinläsεe mit einem jeweiligen Absperrorgan sowie eine begrenzte Anzahl Leitungen zur Führung des Kühlfluides vorzusehen sind.That directed to a steam turbine plant with a high-pressure sub-turbine and at least one medium-pressure sub-turbine The object is achieved in that the turbine housings of the partial turbines are each connected to a cooling fluid inlet and a suction device is provided which is connected to a condenser via a suction line and to the partial turbines via a respective connecting line. After the steam turbine system has been switched off, each sub-turbine is cooled by the fact that cooling fluid, in particular air, flows into the housing of the respective sub-turbine via the respective cooling fluid inlet and is sucked out of the sub-turbine by the suction device, which is connected to both the sub-turbine and a condenser . The suction device preferably generates a negative pressure which causes the cooling fluid, the air, to flow through the partial turbines and corresponding components, such as control valves and quick-closing valves. The air absorbs heat in each turbine, which cools the turbine. The suction device can be an evacuation unit which is used to evacuate the steam atmosphere in each turbine section immediately after the steam turbine system has been switched off. The cooling of the partial turbines of the steam turbine system is thus possible without additional units, for example compressed air storage or a compressed air pump, cooling fluid inlets with a respective shut-off device and a limited number of lines for guiding the cooling fluid only being provided at desired locations.
Die auf ein Verfahren zum Abkühlen einer Dampfturbine mit einem Turbinengehäuse gerichtete Aufgabe wird dadurch gelöst, daß nach Lastabεchaltung ein Kühlfluideinlaß strömungstech- niεch mit dem Turbinengehäuεe verbunden und durch den Kühl- fluideinlaß einströmendes Kuhlfluid, insbesondere Luft, mittels einer Saugeinrichtung unter Wärmeaufnahme durch das Turbinengehäuεe geführt wird. Mit dieεer Art der Zwangskühlung der Dampfturbine ist beiεpielsweise unter Einhaltung vorgeb- barer Grenzen für die Dehnungεunterεchiede zwiεchen Turbinenläufer und Turbinengehäuse, inεbeεondere Turbineninnenge- häuεe, eine Abkühlung von mehreren 100°C innerhalb eines Ta- geε möglich. Hierdurch können Wartungε-, Inεtandhaltungε- oder Nachrüεtarbeiten an der Dampfturbine bereitε einen Tag nach Lastabεchaltung durchgeführt werden. Nach der Laεtab- εchaltung wird die Turbine, inεbeεondere über einen Antriebε- motor mit geringer Drehzahl von ca. 50 U/min.The object directed to a method for cooling a steam turbine with a turbine housing is achieved in that, after the load has been switched off, a cooling fluid inlet is connected in terms of flow technology to the turbine housing and cooling fluid flowing in through the cooling fluid inlet, in particular air, is guided by means of a suction device with heat absorption through the turbine housing becomes. With this type of forced cooling of the steam turbine, cooling of several 100 ° C. within one day is possible, for example, while observing predetermined limits for the expansion differences between the turbine rotor and the turbine housing, in particular the turbine inner housing. geε possible. In this way, maintenance, maintenance or retrofitting work on the steam turbine can be carried out one day after the load has been switched off. After the shutdown, the turbine is turned on, in particular via a drive motor at a low speed of about 50 rpm.
{Rotordrehbetrieb) gedreht. Hierdurch entεteht εo gut wie keine zuεätzliche Wärme.{Rotor turning operation) rotated. As a result, there is virtually no additional heat.
