EP0926977B1 - Reinigungsgerät. - Google Patents

Reinigungsgerät. Download PDF

Info

Publication number
EP0926977B1
EP0926977B1 EP97940971A EP97940971A EP0926977B1 EP 0926977 B1 EP0926977 B1 EP 0926977B1 EP 97940971 A EP97940971 A EP 97940971A EP 97940971 A EP97940971 A EP 97940971A EP 0926977 B1 EP0926977 B1 EP 0926977B1
Authority
EP
European Patent Office
Prior art keywords
layer
cleaning
pad
cleaning pad
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97940971A
Other languages
English (en)
French (fr)
Other versions
EP0926977A1 (de
Inventor
Alan Edward Sherry
Steven Allen Holt
Vernon Sanford Ping, Iii
Larry Neil Mackey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27109591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0926977(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/756,864 external-priority patent/US6003191A/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0926977A1 publication Critical patent/EP0926977A1/de
Application granted granted Critical
Publication of EP0926977B1 publication Critical patent/EP0926977B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/16Cloths; Pads; Sponges

Definitions

  • This application relates to a cleaning implement useful in removing soils from hard surfaces.
  • the application particularly relates to a cleaning implement comprising a handle and a removable absorbent cleaning pad.
  • the application also relates to the absorbent cleaning pad that is useful with the cleaning implement.
  • the cleaning pad exhibits the ability to absorb and retain significant fluid levels, but after an initial delay in fluid uptake.
  • U.S. Patent No. 5,094,559 issued March 10, 1992 to Rivera et al., describes a mop that includes a disposable cleaning pad comprising a scrubber layer for removing soil from a soiled surface, a blotter layer to absorb fluid after the cleaning process, and a liquid impervious layer positioned between the scrubber and blotter layer.
  • the pad further contains a rupturable packet means positioned between the scrubber layer and the liquid impervious layer. The rupturable packets are so located such that upon rupture, fluid is directed onto the surface to be cleaned.
  • the impervious sheet prevents fluid from moving to the absorbent blotter layer.
  • the pad is removed from the mop handle and reattached such that the blotter layer contacts the floor. While this device may alleviate the need to use multiple rinsing steps, it does require that the user physically handle the pad and reattach a soiled, damp pad in order to complete the cleaning process.
  • the pad is described as comprising an upper layer which is capable of attaching to hooks on a mop head, a central layer of synthetic plastic microporous foam, and a lower layer for contacting a surface during the cleaning operation.
  • the lower layer's composition is stated to depend on the end-use of the device, i.e., washing, polishing or scrubbing.
  • the patent fails to provide a cleaning implement that sufficiently removes the soil that is deposited on typical household hard surfaces, in particular floors, such that the surface is perceived as essentially free of soil.
  • the synthetic foam described by Garcia for absorbing the cleaning solution has a relatively low absorbent capacity for water and water-based solutions. As such, the user must either use small amounts of cleaning solution so as to remain within the absorbent capacity of the pad, or the user must leave a significant amount of cleaning solution on the surface being cleaned. In either situation, the overall performance of the cleaning pad is not optimal
  • an object of the present invention to provide an implement that comprises a removable cleaning pad with sufficient absorbent capacity, on a gram of absorbed fluid per gram of cleaning pad basis, that allows the cleaning of a large area, such as that of the typical hard surface floor (e.g., 7,5-9,3 m 2 (80-100 ft 2 )), without the need to change the pad. It is a further object to provide such a cleaning implement where the pad offers beneficial soil removal properties. Where the cleaning implement of the present invention is used in combination with a cleaning solution, it is a further object to provide a substantially dry end result.
  • the present invention relates to a cleaning implement comprising:
  • the cleaning pad may further comprise a distinct attachment layer.
  • the absorbent layer would be positioned between the scrubbing layer and the attachment layer.
  • the present invention is preferably used in combination with a cleaning solution. That is, while the implement initially exists in a dry state, optimal cleaning performance for typical hard surface cleaning will involve the use of a cleaning fluid that is applied to the soiled surface prior to cleaning with the present implement.
  • a critical aspect of cleaning performance is the avoidance of initial, rapid fluid uptake. That is, while it is important to absorb essentially all of the fluid cleaning solution during the time in which a typical user will clean a surface, it is also important to avoid immediate absorption by the cleaning pad. This is generally counter to the teachings of the prior art pertaining to absorbent articles, where it is accepted that immediate, rapid absorbency is desired.
  • the implement of the present invention is designed to be compatible with all hard surface substrates, including wood, vinyl, linoleum, no wax floors, ceramic, Formica®, porcelain, glass, wall board, and the like.
  • Figure 1 is a perspective view of a cleaning implement of the present invention which has an on-board fluid dispensing device.
  • Figure 1a is a perspective view of a cleaning implement of the present invention which does not have an on-board fluid dispensing device.
  • Figure 1b is a side view of the handle grip of the implement shown in Figure I a.
  • Figure 2 is a perspective view of a removable cleaning pad of the present invention.
  • Figure 3 is a blown perspective view of the absorbent layer of a removable cleaning pad of the present invention.
  • Figure 4 is a cross-sectional view of one embodiment of a removable cleaning pad of the present invention.
  • FIG. 5 represents a schematic view of an apparatus for measuring the Performance Under Pressure (PUP) capacity of the removable cleaning pad.
  • PUP Performance Under Pressure
  • Figure 6 represents an enlarged sectional view of the piston/cylinder assembly shown in Figure 5.
  • Figure 7 represents a blown perspective view of another removable cleaning pad of the present invention.
  • Figure 8 represents a perspective view of another removable cleaning pad of the present invention.
  • the term “comprising” means that the various components, ingredients, or steps, can be conjointly employed in practicing the present invention. Accordingly, the term “comprising” encompasses the more restrictive terms “consisting essentially of” and “consisting of.”
  • direct fluid communication means that fluid can transfer readily between two cleaning pad components or layers (e.g., the scrubbing layer and the absorbent layer) without substantial accumulation, transport, or restriction by an interposed layer.
  • tissue, nonwoven webs, construction adhesives, and the like may be present between the two distinct components while maintaining "direct fluid communication", as long as they do not substantially impede or restrict fluid as it passes from one component or layer to another.
  • Z-dimension refers to the dimension orthogonal to the length and width of the cleaning pad of the present invention, or a component thereof.
  • the Z-dimension usually corresponds to the thickness of the cleaning pad or a pad component including scrim material.
  • X-Y dimension refers to the plane orthogonal to the thickness of the cleaning pad, or a component thereof.
  • the X and Y dimensions usually correspond to the length and width, respectively, of the cleaning pad or a pad component.
  • the term “layer” refers to a member or component of a cleaning pad whose primary dimension is X-Y, i.e., along its length and width. It should be understood that the term layer is not necessarily limited to single layers or sheets of material. Thus the layer can comprise laminates or combinations of several sheets or webs of the requisite type of materials. Accordingly, the term “layer” includes the terms “layers” and “layered.”
  • hydrophilic is used to refer to surfaces that are wettable by aqueous fluids deposited thereon. Hydrophilicity and wettability are typically defined in terms of contact angle and the surface tension of the fluids and solid surfaces involved. This is discussed in detail in the American Chemical Society publication entitled Contact Angle, Wettability and Adhesion, edited by Robert F. Gould (Copyright 1964). A surface is said to be wetted by a fluid (i.e., hydrophilic) when either the contact angle between the fluid and the surface is less than 90°, or when the fluid tends to spread spontaneously across the surface, both conditions normally co-existing. Conversely, a surface is considered to be “hydrophobic” if the contact angle is greater than 90° and the fluid does not spread spontaneously across the surface.
  • the term "scrim” means any durable material that provides texture to the surface-contacting side of the cleaning pad's scrubbing layer, and also has a sufficient degree of openness to allow the requisite movement of fluid to the absorbent layer of the cleaning pad.
  • Suitable materials include materials that have a continuous, open structure, such as synthetic and wire mesh screens. The open areas of these materials may be readily controlled by varying the number of interconnected strands that comprise the mesh, by controlling the thickness of those interconnected strands, etc.
  • Other suitable materials include those where texture is provided by a discontinuous pattern printed on a substrate.
  • a durable material e.g., a synthetic
