EP0926292B1 - Procédé de détermination de l'évolution du séchage dans un processus de séchage, et machine de mise en oeuvre - Google Patents

Procédé de détermination de l'évolution du séchage dans un processus de séchage, et machine de mise en oeuvre Download PDF

Info

Publication number
EP0926292B1
EP0926292B1 EP98403088A EP98403088A EP0926292B1 EP 0926292 B1 EP0926292 B1 EP 0926292B1 EP 98403088 A EP98403088 A EP 98403088A EP 98403088 A EP98403088 A EP 98403088A EP 0926292 B1 EP0926292 B1 EP 0926292B1
Authority
EP
European Patent Office
Prior art keywords
drying
relative humidity
machine
air
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98403088A
Other languages
German (de)
English (en)
Other versions
EP0926292A1 (fr
Inventor
Jean-Claude Thomson-CSF P.I.D.B. Geay
Antoine Thomson-CSF P.I.D.B. Soulard
Gilles Thomson-CSF P.I.D.B. Ouvrard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Esswein SA
Original Assignee
Esswein SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Esswein SA filed Critical Esswein SA
Publication of EP0926292A1 publication Critical patent/EP0926292A1/fr
Application granted granted Critical
Publication of EP0926292B1 publication Critical patent/EP0926292B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/32Temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/34Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/36Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/16Air properties
    • D06F2105/24Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/50Starting machine operation, e.g. delayed start or re-start after power cut
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 

Definitions

  • the present invention relates to a method for determining of the evolution of drying in a drying process, as well as a machine for implementing this process.
  • the result of the thermistor measurement process depends on parameters that cannot be controlled or not controlled.
  • the measurement result at constant laundry load (type and quantity of laundry), depends on the tension power supply (in general, its nominal value can be understood between 187 v and 254 v, and may vary over time) and the accuracy of components in particular due to manufacturing tolerances, these components being those that can influence the drying process (the rated power of the air heater can vary by ⁇ 10%, the temperature of the limiting elements can vary by ⁇ 5 ° C, and the tolerance on the thermistor value can influence ⁇ 3 ° C on the dynamics of drying).
  • the measurement result, at constant environment depends on the load to dry (mass and type of laundry).
  • drying phases laundry temperature rise and temperature stabilization phase, drying stage phase, during which the temperature is practically stable, and end of drying phase
  • drying phases laundry are difficult differentiable, which does not allow to foresee sufficiently in advance the end of drying, and even less to effectively regulate the power of drying air heating.
  • the result depends on randomly, load to dry. It's easier to dry, so reliable, a high load than a low load, because in the latter case the result depends on the average position of the load in relation to measuring electrodes. This results in large variations in the measurement in depending on the mass and type of textiles to be dried.
  • the subject of the present invention is a method for determining the evolution of drying during a drying process for various products, for which the quality of the determination does not depend or practically does not depend non-controllable or uncontrolled parameters, in particular: the voltage of the electrical sector, the dispersion of component or parameter values can influence the drying process (nominal power of the element heating, temperature thresholds when operating close to limits admissible by the components, temperature as measured by the thermistor or dispersion of the electrode measurement results), mass and type of laundry to be dried, cut off from the power supply, door opening by user, ambient temperature and humidity ...
  • the present invention also relates to a machine (dryer or washer-dryer) using this process, the cost price of which is not significantly increased by this implementation, and which is simple to use and maintain.
  • the relative humidity measurements are made using components called “humidistors”.
  • the invention is described below with reference to a washer-dryer or to a dryer, hereinafter referred to as a machine, but it is fine understood that it can be used in various drying processes at using an air flow, this air can be more or less hot.
  • the rates drying air humidity are measured using a component called "Humidistance".
  • This component is in the form of a capacitor whose dielectric constant is modified according to the humidity of the air ambient.
  • the capacity of this capacitor varies according to the relative humidity ambient air present between its electrodes.
  • any electrical component whose response electric varies according to the humidity of the ambient air, like for example resistive components whose resistance varies as a function of this humidity. he it is understood that if a component other than a humidity is used, changes his connection circuit to the processing circuit (microcontroller described below) controlling the drying machine.
