EP0926316A1 - Kombinierte Mehrdruck-Dampfturbine - Google Patents
Kombinierte Mehrdruck-Dampfturbine Download PDFInfo
- Publication number
- EP0926316A1 EP0926316A1 EP97811024A EP97811024A EP0926316A1 EP 0926316 A1 EP0926316 A1 EP 0926316A1 EP 97811024 A EP97811024 A EP 97811024A EP 97811024 A EP97811024 A EP 97811024A EP 0926316 A1 EP0926316 A1 EP 0926316A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- steam turbine
- steam
- cooling
- combined multi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
Definitions
- the invention relates to a combined multi-pressure steam turbine with a high-pressure and a medium-pressure range, a uniaxial rotor arrangement which limits the high-pressure and medium-pressure range on one side.
- an outer housing which has inlet and outlet openings and at least partially surrounds the rotor arrangement and the high-pressure and medium-pressure region, and a separating device which seals the high-pressure region axially from the medium-pressure region to the rotor arrangement.
- a combined high-pressure / medium-pressure steam turbine of the generic type is known from US Pat. No. 5,411,365 out, for reasons of simplified constructive interpretation and cost savings a separator 142 (see Fig. 2 of the US publication) through which the high pressure (HP) from the medium pressure range (IP) is separated.
- the combined steam turbine is the combination of a high-pressure and medium-pressure steam turbine part, which by a single rotor shaft are penetrated and opposite directions of steam flow exhibit.
- the one at the end of the high pressure steam turbine escaping steam flow is through an outlet opening and through a Corresponding supply line to the medium pressure area directly above via a reheater fed to the combined steam turbine.
- the medium pressure range is axial against the high pressure area by the separator 142 and radially on the one hand limited by the rotor arrangement and on the other hand by the outer wall.
- a disadvantage of this construction of a combined steam turbine is that the hot steam streams under pressure are in direct thermal contact occur with the outer housing, whereby the mechanical and in particular the thermal stress on the material of the outer casing in these areas very much is high. Therefore, to ensure a long life of the steam turbine in particular to design those areas of the outer housing accordingly strongly, who are exposed to the above-mentioned heavy loads. Be too high-quality materials are used for these housing parts, not least in contribute significantly to the total cost of the steam turbine.
- the invention has for its object a combined high-pressure / medium-pressure steam turbine according to the preamble of claim 1 to develop such that constructive measures should be taken, the mechanical and in particular To reduce thermal stress on the outer casing of the steam turbine To be able to reduce stability requirements on the housing wall. Moreover it should be possible to choose materials for the outer casing inferior quality and thus more cost-effective housing components can.
- a combined high-pressure / medium-pressure steam turbine with one High pressure and a medium pressure range a uniaxial rotor arrangement, which limits the high pressure and medium pressure range on one side, an outer housing, which has inlet and outlet openings and the rotor assembly and the High pressure and medium pressure area at least partially surrounds, as well as a separation device, which the high pressure area from the medium pressure area axially to the rotor assembly seals, developed in such a way that between the rotor assembly and the outer housing a combined HD / MD intermediate housing is provided, which with its from the side facing away from the rotor arrangement together with the outer housing Cooling volume includes that the intermediate housing, the rotor assembly in the medium pressure range at least partially surrounds it, and that surrounding the medium pressure region Intermediate housing in the steam flow direction a through channel is subordinate, which connects the medium pressure range with the cooling volume. This through channel is expediently at the same time a system-related tapping from the medium pressure range.
- the intermediate housing according to the invention is used for the thermal separation of the are called steam streams that spread within the high and medium pressure range, of which the outer turbine encapsulates the entire turbine.
- the outer turbine encapsulates the entire turbine.
- active cooling of the inside of the outer casing and the outside of the Intermediate housing due to the expansion process within the medium pressure turbine cooled steam removed from the medium pressure range and in the between the intermediate case and the outer case forming space initiated.
- the temperature of the outer case through targeted underflow with cooling steam to reduce by approx. 100 ° C and more than in the case of the conventional, direct application of the outer housing with Steam flows into the respective areas of the high and medium pressure turbine be initiated.