Die Turbine befindet sich nach dem Abschalten in einem Rotor- drehbetrieb, wobei vorhandene Evakuierungsaggregate in Betrieb bleiben. An der Hochdruckturbine und einer Mitteldruckturbine werden Lufteinläεεe, insbesondere Lufteintrittsstutzen geöffnet. An der Hochdruckturbine können friεchdampfεei- tige Stutzen und eine Verbindungεleitung zwischen dem Ab- dampfstutzen der Hochdruckturbine und einem Kondenεator geöffnet werden. Der Kondenεator iεt mit den Evakuierungεaggre- gaten verbunden, εo daß durch die Lufteintrittsstutzen angesaugte Luft durch die Turbinenbeεchaufelung und über die Verbindungsleitung in den Kondensator gesaugt wird. Dies bewirkt eine Abkühlung der Hochdruckturbine. An der Mitteldruckturbine können ebenfallε im Bereich deε Dampfeintritteε Stutzen geöffnet werden. Die durch die Stutzen einεtrömende Luft kann durch die Evakuierungsaggregate über die Mitteldruckbeschaufelung und gegebenenfalls eine strömungstechnisch nachge- schaltete Niederdruckturbine in den Kondensator gesaugt werden. Hierbei werden insbesondere die Mitteldruckwelle und das Mittelinnen- und/oder Mittelaußendruckgehäuεe, die Mittel- druckbeεchaufelung, daε Stellventil und das Schnellschlußventil der Mitteldruckturbine gekühlt. Es ist ebenfalls möglich, die Luft über eine entsprechende Verbindungεleitung von dem Abdampfbereich der Mitteldruckturbine unter Umgehung einer nachgeεchalteten Niederdruckturbine in den Kondensator zu leiten. Die Hochdruckturbine und die Mitteldruckturbine werden vorzugsweiεe auf eine Temperatur kleiner alε 150°C abge- kühlt. Der Abkühlvorgang kann anhand von Temperaturmeßwerten, die innerhalb der Dampfturbine ermittelt werden, beiεpielε- weiεe durch bereitε für den Leiεtungεbetrieb vorgeεehene Tem- peraturmeßεtellen, kontrolliert werden. Je nach Fortschritt der Abkühlung kann der Abkühlvorgang über die Saugleistung der Saugeinrichtung beschleunigt oder verlangsamt werden. Der Abkühlvorgang wird so durchgeführt, daß vorgegebene maximale Dehnungsdifferenzen, insbeεondere zwischen dem Turbinenläufer und dem Innen- und/oder Außengehäuse der Dampfturbine, nicht überschritten werden. Durch Zuführung des Kühlfluids über unterschiedliche Lufteinlässe kann beispielsweise die Abkühlung des Turbinenläuferε einer Hochdruckteilturbine verzögert und die Abkühlung des Hochdruckgehäuseε beschleunigt werden.After being switched off, the turbine is in a rotor turning mode, with existing evacuation units remaining in operation. Air inlets, in particular air inlet ports, are opened on the high-pressure turbine and a medium-pressure turbine. On the high-pressure turbine, connecting pieces on the fresh steam side and a connecting line between the exhaust pipe of the high-pressure turbine and a condenser can be opened. The condenser is connected to the evacuation units, so that air sucked in through the air inlet nozzle is sucked through the turbine blades and over the connecting line into the condenser. This causes the high pressure turbine to cool down. At the medium-pressure turbine, nozzles can also be opened in the area of the steam inlet. The air flowing in through the connecting pieces can be sucked into the condenser by the evacuation units via the medium-pressure blading and optionally a low-pressure turbine connected downstream. In particular, the medium pressure wave and the medium internal and / or medium external pressure housing, the medium pressure blading, the control valve and the quick-closing valve of the medium pressure turbine are cooled. It is also possible to conduct the air via a corresponding connecting line from the exhaust steam area of the medium-pressure turbine, bypassing a downstream low-pressure turbine, to the condenser. The