  • the humidity relative drying air can vary between 0 and 100%.
  • the precision of relative humidity measurement is generally only necessary at the end of drying, when the relative humidity decrease gradient begins to increase slightly, after remaining substantially constant during the central part of the drying process, and we want to avoid laundry overdrying and saving air heating energy from drying.
  • the relative humidity measuring device must be even withstand condensation without damage or drift from its characteristics. The humidity, used as described below, meets these requirements.
  • the invention is particularly intended for machines in which the drying air flow can either be interrupted periodically or take at least two different values.
  • the ventilation rate is high (approximately 150 m 3 / h)
  • the flow is lower (approximately 40 m 3 / h).
  • the difference in relative humidity for the two air flows attenuates and tends towards a null value.
  • the water molecules also permeate the "skin" (peripheral part) of linen fibers as their heart, and those of the "skin” are easily vaporized.
  • the water molecules permeating the heart migrate to the periphery, but this migration movement is relatively slow (its speed depends in particular on the nature of the fibers and the arrangement of the linen in the machine drum). It was found that at the end of drying, this migration speed is low and substantially constant, whatever the drying air flow.
  • the process of the invention takes advantage of this phenomenon by monitoring at least at the end of drying said difference in humidity for determine the end of the drying process.
  • the diagram in FIG. 1 represents the evolution of the relative humidity rate H R for two different masses of wet linen as a function of time.
  • the curves of FIG. 1 are recorded on a prototype or pre-series machine, then their remarkable values are memorized in memories such as ROMs installed on series machines, to be exploited in the manner described below. These masses are for example 1 and 4 kg.
  • the drying process comprises three phases denoted respectively P0, P1 and P2.
  • each period T comprises a succession of four elementary times: [Dmax, A, Dmin, A], the meanings of which are as follows: Dmax, Dmin: maximum and minimum flow rate respectively, A: stopping the drying air ventilation.
  • Dmax, Dmin maximum and minimum flow rate respectively
  • A stopping the drying air ventilation.
  • the values of Dmax and Dmin are different depending on the phases of the drying process.
  • the values of Dmax and Dmin are respectively 140 m 3 / h and 40 m 3 / h and their respective durations within a period T are 31 seconds and 6 seconds, the downtime A being 2 seconds.
  • the values of the flow rates are the same, but their durations are 12 seconds for Dmax and 25 seconds for Dmin, the downtime A always being 2 seconds.
  • the values cited for this example may all be different in other examples without departing from the scope of the invention.
  • Phase P0 begins with the start of the drying process and ends when the mass of laundry and the parts of the machine heated by the flow of hot drying air have reached the maximum temperature that this hot air can give them. This end of P0 coincides with the instant when the relative humidity H R of the drying air reaches its maximum (H RO ), H R being measured when the ventilation stops (for example after 25 seconds of stop , to be able to obtain a stabilized value of the relative humidity) between two successive periods T, T being as defined above.
  • H RO maximum
  • H R being measured when the ventilation stops (for example after 25 seconds of stop , to be able to obtain a stabilized value of the relative humidity) between two successive periods T, T being as defined above.
  • H RO maximum
  • P0 of fixed duration equal to the greatest value measured in the laboratory on pre-series machines.
  • the measurement frequency of H R can be variable depending on the machine and the mass of laundry.
  • phase P1 begins phase P1, during which relative humidity values called H R are measured. These values are measured between two periods T, also when the ventilation is stopped, for example after 25 seconds of stop. It can be seen that H R is constant, then decreases appreciably linearly over time, and more rapidly for low loads of laundry.
  • phase P1 The end of phase P1 is determined as follows. We can for example take as a reference the instant when the drying rate of the laundry reaches 20% (the drying rate being defined as the ratio between the mass of water remaining in the laundry and the mass of laundry). Since this drying rate cannot be measured directly in a machine in service with the user, the corresponding relative humidity H R1 is determined in the laboratory, in an identical machine. This rate is noted x. H RO , with o ⁇ x ⁇ 1, for different quantities of wet laundry, H R1 being always measured as described above. For the sake of clarity, only two curves have been shown in FIG. 1, corresponding to wet laundry masses of 1 and 4 kg, but in reality, we proceed with different other masses.