- the intermediate housing preferably extends from areas of the medium-pressure steam turbine via the axial separator, which is used to adjust the vapor pressure between High-pressure and medium-pressure areas are provided in a ring around the rotor arrangement is, right down to the high pressure steam turbine area.
- the intermediate housing preferably constructed with the separating device as a unit and encloses the adjacent areas on both sides, just like the separating device the rotor assembly.
- the intermediate housing has sections to which guide vanes are attached are in engagement with the rotor blades of the high-pressure or medium-pressure steam turbine attached to the rotor arrangement.
- the intermediate housing is also vapor-tight with the outer housing has so that the high pressure area of the high pressure steam turbine on one Side of the rotor assembly itself and on the other side of parts of the intermediate housing and the outer housing is limited.
- the intermediate casing surrounds one in Steam flow direction front part of the rotor assembly such that guide vanes are firmly arranged on the intermediate housing, which between the on the rotor assembly protrude integrated blades.
- the one enclosing the medium pressure range Intermediate housing includes the rotor assembly so far that the steam expanding through the rotor arrangement has cooled down until the Steam temperature well below the steam inlet temperature in the medium pressure range lowers.
- steam inlet temperatures are in the medium pressure range about 500 - 600 ° C, which in the course of expansion when passing through the rotor arrangement of the medium-pressure steam turbine falls to well below 500 ° C.
- Parts of the outer casing enclose the intermediate casing in the steam direction the medium-pressure steam turbine, however, are separated by a narrow one Through channel kept at a distance from the intermediate housing. Because of the narrow Through channel, more cooled steam enters the cooling volume the intermediate and outer housing. The steam expanded to below 500 ° C to cool the outer case to the lower temperature level, which causes the Material of the outer casing is exposed to lower thermal loads.
- the cooling volume also has at least one large-dimensioned outlet opening through which the cooling steam can be discharged from the steam turbine.
- the dimensioning the outlet opening is chosen to be significantly larger than the flow cross section the through-channel between the intermediate housing and the outer housing, so that a significantly lower pressure prevails in the cooling volume than in the medium pressure range of the steam turbine. For this reason, in addition to the lesser Thermal stress the outer casing also less strongly with high pressure loaded from the inside of the steam turbine, so that the mechanical load the material of the outer housing is less than that of conventional combined Steam turbines.
- the present invention makes it possible to constructively design the outer housing dimension in a material-saving manner and also use materials, that only withstand the lower temperature and pressure conditions have to. A significant cost reduction in the construction of such steam turbines can be achieved.
- the single figure shows a longitudinal section through a combined steam turbine, a high pressure area (HD) 1 and a medium pressure area (MD) 2 having.
- the terms high pressure area and medium pressure area are intended to mean the areas Define the steam turbine arrangement through which the steam after entering the Steam turbine flows through. So it gets hotter and under high pressure Steam through the inflow duct 3 into the interior of the steam turbine by a Outer housing 4 is surrounded.
- Inside the steam turbine is a uniaxial rotor arrangement 5 provided, the two separate blade regions 5 ' (HD) and 5 '' (MD).
- the blade area 5 ′ of the rotor arrangement 5 is limited on one side the flow volume 6 of the high pressure area, which is connects directly to the outlet 7 of the inflow duct 3.
- the steam flow in high pressure area 1 takes place from right to right on the left through the throughflow volume with guide vanes 8 and 9 blades 6.
- the steam flowing through the high-pressure region enters the Input volume 10 of the medium pressure area 2 and flows through the medium pressure area from left to right until outlet 11 of the medium pressure range.
- such combined steam turbines are also known as in Steam turbines flow through in the opposite direction.
- the guide vanes and 8 blades 9 steam passing in the medium pressure region 2 escapes in the usual way via an outlet opening 12.
- a separating device 13 is provided which radially rotates the rotor arrangement 5 Surrounds center area by means of an L-shaft seal 14. On both sides to the separator extends an intermediate housing 15, the casting technology with the separator 13 is connected.