high-pressure turbine and the medium-pressure turbine are preferably cooled to a temperature lower than 150 ° C. The cooling process can be carried out on the basis of temperature measurement values which are determined within the steam turbine, for example by means of temperatures provided for the power operation. peraturmeßεtellen be checked. Depending on the progress of the cooling, the cooling process can be accelerated or slowed down by the suction power of the suction device. The cooling process is carried out in such a way that predetermined maximum expansion differences, in particular between the turbine rotor and the inner and / or outer casing of the steam turbine, are not exceeded. By supplying the cooling fluid via different air inlets, for example, the cooling of the turbine runner of a high-pressure partial turbine can be delayed and the cooling of the high-pressure housing can be accelerated.
Anhand des in der einzigen Figur dargeεtellten Auεführungε- beiεpieles werden eine Dampfturbine sowie ein Schnellabkühl- syεte ohne Zuεatzaggregate zur Abkühlung der Dampfturbine näher erläutert.A steam turbine and a rapid cooling system without additional units for cooling the steam turbine are explained in more detail using the example shown in the single figure.
Die Figur zeigt in teilweise εchematiεcher und nicht maßstäblicher Darstellung eine Dampfturbinenanlage 20 mit einer Hochdruck-Teilturbine la und einer Mitteldruck-Teilturbine lb in einem Längεεchnitt . Weitere Komponenten der Dampfturbinenanlage 20 sind der Übersichtlichkeit halber εchematiεch dar- geεtellt. Die Hochdruck-Teilturbine la weist einen Dampfein- laßbereich 2, einen Abdampfbereich 3 und einen axial dazwischenliegenden Beschaufelungsbereich 4 auf. In den Dampfein- laßbereich 2 mündet eine DampfZuführung 12, eine Friεch- dampfleitung 19, in der als Kombiventil ein Schnellschlußventil 24 und ein Stellventil 17 angeordnet sind. Das Stellventil 17 weist einen Kühlfluideinlaß 7 auf, in den eine Luftleitung 18 mündet. In der Luftleitung 18 ist ein Verschlußor- gan 8, inεbeεondere ein Ventil angeordnet, welcheε mit einer erεten Steuereinheit 9 verbunden iεt. Über die erεte Steuereinheit 9 ist ein Öffnen bzw. Schließen des Verschlußorgans 8 ermöglicht, so daß der Kühlfluideinlaß 7 für eine Einεtrömung von Kuhlfluid 6, inεbeεondere Luft, freigebbar bzw. ver- εchließbar iεt. Während eineε normalen Leistungsbetriebeε der Dampfturbine 1, der Hochdruck-Teilturbine la, ist das Verschlußorgan 8 verschloεsen und während eineε Sehne11ab ühl- Vorgangs geöffnet, so daß während letzterem Kuhlfluid 6 in das Stellventil 17 einεtrömen kann.The figure shows, in a partially schematic and not to scale illustration, a steam turbine system 20 with a high-pressure sub-turbine 1 a and a medium-pressure sub-turbine 1 b in a longitudinal section. Further components of the steam turbine plant 20 are shown schematically for the sake of clarity. The high-pressure sub-turbine 1 a has a steam inlet area 2, an exhaust steam area 3 and an axially intermediate blading area 4. A steam supply 12, a fresh steam line 19, in which a quick-action valve 24 and a control valve 17 are arranged as a combination valve, open into the steam inlet area 2. The control valve 17 has a cooling fluid inlet 7, into which an air line 18 opens. In the air line 18 there is a closure element 8, in particular a valve, which is connected to a first control unit 9. The first control unit 9 enables the closure member 8 to be opened or closed, so that the cooling fluid inlet 7 can be released or closed for the inflow of cooling fluid 6, in particular air. During a normal power operation of the steam turbine 1, the high-pressure sub-turbine 1 a, the closure member 8 is closed and during a tendon 11 Process opened so that cooling fluid 6 can flow into the control valve 17 during the latter.