  • Phase P2 begins as soon as the relative humidity drops below x. H RO corresponding.
  • H RO corresponding.
  • two different measurements are made for each load of laundry: a measurement of H R1 as during phase P1, and a measurement of H R2 during elementary times when the drying air flow is equal to Dmin.
  • the measurements of H R1 and H R2 during phase P2 are carried out more often than the measurements of H R1 during phase P1, because their values decrease very rapidly.
  • the machine control device it is therefore sufficient for the machine control device to carry out a few humidity rate measurements (by means of frequency measurements) at “characteristic” instants, that is to say at the start of drying, to determine H RO (when the humidity is at its maximum), then a little before the foreseeable end of P1 (that is to say a short time before going down to x. H RO ), and then periodically during of P2, by regularly alternating the measurements of H R1 and H R2 until the difference (H R1 - H R2 ) reaches the desired value, which is a function of the drying rate (or a similar indication) displayed by the user.
  • the curves relating to a small load of laundry (a few pieces of laundry) and to a maximum load of laundry (approximately 4 to 5 kg, for a standard machine) are sufficiently distant from each other so that the control circuit of the machine can, even before the end of PO, quickly determine what is the curve relating to any load of laundry to be dried, even if this load differs significantly in composition from that used to establish the curves.
  • the humidity of an air flow being a diffuse phenomenon, and not concentrated in a small area of the section of this flow, the positioning of the humidity does not need to be performed in a specific location. He is by therefore easy to place it in a place where it least risks fouling with fluff from the dried laundry.
  • the method of the invention can be implemented both in drying air exhaust machines than in condensation.
  • the accuracy of determination of the drying rate by determining the average type of product to be drying and its drying characteristics by example by measuring the slope of the curves in Figure 1.
  • nature textile fibers influence the speed of migration of water molecules from their hearts to the surface, so the drying speed.
  • the evaporation of the retained water superficially is fast, and therefore the drying is fast, which increases the slope of the corresponding curve. It then suffices to modulate the speed of drying of these products.
  • the circuit 1 shown schematically in Figure 2 comprises, in as a sensor signal processing device and a device for calculation, a digital microcontroller 2.
  • a main capacitive sensor 3, of the type "humidity” is connected to an oscillator 4 followed by a circuit 5 of setting in shape delivering variable frequency rectangular signals in depending on the capacity of the sensor 3.
  • the output of circuit 5 is connected to a digital input 6 of the microcontroller 2.
  • the microcontroller 2 is also connected to a memory 8 in which values of drying rate as a function of different relative humidity values and / or relative humidity difference values for the air flow rates of the machine. If you don't have a humidity, you can use a resistive humidity sensor (7).
  • This alternative solution has been represented in broken lines in Figure 3.
  • This sensor 7 is connected to an analog input 6 'of the microcontroller 2.
  • This input 6' is connected, inside the microcontroller to an analog / digital converter (not shown).
  • a temperature sensor 9, for example a thermistor, is connected to a other analog input 10 of the microcontroller 2.
  • the microcontroller 2 is obviously programmed for the skilled person on reading the present description.
  • the temperature sensor 9 makes it possible to correct, if if applicable, the information provided by the sensor 3.
  • An air flow sensor 11 is connected to another input 12 of the microcontroller.
  • This input 12 is an analog or digital input, depending on the type of sensor 11. In the simplest case, this sensor 11 is a tachometer integral with the drying air circuit turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

La présente invention se rapporte à un procédé de détermination de l'évolution du séchage dans un processus de séchage, ainsi qu'à une machine de mise en oeuvre de ce procédé.
Actuellement, dans le domaine des sèche-linge et des machines lavantes-séchantes, on détermine en fait la fin du processus de séchage, soit par mesure de l'évolution de la température de l'air de séchage et/ou de sa dérivée à l'aide d'une thermistance placée dans le circuit d'air de séchage (cette température augmente, à débit d'air sensiblement constant, au cours de la fin du séchage du linge), soit par mesure, à l'aide d'électrodes au contact du linge, de la résistivité du linge (celle-ci augmente au fur et à mesure du séchage).