- An extension of the intermediate housing 15 delimits the side of the high-pressure region 1 the entry area of the flow volume 6.
- the intermediate housing 15 projects beyond part of the rotor arrangement 5 'and points it in the steam flow direction first guide vanes 8, which in the space between the blades of the Project rotor assembly 5 '.
- the intermediate housing 15 is in the high pressure region 1 moreover steam-tightly connected to the outer housing 4.
- the intermediate housing 15 extends in a toroidal manner Form and closes with its, the rotor assembly 5 '' side, the Input volume 10 a.
- the intermediate housing 15 is also in the medium pressure range formed such that it is in the steam flow direction with the first guide vanes 8 is connected, which in the spaces between the blades 9 of the rotor assembly Intervene 5 ''.
- the intermediate housing 15 in the medium pressure range downstream, a part of the outer housing 4 encloses the rotor arrangement 5 ''.
- the part of the outer housing that surrounds the rotor arrangement 5 ′′ is mounted at a distance from the intermediate housing 15, so that a through channel 16 is enclosed, through which a steam outlet radially to the rotor arrangement 5 ′′
- the cooling volume 17 takes place, the cooling volume on the one hand from the intermediate housing 15 and on the other hand enclosed by the inside of the outer housing 4 is.
- the medium pressure region initially passes through the passage 16 flowed through, expanded and therefore cooled steam partially into the Cooling volume 17 and the inside of the outer housing 4 and the outer surface to cool the intermediate housing 15.
- the cooling volume 17 extends radially around the entire intermediate housing and also detects areas on the side of the high pressure area.
- the outer housing can be opened via an outlet opening 18 4 cooling cooling steam escape.
- a cooling line 21 is optionally provided, which with the cooling volume 17 is connected in such a way that it can be regulated by this line Increase in the flow of the cooling volume 17 cooling steam directly from the Cooling volume 17 can flow to the outside without the cooling steam leaving the outlet opening 18 must happen.
- the additional cooling line 21 is particularly useful during start-up processes advantageous in cases of large load changes in the steam turbine, because in this way the cooling steam throughput through the cooling volume 17 within wide limits can be varied.
- For a targeted control of the coolant vapor throughput serves at least one control valve 22 which is installed in the cooling line.
- the Cooling line preferably opens into the outlet area 12 of the medium pressure area.
- the inner contour of the cooling volume 17 is preferably designed such that no dead spaces are formed in the direction of flow of the cooling steam.
- rectifiers which are designed in the form of flow openings 20
- a uniform flow through the cooling volume is achieved before the cooling steam is passed on through the outlet opening 18.
- the intermediate housing 15 is releasably fixed in the embodiment shown a hooking 19 connected to the outer housing 4.
- cooled cooling steam at temperatures of can be branched below 500 ° C, preferably 450 ° C from the medium pressure region 16 and in this way the outer and intermediate casing of the steam turbine are crucial be cooled.
- the above advantages in terms of less The result is a choice of materials and wall thickness.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
einem Außengehäuse, das über Ein- und Auslaßöffnungen verfügt und die Rotoranordnung sowie den Hochdruck- und Mitteldruckbereich wenigstens teilweise umgibt, sowie einer Trennvorrichtung, die den Hochdruckbereich vom Mitteldruckbereich axial zur Rotoranordnung abdichtet.
Durch geeignete Maßnahmen, bspw. durch Gleichrichter, die in Form von Durchströmungsöffnungen 20 ausgebildet sind, wird eine gleichförmige Durchströmung des Kühlvolumens erreicht, bevor der Kühldampf durch die Auslaßöffnung 18 weitergeführt wird.