Innerhalb deε Hochdruck-Gehäuεeε 5a, welches ein nicht näher spezifiziertes Innen- und Außengehäuεe umfaßt, iεt der Turbinenläufer 26a angeordnet. An den Abdampfbereich 3 εchließt sich eine Abεtrömleitung 13 an, die durch einen Zwiεchenüber- hitzer 21 zum Dampfeinlaßbereich 2 der Mitteldruck-Teilturbine lb führt. Stromab deε Abdampfbereicheε 3 ist in der Ab- Strömleitung 13 eine Rückschlagklappe 22 angeordnet. Zwischen Abdampfbereich 3 und Rückεtrömklappe 22 mündet in die Abεtrömleitungen 13 eine Verbindungεleitung 16a, die zu einem Kondensator 14 führt. Die Verbindungsleitung 16a ist während deε normalen Leiεtungεbetriebeε der Hochdruck-Teilturbine 16 durch ein Verεchlußorgan 8a verεchlosεen. Zwiεchen Dampfein- laßbereich 2 der Mitteldruck-Teilturbine lb und dem Zwiεchen- überhitzer 21 iεt in eine Mitteldruck-Zuleitung 23 ebenfallε eine Kombination auε Stellventil 17 und Schnellflußventil 24 angeordnet. In dieεe Kombination mündet wie bereitε oben be- schrieben, eine Luftleitung 18 in einen Kühlfluideinlaß 7.The turbine rotor 26a is arranged inside the high-pressure housing 5a, which comprises an inner and outer housing which is not specified in any more detail. An exhaust line 13 is connected to the exhaust steam area 3 and leads through an intermediate superheater 21 to the steam inlet area 2 of the medium-pressure sub-turbine 1b. A non-return valve 22 is arranged downstream of the evaporation region 3 in the outflow line 13. A connecting line 16a, which leads to a condenser 14, opens into the outflow lines 13 between the evaporation area 3 and the backflow flap 22. The connecting line 16a is closed by a closure element 8a during normal power operation of the high-pressure turbine section 16. A combination of control valve 17 and quick-flow valve 24 is also arranged in a medium-pressure feed line 23 between steam inlet area 2 of medium-pressure sub-turbine 1b and intermediate-superheater 21. As already described above, an air line 18 leads into this combination into a cooling fluid inlet 7.
Die Mitteldruck-Teilturbine lb ist zweiflutig ausgeführt und weiεt ein Mitteldruck-Gehäuεe 5b umfassend ein nicht näher spezifiziertes Innen- und Außengehäuεe auf, in dem der Turbinenläufer 26b εowie ein Beεchaufelungεbereich 4 angeordnet εind. Während eines normalen Leistungsbetriebes der Dampfturbinenanlage 20 strömt von dem Zwischenüberhitzer 21 nicht dargestellter Aktionεdampf in einen Dampfeinlaßbereich 2 ein, teilt εich im Beεchaufelungεbereich 4 in die beiden Fluten auf, gelangt auε einem jeweiligen Abdampfbereich 3 in eine oder mehrere Abεtrömleitungen 13, die zu einer oder mehrerer nicht dargeεtellten Niederdruck-Teilturbinen führt bzw. führen. Von den Abströmleitungen 13 führt eine Verbindungsleitung 16b in den Kondenεator 14. Eine weitere, nicht näher spezifizierte Leitung, führt von einer nicht dargestellten Niederdruck-Teilturbine ebenfallε in den Kondensator 14. Es versteht εich, daß die Verbindungsleitung 16b entfallen kann, εo daß während eines Abkühlbetriebes durch das Stellventil 7 in die Mitteldruck-Teilturbine einströmendes Kuhlfluid 6 über die nicht dargestellte Niederdruck-Teilturbine in den Kondensator 14 gelangt . An den Kondensator 14 schließt sich ein Kondenεatbehälter 25 an, der über eine Saugleitung 15 mit ei- ner Saugeinrichtung 10, beiεpielεweiεe einem Evakuierungεag- gregat, einer Strahlpumpe oder ähnlichem, verbunden iεt. Die Saugeinrichtung 10 ist über eine zweite Steuereinheit 11 in ihrer Saugleistung steuerbar, εo daß im Abkühlvorgang die Menge der angesaugten