  • a durable material may be printed on a substrate in a continuous or discontinuous pattern, such as individual dots and/or lines, to provide the requisite texture.
  • the continuous or discontinuous pattern may be printed onto a release material that will then act as the scrim. These patterns may be repeating or they may be random. It will be understood that one or more of the approaches described for providing the desired texture may be combined to form the optional scrim material.
  • the Z direction height and open area of the scrim and or scrubbing substrate layer help to control and or retard the flow of liquid into the absorbent core material.
  • the Z height of the scrim and or scrubbing substrate help provide a means of controlling the volume of liquid in contact with the cleaning surface while at the same time controlling the rate of liquid absorption, fluid communication into the absorption core material.
  • an "upper" layer of a cleaning pad is a layer that is relatively further away from the surface that is to be cleaned (i.e., in the implement context, relatively closer to the implement handle during use).
  • the term “lower” layer conversely means a layer of a cleaning pad that is relatively closer to the surface that is to be cleaned (i.e., in the implement context, relatively further away from the implement handle during use).
  • the scrubbing layer is the lower-most layer and the absorbent layer is an upper layer relative to the scrubber layer.
  • the terms "upper” and “lower” are similarly used when referring to layers that are multi-ply (e.g., when the scrubbing layer is a two-ply material).
  • the cleaning implement of the present invention may comprise:
  • the cleaning pads have a percent absorbency, based on the t 1200 absorbent capacity of the pad, at thirty (30) seconds measured under a confining pressure of 0.09 psi (hereafter referred to "t 30 percent absorbency") of not more than about 10%.
  • t 30 percent absorbency will be not more than about 5%, more preferably not more than about 2%, still more preferably not more than about 1%.
  • the cleaning pads will have an absorbent capacity at 1200 seconds, when measured under a confining pressure of 620 Pa (.09 psi) (hereafter referred to as "t 1200 absorbent capacity") of at least about 5 g deionized water per g of the cleaning pad.
  • t 1200 absorbent capacity a confining pressure of 620 Pa (.09 psi)
  • the cleaning pad will have a t 1200 absorbent capacity of at least about 10 g/g, more preferably at least about 20 g/g, and still more preferably at least about 30 g/g.
  • the cleaning pad will preferably have a t 900 of at least about 10 g/g, more preferably a t 900 of at least about 20 g/g.
  • PUP performance under pressure
  • the cleaning pads will preferably, but not necessarily, have a total fluid capacity (of deionized water) of at least about 100 g, more preferably at least about 200 g, still more preferably at least about 300 g and most preferably at least about 400 g. While pads having a total fluid capacity less than 100 g are within the scope of the invention, they are not as well suited for cleaning large areas, such as seen in a typical household, as are higher capacity pads.
  • the handle of the cleaning implement will be any material that will facilitate gripping of the cleaning implement.
  • the handle of the cleaning implement will preferably comprise any elongated, durable material that will provide practical cleaning. The length of the handle will be dictated by the end-use of the implement.
  • the handle will preferably comprise at one end a support head to which the cleaning pad can be releasably attached.
  • the support head can be pivotably attached to the handle using known joint assemblies. Any suitable means for attaching the cleaning pad to the support head may be utilized, so long as the cleaning pad remains affixed during the cleaning process. Examples of suitable fastening means include clamps, hooks & loops (e.g., Velcro®), and the like.
  • the support head will comprise hooks on its lower surface that will mechanically attach to the upper layer (preferably a distinct attachment layer) of the absorbent cleaning pad.
  • a preferred handle comprising a fluid dispensing means
  • Figure 1 A preferred handle, comprising a fluid dispensing means
  • Figure 1 Another preferred handle, which does not contain a fluid dispensing means, is depicted in Figs. 1a and 1b, and is fully described in co-pending U.S. Patent Application Ser. No. US 08/716 755, filed September 23, 1996 by A. J. Irwin.
  • volume flux i.e., rate of fluid uptake
  • rate of fluid uptake may be calculated using the Hagen-Poiseuille law for laminar flow.
  • any of the well known absorbent materials may be utilized and combined to achieve the desired initial delay in absorbency, but overall absorbent capacity. Accordingly, while representative materials and embodiments useful as the cleaning pad are described below, the invention is not limited to such materials and embodiments.
  • the scrubbing layer is the portion of the cleaning pad that contacts the soiled surface during cleaning.
  • materials useful as the scrubbing layer must be sufficiently durable that the layer will retain its integrity during the cleaning process.
  • the scrubbing layer when the cleaning pad is used in combination with a solution, the scrubbing layer must be capable of absorbing liquids and soils, and relinquishing those liquids and soils to the absorbent layer. This will ensure that the scrubbing layer will continually be able to remove additional material from the surface being cleaned.
  • the scrubbing layer will, in addition to removing particulate matter, facilitate other functions, such as polishing, dusting, and buffing the surface being cleaned.
  • the scrubbing layer can be a monolayer, or a multi-layer structure one or more of whose layers may be slitted to facilitate the scrubbing of the soiled surface and the uptake of particulate matter.
  • This scrubbing layer as it passes over the soiled surface, interacts with the soil (and cleaning solution when used), loosening and emulsifying tough soils and permitting them to pass freely into the absorbent layer of the pad.
  • the scrubbing layer preferably contains openings (e.g., slits) that provide an easy avenue for larger particulate soil to move freely in and become entrapped within the absorbent layer of the pad. Low density structures are preferred for use as the scrubbing layer, to facilitate transport of particulate matter to the pad's absorbent layer.
  • materials particularly suitable for the scrubbing layer include synthetics such as polyolefins (e.g., polyethylene and polypropylene), polyesters, polyamides, synthetic cellulosics (e.g., Rayon®), and blends thereof.
  • synthetics such as polyolefins (e.g., polyethylene and polypropylene), polyesters, polyamides, synthetic cellulosics (e.g., Rayon®), and blends thereof.
  • Such synthetic materials may be manufactured using known process such as carded, spunbond, meltblown, airlaid, needlepunched and the like.
  • the absorbent layer serves to retain any fluid and soil absorbed by the cleaning pad during use. While the scrubbing layer has some affect on the pad's ability to provide an initial delay in fluid absorbence, the absorbent layer plays the major role in achieving the desired initial delay and overall absorbency of the present invention.
  • the absorbent layer will be capable of removing fluid and soil from the scrubbing layer so that the scrubbing layer will have capacity to continually remove soil from the surface.
  • the absorbent layer also should be capable of retaining absorbed material under typical in-use pressures to avoid "squeeze-out" of absorbed soil, cleaning solution, etc.
  • the absorbent layer will comprise any material that is capable of absorbing and retaining fluid during use, but after an initial period during which minimal fluid is absorbed. To achieve desired total fluid capacities, it will be preferred to include in the absorbent layer a material having a relatively high capacity (in terms of grams of fluid per gram of absorbent material).
  • a material having a relatively high capacity in terms of grams of fluid per gram of absorbent material.
  • the term "superabsorbent material” means any absorbent material having a g/g capacity for water of at least about 15 g/g, when measured under a confining pressure of 2070 Pa (0.3 psi). Because a majority of the cleaning fluids useful with the present invention are aqueous based, it is preferred that the superabsorbent materials have a relatively high g/g capacity for water or water-based fluids.
  • Representative superabsorbent materials include water insoluble, water-swellable superabsorbent gelling polymers (referred to herein as "superabsorbent gelling polymers") which are well known in the literature. These materials demonstrate very high absorbent capacities for water.
  • the superabsorbent gelling polymers useful in the present invention can have a size, shape and/or morphology varying over a wide range. These polymers can be in the form of particles that do not have a large ratio of greatest dimension to smallest dimension (e.g., granules, flakes, pulverulents, interparticle aggregates, interparticle crosslinked aggregates, and the like) or they can be in the form of fibers, sheets, films, foams, laminates, and the like.
  • Superabsorbent gelling polymers useful in the present invention include a variety of water-insoluble, but water-swellable polymers capable of absorbing large quantities of fluids.
  • Such polymeric materials are also commonly referred to as "hydrocolloids", and can include polysaccharides such as carboxymethyl starch, carboxymethyl cellulose, and hydroxypropyl cellulose; nonionic types such as polyvinyl alcohol, and polyvinyl ethers; cationic types such as polyvinyl pyridine, polyvinyl morpholinione, and N,N-dimethylaminoethyl or N,N-diethylaminopropyl acrylates and methacrylates, and the respective quaternary salts thereof.