- 1
- Hochdruckbereich
- 2
- Mitteldruckbereich
- 3
- Einströmungskanal
- 4
- Außengehäuse
- 5
- Rotoranordnung
- 5'
- Rotoranordnung im Hochdruckbereich
- 5''
- Rotoranordnung im Mitteldruckbereich
- 6
- Durchströmungsvolumen des Hochdruckbereiches
- 6'
- Auslaßöffnung im Hochdruckbereich
- 7
- Austrittsöffnung
- 8
- Leitschaufeln
- 9
- Laufschaufeln
- 10
- Eingangsvolumen
- 11
- Durchströmungsvolumen des Mitteldruckbereiches
- 12
- Auslaßöffnung im Mitteldruckbereich
- 13
- Trennvorrichtung
- 14
- Wellendichtung
- 15
- Zwischengehäuse
- 16
- Durchgangskanal
- 17
- Kühlvolumen
- 18
- Ausgangsöffnung
- 19
- Innengehäusefixierung am Aussengehäuse
- 20
- Gleichrichterbohrungen für gleichförmige Umströmung
- 21
- Regelbare Kühldampfleitung
- 22
- Regelventil
Claims (18)
- Kombinierte Mehrdruck-Dampfturbine mit einem Hochdruck- (1) und einem Mitteldruckbereich (2), einer einachsigen Rotoranordnung (5), die den Hochdruck- (1) und Mitteldruckbereich (2) einseitig begrenzt, einem Außengehäuse (4), das über Ein- und Auslaßöffnungen (3, 18, 12) verfügt und die Rotoranordnung (5) sowie den Hochdruck- (1) und Mitteldruckbereich (2) wenigstens teilweise umgibt, sowie einer Trennvorrichtung (13), die den Hochdruckbereich (1) vom Mitteldruckbereich (2) axial zur Rotoranordnung (5) abdichtet, dadurch gekennzeichnet, daß zwischen Rotoranordnung (5) und Außengehäuse (4) ein kombinierten Zwischengehäuse (15) vorgesehen ist, das mit seiner von der Rotoranordnung (5) abgewandten Seite zusammen mit dem Außengehäuse (4) ein Kühlvolumen (17) einschließt, daß das Zwischengehäuse (15) die Rotoranordnung (5) im Mitteldruckbereich (2) teilweise umgibt, und daß dem, den Mitteldruckbereich (2) umgebenden Zwischengehäuse (15) in Dampfströmungsrichtung ein Durchgangskanal (16) nachgeordnet ist, der den Mitteldruckbereich (2) mit dem Kühlvolumen (17) verbindet.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 1, dadurch gekennzeichnet, dass das Zwischengehäuse (15) ein kombiniertes Hochdruck/Mitteldruck-Gehäuse ist.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 1, dadurch gekennzeichnet, daß das Zwischengehäuse (15) als Verbundkonstruktion mit der Trennvorrichtung (13) verbunden ist.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Zwischengehäuse (15) wenigstens den in Dampfströmungsrichtung vorderen Bereich der Rotoranordnung (5') im Hochdruckbereich (1) umschließt.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Zwischengehäuse (15) im Bereich der Hoch(1) und Mitteldruckbereiche (2) Leitschaufeln (8) vorsieht, die zwischen rotorseitig angebrachte Laufschaufeln (9) eingreifen.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Zwischengehäuse (15) auf der Mitteldruckseite (2) der Dampfturbine ein zum Mitteldruckbereich geöffnetes Dampfvolumen (10) einschließt, das über wenigstens eine Einlaßöffnung mit heißem Dampf gespeist wird, der sich in Dampfströmungsrichtung entlang der Rotoranordnung abkühlt und ein Teil des abgekühlten Dampfes durch den Durchgangskanal (16) in das Kühlvolumen (17) gelangt.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 6, dadurch gekennzeichnet, daß der heiße Dampf Temperaturen über 500°C, vorzugsweise größer 540°C, und der in das Kühlvolumen (17) abgeleitete, abgekühlte Dampf Temperaturen unter 500°, vorzugsweise unter 450°C, aufweist.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Außengehäuse (4) Teile der Rotoranordnung (5) unmittelbar umgibt, die jeweils im Hoch- (1) und Mitteldruckbereich (2) in Dampfströmungsrichtung dem Zwischengehäuse (15) nachgeordnet sind.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Außengehäuse (4) im Bereich des Kühlvolumens (17) wenigstens eine Auslaßöffnung (18) aufweist.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 9, dadurch gekennzeichnet, daß das Kühlvolmen (17) eine Innenkontur aufweist, die für den das Kühlvolumen (17) durchströmenden Dampf keine Toträume aufweist.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 10, dadurch gekennzeichnet, dass die Toträume die Form von Hinterstiche haben.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Zwischengehäuse (15) mit dem Außengehäuse (4) lösbar fest, aber wärmeelastisch verbunden ist.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 8, dadurch gekennzeichnet, daß im Bereich des Kühlvolumens (17) das Zwischengehäuse (15) und das Außengehäuse (4) dampfdicht aneinander gefügt sind.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Innenkontur des Kühlvolumens (17) derart ausgebildet ist, daß der das Kühlvolumen (17) durchströmende Dampf, das Kühlvolumen (17) gleichförmig und ohne Turbulenzbildung durchströmt.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 14, dadurch gekennzeichnet, daß wenigstens eine geeignete Durchströmungsöffnung (20) vorgesehen ist, wodurch der Dampf das Kühlvolumen (17) gleichförmig durchströmt, bevor der Kühldampf durch die Auslaßöffnung (18) des Außengehäuses (4) strömt.