Luft und damit die Geεchwindigkeit der Abkühlung einεtellbar iεt. Selbεtverεtändlich ist auch eine Anordnung möglich, bei der die Saugeinrichtung 10 unmittelbar an eine Verbindungsleitung 16a, 16b angeεchloεsen ist, ohne eine Durchführung deε Kühlfluidε 6 durch den Kondensator 14.The medium-pressure turbine part 1b is designed with two passages and has a medium-pressure housing 5b comprising an unspecified inner and outer housing, in which the turbine runner 26b and a blading area 4 are arranged. During normal power operation of the steam turbine plant 20, action steam (not shown) flows from the reheater 21 into a steam inlet area 2, divides into two areas in the blading area 4, comes from a respective exhaust steam area 3 into one or more discharge lines 13 which lead to one or more leads or lead low-pressure partial turbines not shown. A connecting line 16b leads from the outflow lines 13 into the condenser 14. A further line, not specified in more detail, also leads from a low-pressure partial turbine, not shown, into the condenser 14. It goes without saying that the connecting line 16b can be omitted, so that during a Cooling operation through the control valve 7 Cooling fluid 6 flowing into the medium-pressure sub-turbine reaches the condenser 14 via the low-pressure sub-turbine, not shown. The condenser 14 is followed by a condensate container 25, which is connected via a suction line 15 to a suction device 10, for example an evacuation unit, a jet pump or the like. The suction device 10 can be controlled in its suction power via a second control unit 11, so that in the cooling process the amount of air drawn in and thus the speed of the cooling can be adjusted. Of course, an arrangement is also possible in which the suction device 10 is connected directly to a connecting line 16a, 16b, without the cooling fluid 6 having to be passed through the condenser 14.
Die Erfindung zeichnet sich durch eine Zwangεkühlung einer Dampfturbine nach Beendigung deε Leiεtungsbetriebes auε, bei dem nach Laεtabεchaltung ein Kühlfluideinlaß εowie eine Saugleitung geöffnet werden. Über eine mit der Saugleitung verbundene Saugeinrichtung wird Luft, die über den Kühlfluidein- laß in die Dampfturbine einströmt, unter Wärmeaufnahme auε dieεer wieder herausgeführt wird. Mit dem Verfahren kann auf bereitε vorhandene Komponenten der Dampfturbine, wie beiεpielεweiεe Evakuierungεaggregate und Dampfleitungen, zurückgegriffen werden. Es εind gegebenenfallε lediglich entεpre- chende Kühlfluideinlässe (z.B. Lufteinlaßstutzen) und Abzweigungen aus bestehenden Dampfabεtrömleitungen vorzusehen, um eine Zwangsluftεtrömung durch die Dampfturbine hindurch zu gewährleiεten. Daε Verfahren ermöglicht eine Schnellabkühlung, inεbeεondere einer Hochdruckdampfturbine, bei der eine Abkühlung von biε zu 400 K innerhalb 24 Stunden erreichbar iεt . The invention is characterized by a forced cooling of a steam turbine after the end of the power operation, in which a cooling fluid inlet and a suction line are opened after the load has been switched off. Via a suction device connected to the suction line, air which flows into the steam turbine via the cooling fluid inlet is led out again with the absorption of heat. With the method, existing components of the steam turbine, such as, for example, evacuation units and steam lines, can be used. If necessary, only corresponding cooling fluid inlets (e.g. air inlet ports) and branches from existing steam discharge lines are to be provided in order to ensure forced air flow through the steam turbine. The method enables rapid cooling, in particular a high-pressure steam turbine, in which cooling of up to 400 K can be achieved within 24 hours.