  • superabsorbent gelling polymers useful in the present invention have a multiplicity of anionic functional groups, such as sulfonic acid, and more typically carboxy, groups.
  • polymers suitable for use herein include those which are prepared from polymerizable, unsaturated, acid-containing monomers.
  • such monomers include the olefinically unsaturated acids and anhydrides that contain at least one carbon to carbon olefinic double bond. More specifically, these monomers can be selected from olefinically unsaturated carboxylic acids and acid anhydrides, olefinically unsaturated sulfonic acids, and mixtures thereof.
  • non-acid monomers can also be included, usually in minor amounts, in preparing the superabsorbent gelling polymers useful herein.
  • Such non-acid monomers can include, for example, the water-soluble or water-dispersible esters of the acid-containing monomers, as well as monomers that contain no carboxylic or sulfonic acid groups at all.
  • Optional non-acid monomers can thus include monomers containing the following types of functional groups: carboxylic acid or sulfonic acid esters, hydroxyl groups, amide-groups, amino groups, nitrile groups, quaternary ammonium salt groups, aryl groups (e.g., phenyl groups, such as those derived from styrene monomer).
  • non-acid monomers are well-known materials and are described in greater detail, for example, in U.S. Patent 4,076,663 (Masuda et al), issued February 28, 1978, and in U.S. Patent 4,062,817 (Westerman), issued December 13, 1977.
  • Olefinically unsaturated carboxylic acid and carboxylic acid anhydride monomers include the acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, a-cyanoacrylic acid, ⁇ -methylacrylic acid (crotonic acid), ⁇ -phenylacrylic acid, ⁇ -acryloxypropionic acid, sorbic acid, ⁇ -chlorosorbic acid, angelic acid, cinnamic acid, p-chlorocinnamic acid, ⁇ -sterylacrylic acid, itaconic acid, citroconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene and maleic acid anhydride.
  • acrylic acids typified by acrylic acid itself, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, a-cyanoacrylic acid, ⁇ -methylacrylic acid (
  • Olefinically unsaturated sulfonic acid monomers include aliphatic or aromatic vinyl sulfonic acids such as vinylsulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid and styrene sulfonic acid; acrylic and methacrylic sulfonic acid such as sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and 2-acrylamide-2-methylpropane sulfonic acid.
  • Preferred superabsorbent gelling polymers for use in the present invention contain carboxy groups. These polymers include hydrolyzed starch-acrylonitrile graft copolymers, partially neutralized hydrolyzed starch-acrylonitrile graft copolymers, starch-acrylic acid graft copolymers, partially neutralized starch-acrylic acid graft copolymers, saponified vinyl acetate-acrylic ester copolymers, hydrolyzed acrylonitrile or acrylamide copolymers, slightly network crosslinked polymers of any of the foregoing copolymers, partially neutralized polyacrylic acid, and slightly network crosslinked polymers of partially neutralized polyacrylic acid.
  • polymers can be used either solely or in the form of a mixture of two or more different polymers. Examples of these polymer materials are disclosed in U.S. Patent 3,661,875, U.S. Patent 4,076,663, U.S. Patent 4,093,776, U.S. Patent 4,666,983, and U.S. Patent 4,734,478.
  • Most preferred polymer materials for use in making the superabsorbent gelling polymers are slightly network crosslinked polymers of partially neutralized polyacrylic acids and starch derivatives thereof.
  • the hydrogel-forming absorbent polymers comprise from about 50 to about 95%, preferably about 75%, neutralized, slightly network crosslinked, polyacrylic acid (i.e. poly (sodium acrylate/acrylic acid)).
  • Network crosslinking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the superabsorbent gelling polymers. Processes for network crosslinking these polymers and typical network crosslinking agents are described in greater detail in U.S. Patent 4,076,663.
  • superabsorbent gelling polymers is preferably of one type (i.e., homogeneous)
  • mixtures of polymers can also be used in the implements of the present invention.
  • mixtures of starch-acrylic acid graft copolymers and slightly network crosslinked polymers of partially neutralized polyacrylic acid can be used in the present invention.
  • Patent 5,149,335 (Kellenberger et al.), issued September 22, 1992, describe superabsorbent gelling polymers in terms of their Absorbency Under Load (AUL), where gelling polymers absorb fluid (0.9% saline) under a confining pressure of 2070 Pa (0.3 psi).
  • AUL Absorbency Under Load
  • Polymers described therein may be particularly useful in embodiments of the present invention that contain regions of relatively high levels of superabsorbent gelling polymers.
  • those polymers will preferably have an AUL, measured according to the methods described in U.S.
  • Patent 5,147,343 of at least about 24 ml/g, more preferably at least about 27 ml/g after I hour; or an AUL, measured according to the methods described in U.S. Patent 5,149,335, of at least about 15 ml/g, more preferably at least about 18 ml/g after 15 minutes.
  • U.S. patent 5 599 335 Goldman et al.
  • US 5 562 646 Goldman et al.
  • issued 8 oct. 1996 also address the problem of gel blocking and describe superabsorbent gelling polymers useful in overcoming this phenomena.
  • hydrophilic polymeric foams such as those described in commonly assigned U.S. patent 5 650 222 (DesMarais et al.), issued 22 July 1997 and U.S. Patent No. 5,387,207 (Dyer et al.), issued February 7, 1995.
  • HIPEs high internal phase water-in-oil emulsion
  • these foams are readily tailored to provide varying physical properties (pore size, capillary suction, density, etc.) that affect fluid handling ability.
  • these materials are particularly useful, either alone or in combination with other such foams or with fibrous structures, in providing the overall capacity required by the present invention.
  • the absorbent layer will preferably comprise at least about 15%, by weight of the absorbent layer, more preferably at least about 20%, still more preferably at least about 25%, of the superabsorbent material.
  • the absorbent layer may also consist of or comprise fibrous material.
  • Fibers useful in the present invention include those that are naturally occurring (modified or unmodified), as well as synthetically made fibers. Examples of suitable unmodified/modified naturally occurring fibers include cotton, Esparto grass, bagasse, kemp, flax, silk, wool, wood pulp, chemically modified wood pulp, jute, ethyl cellulose, and cellulose acetate.
  • Suitable synthetic fibers can be made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylics such as ORLON®, polyvinyl acetate, Rayon®, polyethylvinyl acetate, non-soluble or soluble polyvinyl alcohol, polyolefins such as polyethylene (e.g., PULPEX®) and polypropylene, polyamides such as nylon, polyesters such as DACRON® or KODEL®, polyurethanes, polystyrenes, and the like.
  • the absorbent layer can comprise solely naturally occurring fibers, solely synthetic fibers, or any compatible combination of naturally occurring and synthetic fibers.
  • the fibers useful herein can be hydrophilic, hydrophobic or can be a combination of both hydrophilic and hydrophobic fibers. As indicated above, the particular selection of hydrophilic or hydrophobic fibers will depend upon the other materials included in the absorbent (and to some degree the scrubbing) layer. That is, the nature of the fibers will be such that the cleaning pad exhibits the necessary fluid delay and overall fluid absorbency.
  • Suitable hydrophilic fibers for use in the present invention include cellulosic fibers, modified cellulosic fibers, rayon, polyester fibers such as hydrophilic nylon (HYDROFIL® ).
  • Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as surfactant-treated or silica-treated thermoplastic fibers derived from, for example, polyolefins such as polyethylene or polypropylene, polyacrylics, polyamides, polystyrenes, polyurethanes and the like.
  • hydrophilizing hydrophobic fibers such as surfactant-treated or silica-treated thermoplastic fibers derived from, for example, polyolefins such as polyethylene or polypropylene, polyacrylics, polyamides, polystyrenes, polyurethanes and the like.
  • Suitable wood pulp fibers can be obtained from well-known chemical processes such as the Kraft and sulfite processes. It is especially preferred to derive these wood pulp fibers from southern soft woods due to their premium absorbency characteristics. These wood pulp fibers can also be obtained from mechanical processes, such as ground wood, refiner mechanical, thermomechanical, chemimechanical, and chemi-thermomechanical pulp processes. Recycled or secondary wood pulp fibers, as well as bleached and unbleached wood pulp fibers, can be used.
  • hydrophilic fiber for use in the present invention is chemically stiffened cellulosic fibers.
  • chemically stiffened cellulosic fibers means cellulosic fibers that have been stiffened by chemical means to increase the stiffness of the fibers under both dry and aqueous conditions. Such means can include the addition of a chemical stiffening agent that, for example, coats and/or impregnates the fibers. Such means can also include the stiffening of the fibers by altering the chemical structure, e.g., by crosslinking polymer chains.
  • the fibers may optionally be combined with a thermoplastic material. Upon melting, at least a portion of this thermoplastic material migrates to the intersections of the fibers, typically due to interfiber capillary gradients. These intersections become bond sites for the thermoplastic material. When cooled, the thermoplastic materials at these intersections solidify to form the bond sites that hold the matrix or web of fibers together in each of the respective layers. This may be beneficial in providing additional overall integrity to the cleaning pad.