- Kombinierte Mehrdruck-Dampfturbine nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß eine Kühlleitung (21) vorgesehen ist, die mit dem Kühlvolumen (17) verbunden ist, durch die zur regelbaren Steigerung der Durchströmung des Kühlvolumens (17) bei transienten Betriebszuständen Kühldampf direkt aus dem Kühlvolumen (17) nach Außen strömen kann, ohne die Auslaßöffnung (18) zu durchströmen.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 16, dadurch gekennzeichnet, daß in der Kühlleitung (21) ein Regelventil vorgesehen ist, durch das der Durchsatz des Kühldampfes im Kühlvolumen steuerbar ist.
- Kombinierte Mehrdruck-Dampfturbine nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß die Kühlleitung im Bereich der Auslaßöffnung (12) des Mitteldruckbereiches mündet.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59711075T DE59711075D1 (de) | 1997-12-24 | 1997-12-24 | Kombinierte Mehrdruck-Dampfturbine |
EP19970811024 EP0926316B1 (de) | 1997-12-24 | 1997-12-24 | Kombinierte Mehrdruck-Dampfturbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19970811024 EP0926316B1 (de) | 1997-12-24 | 1997-12-24 | Kombinierte Mehrdruck-Dampfturbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0926316A1 true EP0926316A1 (de) | 1999-06-30 |
EP0926316B1 EP0926316B1 (de) | 2003-12-03 |
Family
ID=8230549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19970811024 Expired - Lifetime EP0926316B1 (de) | 1997-12-24 | 1997-12-24 | Kombinierte Mehrdruck-Dampfturbine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0926316B1 (de) |
DE (1) | DE59711075D1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1098070A1 (de) * | 1999-10-29 | 2001-05-09 | Mitsubishi Heavy Industries, Ltd. | Dampfturbine mit verbesserter Gehäusekühlvorrichtung |
EP2031190A1 (de) * | 2007-08-28 | 2009-03-04 | Siemens Aktiengesellschaft | Dampfturbine mit geregelter Kühlmittelzuführung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2823891A (en) * | 1953-05-20 | 1958-02-18 | Westinghouse Electric Corp | Steam turbine |
US3189320A (en) * | 1963-04-29 | 1965-06-15 | Westinghouse Electric Corp | Method of cooling turbine rotors and discs |
EP0394894A1 (de) * | 1989-04-26 | 1990-10-31 | Gec Alsthom Sa | Einstückiges Innengehäuse für eine Hochdruck-Mitteldruck-Dampfturbine mit geregelter Kühlung |
WO1997025521A1 (de) * | 1996-01-11 | 1997-07-17 | Siemens Aktiengesellschaft | Turbinenwelle einer dampfturbine mit interner kühlung |
-
1997
- 1997-12-24 EP EP19970811024 patent/EP0926316B1/de not_active Expired - Lifetime
- 1997-12-24 DE DE59711075T patent/DE59711075D1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2823891A (en) * | 1953-05-20 | 1958-02-18 | Westinghouse Electric Corp | Steam turbine |
US3189320A (en) * | 1963-04-29 | 1965-06-15 | Westinghouse Electric Corp | Method of cooling turbine rotors and discs |
EP0394894A1 (de) * | 1989-04-26 | 1990-10-31 | Gec Alsthom Sa | Einstückiges Innengehäuse für eine Hochdruck-Mitteldruck-Dampfturbine mit geregelter Kühlung |
WO1997025521A1 (de) * | 1996-01-11 | 1997-07-17 | Siemens Aktiengesellschaft | Turbinenwelle einer dampfturbine mit interner kühlung |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1098070A1 (de) * | 1999-10-29 | 2001-05-09 | Mitsubishi Heavy Industries, Ltd. | Dampfturbine mit verbesserter Gehäusekühlvorrichtung |