Le résultat du procédé de mesure par thermistance dépend de paramètres non maítrisables ou non maítrisés. Le résultat de mesure, à charge de linge constante (type et quantité de linge), dépend de la tension d'alimentation du secteur (en général, sa valeur nominale peut être comprise entre 187 v et 254 v, et peut varier au cours du temps) et de la précision des composants en particulier du fait des tolérances de fabrication, ces composants étant ceux pouvant influencer le processus de séchage (la puissance nominale du dispositif de chauffage d'air peut varier de ± 10 %, la température des éléments de limitation peut varier de ± 5°C, et la tolérance sur la valeur de la thermistance peut influer de ± 3°C sur la dynamique de séchage). Le résultat de mesure, à environnement constant (tension, puissance de chauffage et température de l'air de séchage) dépend de la charge à sécher (masse et type de linge). De plus, les phases de séchage du linge (phase de montée en température et stabilisation de la température, phase du palier de séchage, pendant laquelle la température est pratiquement stable, et phase de fin de séchage) sont difficilement différenciables, ce qui ne permet pas de prévoir suffisamment à l'avance la fin du séchage, et encore moins de réguler de façon efficace la puissance de chauffage de l'air de séchage.
Dans le cas de la mesure de résistivité, le résultat dépend, de façon aléatoire, de la charge à sécher. Il est plus facile de sécher, de façon fiable, une charge importante qu'une charge faible, car dans ce dernier cas le résultat dépend de la position moyenne de la charge par rapport aux électrodes de mesure. Il en résulte d'importantes variations de la mesure en fonction de la masse et du type des textiles à sécher.
En plus de leur mauvaise reproductibilité, ces procédés connus nécessitent des essais statistiques nombreux, entraínant d'importants délais de développement, et donc un coût élevé de ce développement.
Il faut également noter que les résultats des mesures faites selon ces procédés connus deviennent encore plus aléatoires lorsque se produisent en cours de séchage des événements extérieurs tels que la coupure du secteur électrique, l'ouverture de la porte de la machine pour un ajout de linge en cours de séchage, le changement de la consigne (en général : durée de séchage) par l'utilisateur ou bien si l'on fait évoluer les structures de la machine.
On connaít en outre dans le document FR 1 290 592 un sèche-linge dans lequel un dispositif de régulation, contrôlant le débit d'air de séchage et l'échauffement de cet air de séchage, est mis en oeuvre à partir d'une mesure de l'humidité relative de l'air sortant du linge.
La présente invention a pour objet un procédé de détermination de l'évolution du séchage au cours d'un processus de séchage de divers produits, pour lequel la qualité de la détermination ne dépende pas ou pratiquement pas de paramètres non maítrisables ou non maítrisés, en particulier : la tension du secteur électrique, la dispersion des valeurs des composants ou paramètres pouvant influer sur le processus de séchage (puissance nominale de l'élément chauffant, seuils de température en cas de fonctionnement proche des limites admissibles par les composants, température telle que mesurée par la thermistance ou dispersion des résultats de mesure des électrodes), masse et type de linge à sécher, coupure du secteur d'alimentation, ouverture de porte par l'utilisateur, température et humidité ambiantes...
La présente invention a également pour objet une machine (sèche-linge ou lavante-séchante) mettant en oeuvre ce procédé, dont le prix de revient ne soit pas notablement augmenté par cette mise en oeuvre, et qui soit simple à utiliser et à entretenir.
Le procédé de l'invention est caractérisé en ce qu'il comprend les étapes suivantes :
  • mesure, au début du processus de séchage, d'une humidité relative maximale de l'air de séchage, à l'arrêt de la ventilation d'air de séchage ;
  • mise en oeuvre, lorsque cette humidité relative descend en-dessous d'un seuil qui est fonction de ladite humidité relative maximale, d'une dernière phase du processus de séchage, au cours de laquelle on fait alternativement circuler, dans le circuit d'air de séchage de la machine, de l'air de séchage avec au moins deux débits différents ;
  • mesure des valeurs d'humidité relative pour les deux débits différents ;
  • comparaison d'une relation établie à partir desdites mesures de valeurs d'humidité relative avec une relation prédéterminée dépendante d'une quantité de produit à sécher ; et
  • déduction de l'état de séchage des produits en fonction du résultat de ladite comparaison.