  • thermally bonded webs of stiffened fibers retain their original overall volume, but with the volumetric regions previously occupied by the thermoplastic material becoming open to thus increase the average interfiber capillary pore size.
  • Thermoplastic materials useful in the present invention can be in any of a variety of forms including particulates, fibers, or combinations of particulates and fibers.
  • Thermoplastic fibers are a particularly preferred form because of their ability to form numerous interfiber bond sites.
  • Suitable thermoplastic materials can be made from any thermoplastic polymer that can be melted at temperatures that will not extensively damage the fibers that comprise the primary web or matrix of each layer.
  • the melting point of this thermoplastic material will be less than about 190°C, and preferably between about 75°C and about 175°C. In any event, the melting point of this thermoplastic material should be no lower than the temperature at which the thermally bonded absorbent structures, when used in the cleaning pads, are likely to be stored.
  • the melting point of the thermoplastic material is typically no lower than about 50°C.
  • thermoplastic materials can be made from a variety of thermoplastic polymers, including polyolefins such as polyethylene (e.g., PULPEX® ) and polypropylene, polyesters, copolyesters, polyvinyl acetate, polyethylvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylics, polyamides, copolyamides, polystyrenes, polyurethanes and copolymers of any of the foregoing such as vinyl chloride/vinyl acetate, and the like.
  • polyolefins such as polyethylene (e.g., PULPEX® ) and polypropylene
  • polyesters, copolyesters polyvinyl acetate, polyethylvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylics, polyamides, copolyamides, polystyrenes, polyurethanes and copoly
  • suitable thermoplastic materials include hydrophobic fibers that have been made hydrophilic, such as surfactant-treated or silica-treated thermoplastic fibers derived from, for example, polyolefins such as polyethylene or polypropylene, polyacrylics, polyamides, polystyrenes, polyurethanes and the like.
  • the surface of the hydrophobic thermoplastic fiber can be rendered hydrophilic by treatment with a surfactant, such as a nonionic or anionic surfactant, e.g., by spraying the fiber with a surfactant, by dipping the fiber into a surfactant or by including the surfactant as part of the polymer melt in producing the thermoplastic fiber.
  • a surfactant such as a nonionic or anionic surfactant
  • Suitable surfactants include nonionic surfactants such as Brij® 76 manufactured by ICI Americas, Inc. of Wilmington, Delaware, and various surfactants sold under the Pegosperse® trademark by Glyco Chemical, Inc. of Greenwich, Connecticut. Besides nonionic surfactants, anionic surfactants can also be used. These surfactants can be applied to the thermoplastic fibers at levels of, for example, from about 0.2 to about 1 g. per sq. centimeter of thermoplastic fiber.
  • thermoplastic fibers can be made from a single polymer (monocomponent fibers), or can be made from more than one polymer (e.g., bicomponent fibers).
  • bicomponent fibers refers to thermoplastic fibers that comprise a core fiber made from one polymer that is encased within a thermoplastic sheath made from a different polymer. The polymer comprising the sheath often melts at a different, typically lower, temperature than the polymer comprising the core. As a result, these bicomponent fibers provide thermal bonding due to melting of the sheath polymer, while retaining the desirable strength characteristics of the core polymer.
  • Suitable bicomponent fibers for use in the present invention can include sheath/core fibers having the following polymer combinations: polyethylene/ polypropylene, polyethylvinyl acetate/polypropylene, polyethylene/polyester, polypropylene/polyester, copolyester/polyester, and the like.
  • Particularly suitable bicomponent thermoplastic fibers for use herein are those having a polypropylene or polyester core, and a lower melting copolyester, polyethylvinyl acetate or polyethylene sheath (e.g., those available from Danaklon a/s, Chisso Corp., and CELBOND® , available from Hercules). These bicomponent fibers can be concentric or eccentric.
  • the terms “concentric” and “eccentric” refer to whether the sheath has a thickness that is even, or uneven, through the cross-sectional area of the bicomponent fiber. Eccentric bicomponent fibers can be desirable in providing more compressive strength at lower fiber thicknesses.
  • the absorbent layer may also comprise a HIPE-derived hydrophilic, polymeric foam that does not have the high absorbency of those described above as "superabsorbent materials".
  • HIPE-derived hydrophilic, polymeric foam that does not have the high absorbency of those described above as "superabsorbent materials”.
  • the absorbent layer of the cleaning pad may be comprised of a homogeneous material, such as a blend of cellulosic fibers (optionally thermally bonded) and swellable superabsorbent gelling polymer.
  • the absorbent layer may be comprised of discrete layers of material, such as a layer of thermally bonded airlaid material and a discrete layer of a superabsorbent material.
  • a thermally bonded layer of cellulosic fibers can be located lower than (i.e., beneath) the superabsorbent material (i.e., between the superabsorbent material and the scrubbing layer).
  • the superabsorbent material can be located remote from the scrubbing layer by including a less absorbent layer as the lower-most aspect of the absorbent layer.
  • a layer of cellulosic fibers can be located lower (i.e., beneath) than the superabsorbent material (i.e., between the superabsorbent material and the scrubbing layer).
  • the absorbent layer will comprise a thermally bonded airlaid web of cellulose fibers (Flint River, available from Weyerhaeuser, Wa) and AL Thermal C (thermoplastic available from Danaklon a/s, Varde, Denmark), and a swellable hydrogel-forming superabsorbent polymer.
  • the superabsorbent polymer is preferably incorporated such that a discrete layer is located near the surface of the absorbent layer which is remote from the scrubbing layer.
  • a thin layer of, e.g., cellulose fibers (optionally thermally bonded) are positioned above the superabsorbent gelling polymer to enhance containment.
  • the cleaning pads of the present invention will optionally have an attachment layer that allows the pad to be connected to the implement's handle or the support head in preferred implements.
  • the attachment layer will be necessary in those embodiments where the absorbent layer is not suitable for attaching the pad to the support head of the handle.
  • the attachment layer may also function as a means to prevent fluid flow through the top surface (i.e., the handle-contacting surface) of the cleaning pad, and may further provide enhanced integrity of the pad.
  • the attachment layer may consist of a mono-layer or a multi-layer structure, so long as it meets the above requirements.
  • the attachment layer will comprise a surface which is capable of being mechanically attached to the handle's support head by use of known hook and loop technology.
  • the attachment layer will comprise at least one surface which is mechanically attachable to hooks that are permanently affixed to the bottom surface of the handle's support head.
  • the attachment layer is a tri-layered material having a layer of meltblown polypropylene film located between two layers of spun-bonded polypropylene.
  • the cleaning pads of the present development were initially constructed for use in the previously-described cleaning implements, the ability to initially delay significant fluid absorption, followed by subsequent uptake and retention of significant amounts of fluid gives the cleaning pads a utility separate from their combination with a handle to form an implement such as a mop.
  • the cleaning pads themselves can be used without attachment to a handle. They may therefore be constructed without the need to be attachable to a handle.
  • it may be convenient to construct the cleaning pads such that they may be used either in combination with the handle or as a stand-alone product.
  • the scrim will be comprised of a durable, tough material that will provide texture to the pad's scrubbing layer, particularly when in-use pressures are applied to the pad.
  • the scrim will be located such that it is in close proximity to the surface being cleaned.
  • the scrim may be incorporated as part of the scrubbing layer or the absorbent layer, or it may be included as a distinct layer, preferably positioned between the scrubbing and absorbent layers.
  • the scrim material is of the same X-Y dimension as the overall cleaning pad
  • the scrim material be incorporated such that it does not directly contact, to a significant degree, the surface being cleaned. This will maintain the ability of the pad to move readily across the hard surface and will aid in preventing non-uniform removal of the cleaning solution employed.
  • the scrim is part of the scrubbing layer, it will be an upper layer of this component.
  • the scrim must at the same time be positioned sufficiently low in the pad to provide it's scrubbing function.
  • the scrim is incorporated as part of the absorbent layer, it will be a lower layer thereof.
  • the scrim may be desirable to place the scrim such that it will be in direct contact with the surface to be cleaned.
  • the scrim preferably will not extend to the front and back edges of the cleaning pad, and therefore the effect of non-uniformly removing the cleaning solution and solubilized soil is avoided.
  • the scrim In addition to the importance of properly positioning the scrim is that the scrim not significantly impede fluid flow through the pad.