US6341937B1 (en) | 1999-10-29 | 2002-01-29 | Mitsubishi Heavy Industries, Ltd. | Steam turbine with an improved cooling system for the casing |
EP2031190A1 (de) * | 2007-08-28 | 2009-03-04 | Siemens Aktiengesellschaft | Dampfturbine mit geregelter Kühlmittelzuführung |
Also Published As
Publication number | Publication date |
---|---|
DE59711075D1 (de) | 2004-01-15 |
EP0926316B1 (de) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1945911B1 (de) | Dampfturbine | |
DE60203959T2 (de) | Luftgekühltes Abgasgehäuse für eine Gasturbine | |
DE69713502T2 (de) | Rotorkühlung für eine turbomaschine | |
EP1954922B1 (de) | Dampfturbine mit lagerstreben | |
EP0900322B1 (de) | Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle | |
EP1389690A1 (de) | Innenkühlbare Schraube | |
DE4330037A1 (de) | Druckwellenmaschine mit integrierter Verbrennung und Verfahren zur Kühlung des Rotors dieser Druckwellenmaschine | |
DE102012203144A1 (de) | Strömungsmaschine | |
DE19619438B4 (de) | Wärmestausegment für eine Turbomaschine | |
DE3424138A1 (de) | Luftspeichergasturbine | |
DE102012202466B3 (de) | Montage einer Strömungsmaschine | |
EP1911933A1 (de) | Rotor für eine Strömungsmaschine | |
WO1997025521A1 (de) | Turbinenwelle einer dampfturbine mit interner kühlung | |
EP1165942B1 (de) | Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen | |
EP0926316B1 (de) | Kombinierte Mehrdruck-Dampfturbine | |
EP1445427A1 (de) | Dampfturbine und Verfahren zum Betreiben einer Dampfturbine | |
DE3424141A1 (de) | Luftspeicher-gasturbine | |
EP2598724B1 (de) | Dampfturbine sowie verfahren zum kühlen einer solchen | |
EP1788191B1 (de) | Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine | |
DE102008045657B4 (de) | Vorrichtung und Verfahren zur Reduzierung des Drucks auf eine Trennfuge zwischen wenigstens zwei Begrenzungsteilen | |
DE102020134759A1 (de) | Turbomaschine und Verfahren zum Betrieb einer Turbomaschine | |
DE2549112A1 (de) | Turbinenkuehlung | |
EP2274504B1 (de) | Dampfturbine mit kühlvorrichtung | |
EP1400669A1 (de) | Gasturbine mit Vorrichtung zur Arbeitsentnahme zur Kühlung von Scheiben | |
EP2211017A1 (de) | Rotor mit Hohlraum für eine Strömungsmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991217 |
|
AKX | Designation fees paid |
Free format text: DE IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17Q | First examination report despatched |
Effective date: 20020218 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE IT |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
REF | Corresponds to: |
Ref document number: 59711075 Country of ref document: DE Date of ref document: 20040115 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071221 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59711075 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59711075 Country of ref document: DE Representative=s name: RUEGER, BARTHELT & ABEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59711075 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161229 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59711075 Country of ref document: DE |