De façon avantageuse, les mesures d'humidité relative se font à l'aide de composants dénommés "humidistances".
L'invention sera mieux comprise à la lecture de la description détaillée d'un mode de mise en oeuvre, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :
  • la figure 1 est un diagramme montrant l'évolution d'une relation de différence de valeurs d'humidité relative pour différentes charges de linge, conformément à l'invention, et
  • la figure 2 est un bloc-diagramme d'un exemple de circuit de détermination du degré de séchage, conforme à l'invention.
L'invention est décrite ci-dessous en référence à une lavante-séchante ou à un sèche-linge, dénommés par la suite machine, mais il est bien entendu qu'elle peut être mise en oeuvre dans divers processus de séchage à l'aide d'un flux d'air, cet air pouvant être plus ou moins chaud.
Dans la machine mettant en oeuvre le procédé de l'invention, les taux d'humidité de l'air de séchage sont mesurés à l'aide d'un composant dénommé "humidistance". Ce composant se présente sous la forme d'un condensateur dont la constante diélectrique est modifiée en fonction de l'humidité de l'air ambiant. La capacité de ce condensateur varie en fonction de l'humidité relative de l'air ambiant présent entre ses électrodes. De façon plus générale, on peut employer à la place de l'humidistance tout composant électrique dont la réponse électrique varie en fonction de l'humidité de l'air ambiant, comme par exemple des composants résistifs dont la résistance varie en fonction de cette humidité. Il est bien entendu que si l'on utilise un composant autre qu'une humidistance, on modifie en conséquence son circuit de liaison au circuit de traitement (microcontrôleur décrit ci-dessous) commandant la machine de séchage. Pour déterminer cette humidité relative, on insère le condensateur dans le circuit d'accord d'un oscillateur, et on mesure la fréquence de cet oscillateur. Cette fréquence est donc fonction de la capacité du condensateur, qui est elle-même fonction de l'humidité relative de l'air dans lequel est plongé ce condensateur. Il est donc facile de déterminer à chaque instant l'humidité relative en mesurant une valeur de fréquence.
Dans le cas d'une machine telle qu'un sèche-linge, l'humidité relative de l'air de séchage peut varier entre 0 et 100 %. La précision de mesure d'humidité relative n'est généralement nécessaire qu'en fin de séchage, lorsque le gradient de diminution d'humidité relative commence à augmenter légèrement, après être resté sensiblement constant pendant la partie centrale du processus de séchage, et que l'on veut éviter un surséchage du linge et économiser de l'énergie de chauffage de l'air de séchage. En outre, le dispositif de mesure d'humidité relative doit être à même de supporter la condensation sans endommagement ni dérive de ses caractéristiques. L'humidistance, utilisée de la façon décrite ci-dessous, répond à ces exigences.
On dispose au moins une telle humidistance dans le circuit d'air de séchage de la machine, et on la relie à un oscillateur suivi d'un circuit d'exploitation approprié permettant de contrôler le circuit de séchage et offrant à l'utilisateur la possibilité de choisir un degré de séchage déterminé. La réalisation d'un tel oscillateur et d'un tel circuit d'exploitation est évidente pour l'homme du métier à la lecture de la présente description, et ne sera pas décrite en détail.
L'invention s'adresse en particulier à des machines dans lesquelles le débit d'air de séchage peut soit être interrompu périodiquement, soit prendre au moins deux valeurs différentes. Il existe par exemple des machines dont la turbine de ventilation est dissymétrique et tourne alternativement dans chacun des deux sens. Dans l'un des sens de rotation, le débit de ventilation est élevé (environ 150 m3/h), et dans l'autre sens de rotation, le débit est plus faible (environ 40 m3/h). Au début du processus de séchage, lorsque le débit d'air est élevé, la vaporisation de l'eau contenue dans le linge est importante. Par contre, lorsque le débit d'air est faible ou nul, la vaporisation de l'eau est plus faible.