  • the scrim therefore is a relatively open web, such as that depicted in Figure 7 of the drawings. (although the pattern of the scrim depicted in Figure 7 is that of multiple "diamonds", it is recognized that any shaped structure may be utilized.) Applicants have discovered that in addition to providing enhanced scrubbing benefits, the scrim also contributes to the initial delay desired by the pads.
  • the scrim material will be any material that can be processed to provide a tough, open-textured web.
  • Such materials include polyolefins (e.g., polyethylene, polypropylene), polyesters, polyamides, and the like. The skilled artisan will recognize that these different materials exhibit a different degree of hardness. Thus, the hardness of the scrim material can be controlled, depending on the end-use of the pad/implement.
  • the scrim is incorporated as a discrete layer, many commercial sources of such materials are available (e.g., design number VO1230, available from Conwed Plastics, Minneapolis, MN).
  • the scrim may be incorporated by printing a resin or other synthetic material (e.g. latex) onto a substrate, such as is disclosed in U.S. Patent No. 4,745,021, issued May 17, 1988 to Ping, III et al., and U.S. Patent No. 4,733,774, issued March 29, 1988 to Ping, III et al.
  • the various layers that comprise the cleaning pad may be bonded together utilizing any means that provides the pad with sufficient integrity during the cleaning process.
  • the scrubbing and attachment layers may be bonded to the absorbent layer or to each other by any of a variety of bonding means, including the use of a uniform continuous layer of adhesive, a patterned layer of adhesive or any array of separate lines, spirals or spots of adhesive.
  • the bonding means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds or any other suitable bonding means or combinations of these bonding means as are known in the art.
  • Bonding may be around the perimeter of the cleaning pad (e.g., heat sealing the scrubbing layer and optional attachment layer and/or scrim material), and/or across the area (i.e., the X-Y plane) of the cleaning pad so as to form a pattern on the surface of the cleaning pad. Bonding the layers of the cleaning pad with ultrasonic bonds across the area of the pad will provide integrity to avoid shearing of the discrete pad layers during use.
  • the cleaning pad of the present invention will be capable of retaining absorbed fluid, even during the pressures exerted during the cleaning process. This is referred to herein as the cleaning pad's ability to avoid “squeeze-out" of absorbed fluid, or conversely its ability to retain absorbed fluid under pressure.
  • the method for measuring squeeze-out is described in the Test Methods section. Briefly, the test measures the ability of a saturated cleaning pad to retain fluid when subjected to a pressure of 0.25 psi.
  • the cleaning pads of the present invention will have a squeeze-out value of not more than about 40%, more preferably not more than about 25%, still more preferably not more than about 15%, and most preferably not more than about 10%.
  • the cleaning implement of the present invention is preferably used in combination with a cleaning solution.
  • the cleaning solution may consist of any known hard surface cleaning composition.
  • Hard surface cleaning compositions are typically aqueous-based solutions comprising one or more of surfactants, solvents, builders, chelants, polymers, suds suppressors, enzymes, etc.
  • Suitable surfactants include anionic, nonionic, zwitterionic, amphoteric and cationic surfactants. Examples of anionic surfactants include, but are not limited to, linear alkyl benzene sulfonates, alkyl sulfates, alkyl sulfonates, and the like.
  • nonionic surfactants include alkylethoxylates, alkylphenolethoxylates, alkylpolyglucosides, alkylglucamines, sorbitan esters, and the like.
  • zwitterionic surfactants include betaines and sulfobetaines.
  • amphoteric surfactants include materials derived using imidazole chemistry, such as alkylampho glycinates, and alkyl imino propionate.
  • cationic surfactants include alkyl mono-, di-, and tri-ammonium surfactants. All of the above materials are available commercially, and are described in McCutcheon's Vol. 1: Emulsifiers and Detergents, North American Ed., McCutheon Division, MC Publishing Co., 1995.
  • Suitable solvents include short chain (e.g., C 1 -C 6 ) derivatives of oxyethylene glygol and oxypropylene glycol, such as mono- and di-ethylene glycol n-hexyl ether, mono-, di- and tri-propylene glycol n-butyl ether, and the like.
  • Suitable builders include those derived from phosphorous sources, such orthophosphate and pyrophosphate, and non-phosphorous sources, such as nitrilotriacetic acid, S,S-ethylene diamine disuccinic acid, and the like.
  • Suitable chelants include ethylene diamine tetra acetic acid and citric acid, and the like.
  • Suitable polymers include those that are anionic, cationic, zwitterionic, and nonionic.
  • Suitable suds suppressors include silicone polymers and linear or branched C 10 -C 18 fatty acids or alcohols.
  • Suitable enzymes include lipases, proteases, amylases and other enzymes known to be useful for catalysis of soil degradation.
  • a suitable cleaning solution for use with the present implement comprises from about 0.1% to about 2.0% of a linear alcohol ethoxylate surfactant (e.g., Neodol 1-5®, available from Shell Chemical Co.); from about 0 to about 2.0% of an alkylsulfonate (e.g., Bioterge PAS-8s, a linear C 8 sulfonate available from Stepan Co.); from about 0 to about 0.1% potassium hydroxide; from about 0 to about 0.1% potassium carbonate or bicarbonate; optional adjuvents such dyes and/or perfumes; and from about 99.9% to about 90% deionized or softened water.
  • a linear alcohol ethoxylate surfactant e.g., Neodol 1-5®, available from Shell Chemical Co.
  • an alkylsulfonate e.g., Bioterge PAS-8s, a linear C 8 sulfonate available from Stepan Co.
  • potassium hydroxide from about 0 to about 0.1% potassium
  • Figure 2 is a perspective view of a removable cleaning pad 200 comprising a scrubbing layer 201, an attachment layer 203 and an absorbent layer 205 positioned between the scrubbing layer and the attachment layer.
  • a scrubbing layer 201 is a two-ply laminate of carded polypropylene, where the lower layer is slitted.
  • materials that do not inhibit fluid flow may be positioned between scrubbing layer 201 and absorbent layer 203 and/or between absorbent layer 203 and attachment layer 205.
  • the scrubbing and absorbent layers be in substantial fluid communication, to provide the requisite absorbency of the cleaning pad.
  • Figure 2 depicts pad 200 as having all of the pad's layers of equal size in the X and Y dimensions, it is preferred that the scrubbing layer 201 and attachment layer 205 be larger than the absorbent layer, such that layers 201 and 205 can be bonded together around the periphery of the pad to provide integrity.
  • the scrubbing and attachment layers may be bonded to the absorbent layer or to each other by any of a variety of bonding means, including the use of a uniform continuous layer of adhesive, a patterned layer of adhesive or any array of separate lines, spirals or spots of adhesive.
  • the bonding means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds or any other suitable bonding means or combinations of these bonding means as are known in the art. Bonding may be around the perimeter of the cleaning pad, and/or across the surface of the cleaning pad so as to form a pattern on the surface of the scrubbing layer 201.
  • FIG 3 is a blown perspective view of the absorbent layer 305 of an embodiment of a cleaning pad of the present invention.
  • the cleaning pad's scrubbing layer and optional attachment layer are not shown in Figure 3.
  • Absorbent layer 305 is depicted in this embodiment as consisting of a tri-laminate structure.
  • absorbent layer 305 is shown to consist of a discrete layer of particulate superabsorbent gelling material, shown as 307, positioned between two discrete layers 306 and 308 of fibrous material.
  • the superabsorbent material because of the region 307 of high concentration of superabsorbent gelling material, it is preferred that the superabsorbent material not exhibit gel blocking discussed above.
  • fibrous layers 306 and 308 will each be a thermally bonded fibrous substrate of cellulosic fibers, and lower fibrous layer 308 will be indirect fluid communication with the scrubbing layer (not shown).
  • Figure 4 is a cross-sectional view of cleaning pad 400 having a scrubbing layer 401, an attachment layer 403, and an absorbent layer 405 positioned between the scrubbing and attachment layers.
  • Cleaning pad 400 is shown here to have absorbent layer 405 smaller, in the X and Y dimensions, than scrubbing layer 401 and attachment layer 403. Layers 401 and-403 are therefore depicted as being bonded to one another along the periphery of the cleaning pad. Also, in this embodiment, absorbent layer 405 is depicted as having two discrete layers 405a and 405b.
  • upper layer 405a is a hydrophilic polymeric foam material such as that described in commonly assigned copending U.S. patent application Serial No.
  • each of layers 405a and 405b may be formed using two or more individual layers of the respective material.
  • FIG. 7 is a blown perspective view of a cleaning pad 600 having an optional scrim material 602.
  • This scrim material 602 is depicted as a distinct material positioned between scrubbing layer 601 and absorbent layer 605.
  • scrim 602 may be in the form of a printed resin or other synthetic material on the scrubbing layer 601 (preferably the upper surface) or the absorbent layer 605 (preferably the lower surface).
  • Figure 7 also depicts an optional attachment layer 603 that is positioned above absorbent layer 605. As discussed above, the scrim may provide improved cleaning of soils that are not readily solubilized by the cleaning solution utilized, if any.