Claims

Patentansprüche claims
1. Dampfturbine (1) mit einem Dampfeinlaßbereich (2), einem Abdampfbereich (3) und einem von einem Turbinengehäuse (5) umgebenen axial dazwischen angeordneten Beschaufelungsbereich (4) , wobei zumindest ein durch ein Verschlußorgan (8) verschließbarer und freigebbarer Kühlfluideinlaß (7), durch den Kuhlfluid (6) zur Abkühlung nach einer Lastabεchaltung auf eine Temperatur deutlich unterhalb der Betriebεtemperatur in daε Turbinengehäuεe (5) einführbar iεt, und eine Saugeinrichtung (10) zur Abεaugung von Kuhlfluid (6) auε dem Turbinengehäuεe (5) vorgeεehen εind.1. steam turbine (1) with a steam inlet area (2), an exhaust steam area (3) and a blading area (4), which is surrounded by a turbine housing (5) and is arranged axially therebetween, at least one cooling fluid inlet (7) which can be closed and released by a closure member (8) ), through which cooling fluid (6) can be introduced into the turbine housing (5) for cooling after a load switch-off to a temperature significantly below the operating temperature, and a suction device (10) for extracting cooling fluid (6) from the turbine housing (5) .
2. Dampfturbine (1) nach Anspruch 1, wobei eine mit dem Ver- εchlußorgan (8) verbundene erεte Steuereinheit (9) zum auto- matiεchen Öffnen deε Kühlfluideinlaεseε (7) vorgeεehen ist.2. Steam turbine (1) according to claim 1, wherein a first control unit (9) connected to the closing member (8) is provided for automatically opening the cooling fluid inlet (7).
3. Dampfturbine (1) nach Anspruch 1 oder 2, mit einer zweiten Steuereinheit (11) zum Steuern der Saugleistung der Saugein- richtung (10) und/oder zum automatischen Öffnen einer strömungstechnischen Verbindung der Saugeinrichtung (10) mit dem Turbinengehäuse (5) .3. Steam turbine (1) according to claim 1 or 2, with a second control unit (11) for controlling the suction power of the suction device (10) and / or for automatically opening a fluidic connection of the suction device (10) with the turbine housing (5) .
4. Dampfturbine (1) nach einem der vorhergehenden Ansprüche, bei der der Kühlfluideinlaß (7) mit einer in den Dampfeinlaß- bereich (2) mündenden DampfZuführung (12), insbeεondere einem Stellventil (17), verbunden iεt.4. Steam turbine (1) according to one of the preceding claims, in which the cooling fluid inlet (7) is connected to a steam supply (12) opening into the steam inlet region (2), in particular a control valve (17).
5. Dampfturbine (1) nach einem der vorhergehenden Ansprüche, bei der die Saugeinrichtung (10) mit einer in den Abdampfbereich (2) mündenden Abεtrömleitung (13) verbunden ist.5. Steam turbine (1) according to one of the preceding claims, in which the suction device (10) is connected to a discharge line (13) opening into the evaporation region (2).
6. Dampfturbine (1) nach einem der vorhergehenden Ansprüche, bei der die Saugeinrichtung (10) strömungstechnisch über eine Saugleitung (15) mit einem Kondensator (14) verbunden iεt. 6. Steam turbine (1) according to one of the preceding claims, in which the suction device (10) is connected fluidically via a suction line (15) to a condenser (14).
7. Dampfturbine (1) nach Anεpruch 6, mit einer Hochdruck- Teilturbine (la) , wobei die Hochdruck-Teilturbine (la) über eine Verbindungεleitung (16a) mit dem Kondensator (14) strömungstechnisch verbunden iεt.7. Steam turbine (1) according to Claim 6, with a high-pressure part-turbine (la), the high-pressure part-turbine (la) being connected in terms of flow technology to the condenser (14) via a connecting line (16a).
8. Dampfturbine (1) nach einem der vorhergehenden Anεprüche, bei der der Kühlfluideinlaß (7) alε Einlaß für daε Turbinengehäuse (5) umgebende Luft ausgebildet ist.8. Steam turbine (1) according to one of the preceding claims, in which the cooling fluid inlet (7) is designed as an inlet for the turbine housing (5) surrounding air.
9. Dampfturbinenanlage (20) mit einer Hochdruck-Teilturbine (la) , die ein Hochdruckgehäuse (5a) aufweist, das mit einem Kühlfluideinlaß (7a) verbunden ist, mit einer Mitteldruck- Teilturbine (lb) , die ein Mitteldruck-Gehäuεe (5b) aufweist, das mit einem Kühlfluideinlaß (7b) verbunden iεt, mit einer Saugeinrichtung (10) , die über eine Saugleitung (15) mit einem Kondenεator (14) und über eine jeweilige Verbindungεleitung (16a, 16b) mit der Hochdruck-Teilturbine (la) und der Mitteldruck-Teilturbine (lb) verbunden iεt.9. Steam turbine system (20) with a high-pressure sub-turbine (la), which has a high-pressure housing (5a), which is connected to a cooling fluid inlet (7a), with a medium-pressure sub-turbine (lb), which has a medium-pressure housing (5b) which is connected to a cooling fluid inlet (7b), to a suction device (10) which is connected to a condenser (14) via a suction line (15) and to the high pressure turbine section (la) via a respective connecting line (16a, 16b) and the medium pressure turbine part (lb) is connected.
10. Verfahren zum Abkühlen einer Dampfturbine (1) mit einem Turbinengehäuεe (5) , bei dem nach Laεtabschaltung ein Kühlfluideinlaß (7) εtrömungεtechniεch mit dem Turbinengehäuεe (5) verbunden wird und durch den Kühlfluideinlaß (7) einströmendes Kuhlfluid (6) , insbesondere Luft, mittels einer Saug- einrichtung (10) unter Wärmeaufnahme durch daε Turbinengehäuse (5) geführt wird. 10. A method for cooling a steam turbine (1) with a turbine housing (5), in which a cooling fluid inlet (7) is connected to the turbine housing (5) after the load switch-off and cooling fluid (6), in particular air, flowing in through the cooling fluid inlet (7) , is guided through a turbine housing (5) by means of a suction device (10) while absorbing heat.
EP97943771A 1996-09-26 1997-09-12 Steam turbine, steam turbine plant and method of cooling a steam turbine Expired - Lifetime EP0928365B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19639714 1996-09-26
DE19639714 1996-09-26
PCT/DE1997/002058 WO1998013588A1 (en) 1996-09-26 1997-09-12 Steam turbine, steam turbine plant and method of cooling a steam turbine