Au fur et à mesure du déroulement du processus de séchage, la différence d'humidité relative pour les deux débits d'air s'atténue et tend vers une valeur nulle. En effet, en début de séchage d'un linge humide, les molécules d'eau imprègnent aussi bien la « peau » (partie périphérique) des fibres du linge que leur coeur, et celles de la « peau » sont facilement vaporisées. Ensuite, les molécules d'eau imprégnant le coeur migrent vers la périphérie, mais ce mouvement de migration est relativement lent (sa vitesse dépend en particulier de la nature des fibres et de la disposition du linge dans le tambour de la machine). On a constaté qu'en fin de séchage, cette vitesse de migration est faible et sensiblement constante, quel que soit le débit d'air de séchage. Le procédé de l'invention tire parti de ce phénomène en surveillant au moins en fin de séchage ladite différence d'humidité pour déterminer la fin du processus de séchage.
Le diagramme de la figure 1 représente l'évolution du taux d'humidité relative HR pour deux masses différentes de linge humide en fonction du temps. Les courbes de la figure 1 sont relevées sur une machine prototype ou de pré-série, puis leurs valeurs remarquables sont mémorisées dans des mémoires telles que des ROM implantées sur des machines de série, pour être exploitées de la façon décrite ci-dessous. Ces masses sont par exemple de 1 et 4 Kg. Le processus de séchage comprend trois phases notées respectivement P0, P1 et P2.
Pour toutes ces phases du processus de séchage du linge, les mesures d'humidité relative HR sont effectuées à l'arrêt stabilisé du débit d'air de séchage. Egalement, pour toutes ces phases, le débit d'air varie de manière périodique. Chaque période T comprend une succession de quatre temps élémentaires : [Dmax, A, Dmin, A] dont les significations sont les suivantes : Dmax, Dmin : débit maximal et minimal respectivement, A : arrêt de la ventilation d'air de séchage. Les valeurs de Dmax et de Dmin sont différentes selon les phases du processus de séchage. Ainsi, selon un exemple, pour les phases P0 et P1, les valeurs de Dmax et Dmin sont respectivement de 140 m3/h et 40 m3/h et leurs durées respectives au sein d'une période T sont de 31 secondes et 6 secondes, les temps d'arrêt A étant de 2 secondes. Pour ce même exemple, pendant la phase P2, les valeurs des débits sont les mêmes, mais leurs durées sont de 12 secondes pour Dmax et 25 secondes pour Dmin, les temps d'arrêt A étant toujours de 2 secondes. Bien entendu, les valeurs citées pour cet exemple peuvent toutes être différentes dans d'autres exemples sans sortir du cadre de l'invention.
Les phases P0, P1 et P2 sont déterminées de la façon suivante. La phase P0 commence avec le début du processus de séchage et s'achève lorsque la masse de linge et les parties de la machine chauffées par le flux d'air chaud de séchage ont atteint la température maximale que peut leur conférer cet air chaud. Cette fin de P0 coïncide avec l'instant où l'humidité relative HR de l'air de séchage atteint son maximum (HRO), HR étant mesurée à l'arrêt de la ventilation (par exemple après 25 secondes d'arrêt, pour pouvoir obtenir une valeur stabilisée de l'humidité relative) entre deux périodes T successives, T étant telle que définie ci-dessus. Pour simplifier la réalisation, on peut, dans les machines de série, prendre P0 de durée fixe égale à la plus grande valeur mesurée en laboratoire sur des machines de pré-série. La périodicité de mesure de HR peut être variable selon les machines et selon les masses de linge. Il suffit généralement de quelques mesures pour déterminer la fin de P0, qui intervient assez rapidement après le début du séchage (après quelques minutes en général). On constate que les valeurs de HRO sont nettement différentes pour les deux charges de linge prises en exemple (ces valeurs de HRO sont notées HRO - 1 et HRO -4.
Ensuite débute la phase P1, au cours de laquelle on mesure des valeurs d'humidité relative appelées HR. Ces valeurs sont mesurées entre deux périodes T, également à l'arrêt de la ventilation, par exemple après 25 secondes d'arrêt. On constate que HR est constante, puis diminue sensiblement linéairement au cours du temps, et plus rapidement pour de faibles charges de linge.