  • the relatively open structure of the scrim 602 provides the necessary fluid communication between the scrubbing layer 601 and absorbent layer 605, to provide the requisite absorbency rates and capacity.
  • Figure 7 depicts each of layers 601, 603 and 605 as a single layer of material, one or more of these layers may consist of two or more plies.
  • Figure 7 depicts pad 600 as having all of the pad's layers of equal size in the X and Y dimensions
  • the scrubbing layer 601 and attachment layer 603 be larger than the absorbent layer, such that layers 601 and 603 can be bonded together around the periphery of pad 600 to provide integrity.
  • the scrim material 602 be equal size in at least one of the X or Y dimensions, to facilitate bonding at the periphery of the pad with the scrubbing layer 601 and the attachment layer 603. This is particularly preferred when the scrim material is a distinct layer (i.e., is not printed on a substrate).
  • the scrubbing layer 601, scrim 602 and attachment layer 603 may be bonded to the absorbent layer or to each other by any of a variety of bonding means, including the use of a uniform continuous layer of adhesive, a patterned layer of adhesive or any array of separate lines, spirals or spots of adhesive.
  • the bonding means may comprise heat bonds, pressure bonds, ultrasonic bonds, dynamic mechanical bonds or any other suitable bonding means or combinations of these bonding means as are known in the art. Bonding may be around the perimeter of the cleaning pad, and/or across the surface of the cleaning pad so as to form a pattern on the surface of the scrubbing layer 601.
  • Figure 8 is a perspective view of a preferred embodiment of a pad 700 comprising a scrim 702.
  • Figure 8 shows an absorbent layer 705, an attachment layer 703 and scrubbing layer 701 that is partially cut away to facilitate illustration of scrim 702.
  • Scrim 702 may be a distinct layer of material, or may be a component of either the scrubbing layer or absorbent layer.
  • Pad 700 is depicted as having a lower hard surface-contacting surface 700a and an upper implement-contacting surface 700b.
  • Pad 700 has two opposed side edges 700c, which correspond to the "X" dimension of the pad, and two opposed end edges 700d, which correspond to the "Y" dimension of the pad.
  • scrim 702 extends to end edges 700d to allow bonding to the attachment layer 703 and the scrubbing layer 701 (though not depicted as such, absorbent layer 705 will preferably be shorter in the X and Y dimensions, to facilitate bonding of the scrim and the attachment and scrubbing layers). However, scrim 702 does not extend to side edges 700c. Termination of scrim 702 before side edges 700c provides pad 700 with regions 711 of scrubbing layer 701 that do not exhibit the texture of scrim 702 and therefore are relatively smooth. These smooth regions 711 allow for uniform removal of soil/solution during the wiping process.
  • This test determines the gram/gram absorption of deionized water for a cleaning pad that is laterally confined in a piston/cylinder assembly under an initial confining pressure of 0.09 psi (about 0.6 kPa). (Depending on the composition of the cleaning pad sample, the confining pressure may decrease slightly as the sample absorbs water and swells during the time of the test.)
  • the objective of the test is to assess the ability of a cleaning pad to absorb fluid, over a practical period of time, when the pad is exposed to usage conditions (horizontal wicking and pressures).
  • test fluid for the PUP capacity test is deionized water. This fluid is absorbed by the cleaning pad under demand absorption conditions at near-zero hydrostatic pressure.
  • a suitable apparatus 510 for this test is shown in Figure 5.
  • a fluid reservoir 512 such as a petri dish
  • Reservoir 512 rests on an analytical balance indicated generally as 516.
  • the other end of apparatus 510 is a fritted funnel indicated generally as 518, a piston/cylinder assembly indicated generally as 520, that fits inside funnel 518, and cylindrical plastic fritted funnel cover indicated generally as 522 that fits over funnel 518 and is open at the bottom and closed at the top, the top having a pinhole.
  • Apparatus 510 has a system for conveying fluid in either direction that consists of sections glass capillary tubing indicated as 524 and 531a, flexible plastic tubing (e.g., 1/4 inch i.d.
  • Stopcock assembly 526 consists of a 3-way valve 528, glass capillary tubing 530 and 534 in the main fluid system, and a section of glass capillary tubing 532 for replenishing reservoir 512 and forward flushing the fritted disc in fritted funnel 518.
  • Stopcock assembly 538 similarly consists of a 3-way valve 540, glass capillary tubing 542 and 546 in the main fluid line, and a section of glass capillary tubing 544 that acts as a drain for the system.
  • assembly 520 consists of a cylinder 554, a cup-like piston indicated by 556 and a weight 558 that fits inside piston 556.
  • Attached to bottom end of cylinder 554 is a No. 400 mesh stainless steel cloth screen 559 that is biaxially stretched to tautness prior to attachment.
  • the cleaning pad sample indicated generally as 560 rests on screen 559 with the surface-contacting (or scrubbing) layer in contact with screen 559.
  • the cleaning pad sample is a circular sample having a diameter of 5.4 cm.
  • the piston 556 is in the form of a Teflon cup and is machined to fit into cylinder 554 within tight tolerances.
  • Cylindrical stainless steel weight 558 is machined to fit snugly within piston 556 and is fitted with a handle on the top (not shown) for ease in removing.
  • the combined weight of piston 556 and weight 558 is 145.3 g, which corresponds to a pressure of 620 Pa (0.09 psi) for an area of 22.9 cm 2 .
  • the components of apparatus 510 are sized such that the flow rate of deionized water therethrough, under a 10 cm hydrostatic head, is at least 0.01 g/cm 2 /sec, where the flow rate is normalized by the area of fritted funnel 518.
  • Factors particularly impactful on flow rate are the permeability of the fritted disc in fritted funnel 518 and the inner diameters of glass tubing 524, 530, 534, 542, 546 and 531a, and stopcock valves 528 and 540.
  • Reservoir 512 is positioned on an analytical balance 516 that is accurate to at least 0.01 g with a drift of less than 0.1g/hr.
  • the balance is preferably interfaced to a computer with software that can (i) monitor balance weight change at pre-set time intervals from the initiation of the PUP test and (ii) be set to auto initiate on a weight change of 0.01-0.05 g, depending on balance sensitivity.
  • Capillary tubing 524 entering the reservoir 512 should not contact either the bottom thereof or cover 514.
  • the volume of fluid (not shown) in reservoir 512 should be sufficient such that air is not drawn into capillary tubing 524 during the measurement.
  • the fluid level in reservoir 512 should be approximately 2 mm below the top surface of fritted disc in fritted funnel 518. This can be confirmed by placing a small drop of fluid on the fritted disc and gravimetrically monitoring its slow flow back into reservoir 512. This level should not change significantly when piston/cylinder assembly 520 is positioned within funnel 518.
  • the reservoir should have a sufficiently large diameter (e.g., ⁇ 14 cm) so that withdrawal of ⁇ 40 ml portions results in a change in the fluid height of less than 3 mm.
  • the assembly Prior to measurement, the assembly is filled with deionized water.
  • the fritted disc in fritted funnel 518 is forward flushed so that it is filled with fresh deionized water.
  • air bubbles are removed from the bottom surface of the fritted disc and the system that connects the funnel to the reservoir.
  • Steps Nos. 7-9 temporarily "dry" the surface of fritted funnel 518 by exposing it to a small hydrostatic suction of ⁇ 5 cm. This suction is applied if the open end of tube 544 extends ⁇ 5 cm below the level of the fritted disc in fritted funnel 518 and is filled with deionized water. Typically ⁇ 0.04 g of fluid is drained from the system during this procedure. This procedure prevents premature absorption of deionized water when piston/cylinder assembly 520 is positioned within fritted funnel 518.
  • the quantity of fluid that drains from the fritted funnel in this procedure (referred to as the fritted funnel correction weight, or "Wffc")) is measured by conducting the PUP test (see below) for a time period of 20 minutes without piston/cylinder assembly 520. Essentially all of the fluid drained from the fritted funnel by this procedure is very quickly reabsorbed by the funnel when the test is initiated. Thus, it is necessary to subtract this correction weight from weights of fluid removed from the reservoir during the PUP test (see below).
  • a round die-cut sample 560 is placed in cylinder 554.
  • the piston 556 is slid into cylinder 554 and positioned on top of the cleaning pad sample 560.
  • the piston/cylinder assembly 520 is placed on top of the frit portion of funnel 518, the weight 558 is slipped into piston 556, and the top of funnel 518 is then covered with fritted funnel cover 522.
  • the test is initiated by opening valves 528 and 540 so as to connect funnel 518 and reservoir 512. With auto initiation, data collection commences immediately, as funnel 518 begins to reabsorb fluid.
  • the ability of the cleaning pad to retain fluid when exposed to in-use pressures, and therefor to avoid fluid "squeeze-out”, is another important parameter to the present invention.
  • “Squeeze-out” is measured on an entire cleaning pad by determining the amount of fluid that can be blotted from the sample with Whatman filter paper under pressures of 0.25 psi (1.5 kPa). Squeeze-out is performed on a sample that has been saturated to capacity with deionized water via horizontal wicking (specifically, via wicking from the surface of the pad consisting of the scrubbing or surface-contacting layer). (One means for obtaining a saturated sample is described as the Horizontal Gravimetric Wicking method of U.S.