Publications (2)

Publication Number Publication Date
EP0928365A1 true EP0928365A1 (en) 1999-07-14
EP0928365B1 EP0928365B1 (en) 2001-12-19

Family

ID=7807055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943771A Expired - Lifetime EP0928365B1 (en) 1996-09-26 1997-09-12 Steam turbine, steam turbine plant and method of cooling a steam turbine

Country Status (7)

Country Link
US (1) US6145317A (en)
EP (1) EP0928365B1 (en)
JP (1) JP4127854B2 (en)
KR (1) KR20000048655A (en)
CN (1) CN1091210C (en)
DE (1) DE59705905D1 (en)
WO (1) WO1998013588A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ20004753A3 (en) * 1998-06-26 2002-06-12 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent for hypercalcinemic crisis
JP2002523661A (en) * 1998-08-18 2002-07-30 シーメンス アクチエンゲゼルシヤフト Turbine casing
US20060135259A1 (en) * 2004-12-17 2006-06-22 Nokia Corporation System, game server, terminal, and method for game event notification in a multiplayer game
ITTO20050281A1 (en) * 2005-04-27 2006-10-28 Ansaldo Energia Spa TURBINE SYSTEM PROVIDED WITH A STEAM EXTRACTION AND A SYSTEM TO COOL A TURBINE SECTION AVAILABLE IN THE VALLEY OF THIS COLLECTION
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
EP2620604A1 (en) * 2012-01-25 2013-07-31 Siemens Aktiengesellschaft Method for controlling a cooling down process of turbine components
CN103089346B (en) * 2012-12-28 2015-02-18 东方电气集团东方汽轮机有限公司 Forced cooling system of steam turbine generator set
CN103195508B (en) * 2013-04-11 2015-08-19 上海电气电站设备有限公司 Steam turbine accelerate cooling system and cooling means
JP6208548B2 (en) * 2013-11-06 2017-10-04 三菱日立パワーシステムズ株式会社 Steam turbine forced cooling device, steam turbine device including the same, and steam turbine forced cooling method
EP2918788A1 (en) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Method for cooling a steam turbine
EP3109420A1 (en) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Method for cooling a fluid flow engine
EP3109419A1 (en) * 2015-06-25 2016-12-28 Siemens Aktiengesellschaft Method for cooling a fluid flow engine
CN104989467B (en) * 2015-08-06 2017-01-25 阳江核电有限公司 Steam turbine shutdown cooling control method
JP6637064B2 (en) * 2015-10-23 2020-01-29 東芝エネルギーシステムズ株式会社 Axial turbine
CN106948886B (en) * 2017-03-24 2018-08-10 广西防城港核电有限公司 Steam turbine method for rapid cooling
CN109826675A (en) * 2019-03-21 2019-05-31 上海电气电站设备有限公司 Steam turbine cooling system and method
CN110259527A (en) * 2019-07-24 2019-09-20 哈尔滨汽轮机厂有限责任公司 A kind of power output of super-pressure 200MW low pressure (LP) cylinder zero flexibility transformation steam turbine
CN110441011B (en) * 2019-07-30 2020-11-17 辽宁科技大学 Quick leakage checking method for TCA cooler of gas turbine air cooling system
CN110513163A (en) * 2019-09-17 2019-11-29 西安西热节能技术有限公司 A kind of power output cooling steam system and method for host low pressure (LP) cylinder zero reducing cold source energy
CN111365084B (en) * 2020-02-24 2022-08-19 东方电气集团东方汽轮机有限公司 Power station steam turbine maintenance system with rapid cooling function and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE324204C (en) 1917-12-27 1920-08-18 Ljungstroms Angturbin Ab Method and device for cooling idling steam or gas turbines
DE324402C (en) * 1919-03-30 1920-08-25 Fritz Tscheike Process for the production of high-gloss papers on glazed calenders
US2438998A (en) * 1942-09-15 1948-04-06 Dehavilland Aircraft Means for controlling the temperature of gases
US2874537A (en) * 1955-01-07 1959-02-24 Martin Co Turbojet engine arrangement utilizing evaporative cooling
US3173654A (en) 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
CH554486A (en) * 1973-01-29 1974-09-30 Bbc Brown Boveri & Cie METHOD OF COOLING A FLOW MACHINE.
JPS58220907A (en) * 1982-06-15 1983-12-22 Hitachi Ltd Cooling of steam turbine and apparatus therefor
JPH0281905A (en) * 1988-09-19 1990-03-22 Hitachi Ltd Forced cooling method for steam turbine and cooling device for the same
JPH08218811A (en) * 1995-02-16 1996-08-27 Hitachi Ltd Cooling method for steam turbine and device therefor
DE19547803C1 (en) * 1995-12-20 1997-04-10 Siemens Ag Steam-turbine assembly for electricity power station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9813588A1 *