Ceci est dû en particulier au fait que l'air de séchage passe plus difficilement dans une grande quantité de linge (occupant presque complètement tout le volume intérieur du tambour de la machine) que dans une petite quantité de linge, et se charge donc moins en humidité.
La fin de la phase P1 est déterminée de la façon suivante. On peut par exemple prendre comme référence l'instant où le taux de séchage du linge atteint 20 % (le taux de séchage étant défini comme le rapport entre la masse d'eau restant dans le linge et la masse de linge). Ce taux de séchage ne pouvant être directement mesuré dans une machine en service chez l'utilisateur, on détermine en laboratoire, dans une machine identique, le taux d'humidité relative HR1 correspondant. Ce taux est noté x. HRO, avec o<x<1, et ce, pour différentes quantités de linge humide, HR1 étant toujours mesuré de la façon décrite ci-dessus. Pour des raisons de clarté, on n'a représenté sur la figure 1 que deux courbes, correspondant à des masses de linge humide de 1 et 4 kg, mais dans la réalité, on procède avec différentes autres masses.
La phase P2 débute dès que l'humidité relative devient inférieure au x. HRO correspondant. Pendant toute cette phase, qui s'achève théoriquement au séchage complet du linge, on effectue deux mesures différentes pour chaque charge de linge: une mesure de HR1 comme pendant la phase P1, et une mesure de HR2 pendant des temps élémentaires où le débit d'air de séchage est égal à Dmin. Les mesures de HR1 et HR2 pendant la phase P2 sont effectuées plus souvent que les mesures de HR1 pendant la phase P1, car leurs valeurs diminuent très rapidement. On relève pour différentes valeurs de la différence (HR1 - HR2) le taux de séchage correspondant (ou une indication équivalente telle que linge prêt à être repassé, linge tout à fait sec, ...), car, comme on le voit d'après la figure 1, cette différence décroít en fonction du temps, et donc en fonction du taux de séchage du linge, et s'annule lorsque le linge est complètement sec. On remarquera sur cette figure 1 que les courbes relatives à différentes charges de linge ont des phases P1 et P2 de durées différentes et que les fins des phases P2 sont suffisamment distantes entre elles dans le temps pour qu'un processeur puisse les distinguer facilement.
Par conséquent, il suffit de mémoriser dans la mémoire de chaque machine de série les allures des différentes courbes HR1 et HR2 (ou des points caractéristiques de ces courbes, entre lesquels peut avoir lieu une interpolation) pour différentes charges de linge, ces différentes courbes ayant été relevées sur une machine prototype ou de pré-série, afin de déterminer très facilement la fin du séchage du linge. A cet effet, il n'est pas nécessaire que l'utilisateur connaisse la masse de linge, puisque les courbes relatives à différentes masses et/ou qualités de linge sont suffisamment différenciées les unes par rapport aux autres. Il suffit donc que le dispositif de contrôle de la machine procède à quelques mesures de taux d'humidité (par l'intermédiaire de mesures de fréquences) à des instants « caractéristiques », c'est-à-dire au début du séchage pour déterminer HRO (lorsque le taux d'humidité est à son maximum), puis un peu avant la fin prévisible de P1 (c'est-à-dire peu de temps avant de descendre à x. HRO), et ensuite périodiquement au cours de P2, en alternant régulièrement les mesures de HR1 et HR2 jusqu'à ce que la différence (HR1 - HR2) atteigne la valeur désirée, qui est fonction du taux de séchage (ou d'une indication similaire) affiché par l'utilisateur. On notera que les courbes relatives à une petite charge de linge (quelques pièces de linge) et à une charge maximale de linge (environ 4 à 5 kg, pour une machine standard) sont suffisamment distantes entre elles pour que le circuit de contrôle de la machine puisse, avant même la fin de PO, rapidement déterminer quelle est la courbe relative à une charge quelconque de linge à sécher, même si cette charge diffère nettement en composition de celle ayant servi à établir les courbes.
Il est important de noter que ces mesures sont pratiquement indépendantes de la température de l'air de séchage (en particulier pendant P2) et des différents phénomènes précités intervenant dans le processus de séchage (tension secteur, rechargement de linge, dérives des composants...).