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Food-Manufacturing Devices (AREA)
  • Non-Flushing Toilets (AREA)

Claims (14)

  1. Reinigungsgerät. umfassend:
    a. einen Halter: und
    b. ein entfernbares Reinigungskissen (200). umfassend:
    i. eine Scheuerschicht (201); und
    ii. eine Absorptionsschicht (205):
       dadurch gekennzeichnet, daß das Reinigungskissen (200) eine t30-Prozent-Absorptionsfähigkeit von nicht mehr als 10% der t1200-Absorptionskapazität des Kissens, und eine t1200-Absorptionskapazität von mindestens 5 g entionisiertes Wasser pro g des Reinigungskissens aufweist.
  2. Reinigungsgerät nach Anspruch 1, dadurch gekennzeichnet, daß das Reinigungskissen (200) eine t30-Prozent-Absorptionsfähigkeit von nicht mehr als 5%, vorzugsweise nicht mehr als 2%, weiter vorzugsweise nicht mehr als 1%, der t1200-Absorptionskapazität des Kissens aufweist.
  3. Reinigungsgerät nach Anspruch 1, dadurch gekennzeichnet, daß das Reinigungskissen (200) eine t1200-Absorptionskapazität von mindestens 10 g, vorzugsweise mindestens 20 g, weiter vorzugswelse mindestens 30 g. entionisiertes Wasser pro g des Reinigungskissens aufweist.
  4. Reinigungsgerät nach mindestens einem der Ansprüche 1-3, dadurch gekennzeichnet, daß das Reinigungskissen (200) weiterhin eine Befestigungsschicht (203) umfaßt, und weiterhin dadurch gekennzeichnet, daß die Absorptionsschicht (205) zwischen der Scheuerschicht (201) und der Befestigungsschicht (203) angeordnet ist. und die Befestigungsschicht (203) vorzugsweise ein fluidundurchlässiges Material umfaßt.
  5. Reinigungsgerät nach mindestens einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Scheuerschicht (201) in direkter Fluidverbindung mit der Absorptionsschicht (205) steht.
  6. Reinigungsgerät nach mindestens einem der Ansprüche 1-5, dadurch gekennzeichnet, daß das Reinigungskissen (200) einen Auspresswert von nicht mehr als 40% bei 1.7 kPa (0.25 psi). vorzugsweise nicht mehr als 25% bei 1,7 kPa (0.25 psi) aufweist.
  7. Reinigungsgerät nach mindestens einem der Ansprüche 1-6, dadurch gekennzeichnet, daß der Halter an einem Ende einen Trägerkopf umfaßt. dadurch gekennzeichnet, daß der Trägerkopf ein Mittel zum lösbaren Befestigen des Reinigungskissens (200) an dem Halter umfaßt.
  8. Reinigungsgerät nach mindestens einem der Ansprüche 1-7, dadurch gekennzeichnet, daß das Reinigungskissen (200) weiterhin ein Scrim (602) umfaßt.
  9. Reinigungsgerät, umfassend:
    a. einen Halter, der an einem Ende einen Trägerkopf aufweist; und
    b. ein entfernbares Reinigungskissen (200). umfassend:
    i. eine Scheuerschicht (201);
    ii. eine Absorptionsschicht (205) in direkter Fluidverbindung mit der Scheuerschicht (201); und
    iii. eine Befestigungsschicht (203), welche im wesentlichen fluidundurchlässig ist:
       dadurch gekennzeichnet, daß das Reinigungskissen (200) eine t30-Prozent-Absorptionsfähigkeit von nicht mehr als 5% der t1200-Absorptionskapazität des Kissens, und eine t1200-Absorptionskapazität von mindestens 20 g entionisiertes Wasser pro g des Reinigungskissens aufweist.
  10. Reinigungsgerät nach mindestens einem der Ansprüche 1-9, dadurch gekennzeichnet. daß die Absorptionsschicht (205) ein superabsorbierendes Material umfaßt, gewählt aus der superabsorbierendc gelierende Polymere und hydrophile polymere Absorptionsschäume umfassenden Gruppe.
  11. Reinigungsgerät nach Anspruch 10, dadurch gekennzeichnet, daß die Absorptionsschicht (205) mindestens 20%, bezogen auf das Gewicht der Absorptionsschicht (205), des superabsorbierenden Materials umfaßt.
  12. Reinigungskissen (200). umfassend:
    a. eine Scheuerschicht (201; und
    b. eine Absorptionsschicht (205);
       dadurch gekennzeichnet. daß das Reinigungskissen (200) eine t30-Prozent-Absorptionsfähigkeit von nicht mehr als 5% der t1200-Absorptionskapazität des Kissens, und eine t1200-Absorptionskapazität von mindestens 5 g entionisiertes Wasser pro g des Reinigungskissens aufweist.
  13. Reinigungskissen (200) nach Anspruch 11, dadurch gekennzeichnet. daß das Reinigungskissen eine t1200-Absorptionskapazität von mindestens 20 g entionisiertes Wasser pro g des Reinigungskissens aufweist.
  14. Reinigungskissen (200) nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß das Kissen weiterhin ein Scrim (602) umfaßt.
EP97940971A 1996-09-23 1997-09-10 Reinigungsgerät. Expired - Lifetime EP0926977B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US71676696A 1996-09-23 1996-09-23
US716766 1996-09-23
US08/756,864 US6003191A (en) 1996-09-23 1996-11-26 Cleaning implement
US756864 1996-11-26
PCT/US1997/015962 WO1998011813A1 (en) 1996-09-23 1997-09-10 A cleaning implement