Also Published As

Publication number Publication date
KR20000048655A (en) 2000-07-25
JP4127854B2 (en) 2008-07-30
WO1998013588A1 (en) 1998-04-02
US6145317A (en) 2000-11-14
CN1091210C (en) 2002-09-18
DE59705905D1 (en) 2002-01-31
EP0928365B1 (en) 2001-12-19
CN1231714A (en) 1999-10-13
JP2001500943A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
EP0928365A1 (en) Steam turbine, steam turbine plant and method of cooling a steam turbine
DE69829925T2 (en) Gas turbine plant with fuel preheater
DE60126721T2 (en) Combined circulation system with gas turbine
EP1440223B1 (en) Gas turbine group
EP2831394B1 (en) Gas turbine with adjustable cooling air system
EP2067940B2 (en) Method for operating a combined cycle power plant, and also combined-cycle power plant for carrying out the method
DE10041413B4 (en) Method for operating a power plant
DE112009004531B4 (en) System for supplying machine gas to dry gas and method for providing clean dry gas for gas seals in machinery
DE10227709B4 (en) Steam turbine plant and method for its operation
DE102009044003B4 (en) Method and device for temperature management of a gas turbine engine
DE60029510T2 (en) Steam cooling system for the balance piston of a steam turbine and associated method
DE102014104452A1 (en) System and method for increasing gas turbine output power
CH653743A5 (en) STEAM CONTROL ARRANGEMENT FOR A STEAM TURBINE AND A METHOD FOR OPERATING THE SAME.
DE102011052244A1 (en) A system and method for controlling the leakage of vapor to the sealing steam manifold / distributor to improve steam turbine performance
WO2010034659A2 (en) Steam power plant for generating electrical energy
EP0508067A1 (en) Device for regulating the cross-sectional flow area of a turbomachine
EP1744020A1 (en) Method for starting a steam turbine plant
EP2067933B1 (en) Safety design for a steam turbine
EP0847482B1 (en) Method and device for cooling the low-pressure stage of a steam turbine
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
EP1167721B1 (en) Method and system for cooling a gas turbine plant
DE112006002967B4 (en) Residual steam discharge mechanism and residual steam removal process for a steam cooling duct of a gas turbine
EP1510676B1 (en) Gas turbine plant
WO2017133873A1 (en) Gas turbine having axial thrust piston and radial bearing
WO2015135681A2 (en) Method for cooling down a steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010605

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WECHSUNG, MICHAEL

Inventor name: GOBRECHT, EDWIN

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WECHSUNG, MICHAEL

Inventor name: GOBRECHT, EDWIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59705905

Country of ref document: DE

Date of ref document: 20020131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020320

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160914

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705905

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170911