Publications (2)

Publication Number Publication Date
EP0926977A1 EP0926977A1 (de) 1999-07-07
EP0926977B1 true EP0926977B1 (de) 2001-11-14

Family

ID=27109591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97940971A Expired - Lifetime EP0926977B1 (de) 1996-09-23 1997-09-10 Reinigungsgerät.

Country Status (11)

Country Link
EP (1) EP0926977B1 (de)
JP (1) JP3371966B2 (de)
CN (1) CN1238668A (de)
AU (1) AU732487B2 (de)
BR (1) BR9711529A (de)
CA (1) CA2266541C (de)
DE (1) DE69708310T2 (de)
ES (1) ES2163194T3 (de)
MA (1) MA24325A1 (de)
RU (1) RU2157079C1 (de)
WO (1) WO1998011813A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380151B1 (en) * 1997-03-20 2002-04-30 The Procter & Gamble Company Detergent composition for use with a cleaning implement comprising a superabsorbent material and kits comprising both
EP1023431B1 (de) * 1997-10-14 2004-12-15 The Procter & Gamble Company Seitenkettige tenside enthaltende spülwaschmittelzusammensetzungen für harte oberflächen
DE69828989T2 (de) 1997-10-14 2006-03-30 The Procter & Gamble Co., Cincinnati Flüssige oder gelförmige spülmittelzusammensetzungen enthaltend in der mitte der kette verzweigte tenside
JP2001519376A (ja) 1997-10-14 2001-10-23 ザ、プロクター、エンド、ギャンブル、カンパニー 中間鎖分岐界面活性剤を含んでなるパーソナルクレンジング組成物
JP2001520268A (ja) * 1997-10-14 2001-10-30 ザ、プロクター、エンド、ギャンブル、カンパニー 中鎖分枝鎖界面活性剤を包含する硬質表面クリーニング組成物
HUP0004499A3 (en) 1997-10-14 2001-12-28 Procter & Gamble Granular detergent composition comprising mid-chain branched surfactants
US6677287B1 (en) 1998-05-18 2004-01-13 The Procter & Gamble Company Implement containing cleaning composition and disappearing dye
AU4084699A (en) * 1998-05-18 1999-12-06 Procter & Gamble Company, The Implement containing cleaning composition and disappearing dye
US6807702B2 (en) 1999-11-12 2004-10-26 Kimberly-Clark Worldwide, Inc. Cleaning system and apparatus
FR2808436B1 (fr) * 2000-05-03 2003-03-14 Philippe Doubet Dispositif multi-usages menagers absorbant et assechant
US6989075B1 (en) 2000-11-03 2006-01-24 The Procter & Gamble Company Tension activatable substrate
CN101966068B (zh) * 2010-10-28 2013-08-28 太仓弘谊无纺布制造有限公司 一种复合抹布的制作方法
DE102011115372A1 (de) * 2011-10-10 2013-04-11 Carl Freudenberg Kg Reinigungsvorrichtung mit Produktinformationen
KR101880832B1 (ko) * 2013-11-12 2018-07-20 아이로보트 코퍼레이션 세정 패드
US9615712B2 (en) 2013-11-12 2017-04-11 Irobot Corporation Mobile floor cleaning robot
US11272822B2 (en) 2013-11-12 2022-03-15 Irobot Corporation Mobile floor cleaning robot with pad holder
TWI558362B (zh) * 2015-10-21 2016-11-21 Ya-Jing Yang Clean kit for the bottom of the automatic cleaning machine
US10595698B2 (en) 2017-06-02 2020-03-24 Irobot Corporation Cleaning pad for cleaning robot

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761991A (en) * 1971-03-30 1973-10-02 T Moss Scrubbing or buffing device
US5090832A (en) * 1986-05-12 1992-02-25 Colgate-Palmolive Company Disposable cleaning pad and method
US4769267A (en) * 1986-08-25 1988-09-06 Drutan Products, Inc. Sandwich composite chamois-foam and method
JPH01178223A (ja) * 1988-01-08 1989-07-14 Kanai Hiroyuki 乾式仕上げ用フロアパッド
US4931201A (en) * 1988-09-02 1990-06-05 Colgate-Palmolive Company Wiping cloth for cleaning non-abrasive surfaces
US5507065A (en) * 1993-12-10 1996-04-16 Mcbride; John Cleanroom washing system

Also Published As

Publication number Publication date
CA2266541A1 (en) 1998-03-26
RU2157079C1 (ru) 2000-10-10
CA2266541C (en) 2004-03-16
MA24325A1 (fr) 1998-04-01
JP3371966B2 (ja) 2003-01-27
EP0926977A1 (de) 1999-07-07
DE69708310D1 (de) 2001-12-20
BR9711529A (pt) 1999-08-24
AU732487B2 (en) 2001-04-26
WO1998011813A1 (en) 1998-03-26
JP2000507481A (ja) 2000-06-20
CN1238668A (zh) 1999-12-15
ES2163194T3 (es) 2002-01-16
DE69708310T2 (de) 2002-08-22
AU4263397A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
EP0929250B1 (de) Reinigungsgerät mit hoher Absorptionsfähigkeit
US6003191A (en) Cleaning implement
EP0942678B1 (de) Reinigungsgerät mit kontrollierter flüssigkeitsaufsauge
EP1009275B1 (de) Ein reinigungsgerät mit abnehmbarem reinigungskissen, welches meherer reinigungsoberflächen hat
EP0970182B1 (de) Reinigungsmittel zur verwendung mit reinigungsutensil, bestehend aus hochabsorbierendem material sowie behälter hierfür
EP0926977B1 (de) Reinigungsgerät.
EP1019475A1 (de) Reinigungsmittel für harte oberflächen, enthaltend hydrophiles, scherkraft-verdünnendes polymer in sehr geringer menge
AU7216401A (en) A cleaning implement comprising a removable cleaning pad having multiple cleaning surfaces
MXPA99008626A (en) Detergent composition for use with a cleaning implement comprising a superabsorbent material and kits comprising both
MXPA99008582A (en) A cleaning implement comprising a removable cleaning pad having multiple cleaning surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB GR IT NL

17Q First examination report despatched

Effective date: 19990830

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR GB GR IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB GR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011114

REF Corresponds to:

Ref document number: 69708310

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163194

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400063

Country of ref document: GR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20020723

Year of fee payment: 6

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: HENKEL KGAA

Effective date: 20020814

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KGAA

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20040506

NLR2 Nl: decision of opposition

Effective date: 20040506

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1020852

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20070806

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090911

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091022

Year of fee payment: 13

BERE Be: lapsed

Owner name: THE *PROCTER & GAMBLE CY

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100911

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160914

Year of fee payment: 20

Ref country code: GB

Payment date: 20160830

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160817

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160928

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69708310

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170909