L'humidité d'un flux d'air étant un phénomène diffus, et non pas concentré en une faible zone de la section de ce flux, le positionnement de l'humidistance n'a pas besoin d'être effectué en un endroit précis. Il est par conséquent aisé de la placer en un endroit où elle risque le moins l'encrassement par de la bourre provenant du linge séché.
Le procédé de l'invention peut être mis en oeuvre aussi bien dans les machines à évacuation de l'air de séchage que dans les machines à condensation.
De façon avantageuse, on peut améliorer la précision de détermination du taux de séchage en déterminant le type moyen du produit à sécher et ses caractéristiques de séchage (textile dans le cas présent) par exemple en mesurant la pente des courbes de la figure 1. En effet, la nature des fibres textiles influence la vitesse de migration des molécules d'eau de leur coeur vers la surface, donc la vitesse de séchage. Dans le cas extrême de fibres n'absorbant pratiquement pas d'eau, l'évaporation de l'eau retenue superficiellement est rapide, et donc le séchage est rapide, ce qui augmente la pente de la courbe correspondante. Il suffit alors de moduler la vitesse de séchage de ces produits.
Une autre possibilité d'affiner cette précision est d'associer à l'humidistance une sonde de température, ce qui permet de tenir compte de l'influence des variations de température sur les variations d'humidité relative, et donc de corriger ces dernières. De plus, il est ainsi possible de déterminer l'humidité absolue de l'air de séchage.
Le circuit 1 représenté schématiquement en figure 2 comporte, en tant que dispositif d'exploitation de signaux de capteurs et dispositif de calcul, un microcontrôleur numérique 2. Un capteur principal capacitif 3, du type « humidistance », est relié à un oscillateur 4 suivi d'un circuit 5 de mise en forme délivrant des signaux rectangulaires à fréquence variable en fonction de la capacité du capteur 3. La sortie du circuit 5 est reliée à une entrée numérique 6 du microcontrôleur 2. Le microcontrôleur 2 est également relié à une mémoire 8 dans laquelle sont stockées des valeurs de taux de séchage en fonction de différentes valeurs d'humidité relative et/ou de valeurs de différences d'humidité relative pour les débits d'air de la machine. Si on ne dispose pas d'humidistance, on peut utiliser à sa place un capteur résistif d'humidité (7). Cette solution alternative a été représentée en traits interrompus en figure 3. Ce capteur 7 est relié à une entrée analogique 6' du microcontrôleur 2. Cette entrée 6' est reliée, à l'intérieur du microcontrôleur à un convertisseur analogique/numérique (non représenté). Un capteur de température 9, par exemple une thermistance, est relié à une autre entrée analogique 10 du microcontrôleur 2. Le microcontrôleur 2 est programmé de façon évidente pour l'homme du métier à la lecture de la présente description. Le capteur de température 9 permet de corriger, le cas échéant, les informations fournies par le capteur 3. Un capteur de débit d'air de séchage 11 est relié à une autre entrée 12 du microcontrôleur. Cette entrée 12 est une entrée analogique ou numérique, selon le type du capteur 11. Dans le cas le plus simple, ce capteur 11 est un tachymètre solidaire de la turbine du circuit d'air de séchage.

Claims (9)

  1. Procédé de détermination de l'évolution du séchage au cours d'un processus de séchage comprenant plusieurs phases de séchage (P0, P1, P2), mis en oeuvre dans une machine dans laquelle on fait circuler un courant d'air chauffé, caractérisé en ce qu'il comprend les étapes suivantes :
    mesure, au début du processus de séchage, d'une humidité relative maximale (HRO) de l'air de séchage, à l'arrêt de la ventilation d'air de séchage ;
    mise en oeuvre, lorsque cette humidité relative descend en-dessous d'un seuil (x, HRO) qui est fonction de ladite humidité relative maximale (HRO), d'une dernière phase (P2) du processus de séchage, au cours de laquelle on fait alternativement circuler, dans le circuit d'air de séchage de la machine, de l'air de séchage avec au moins deux débits différents (D1, D2) ;
    mesure des valeurs d'humidité relative (HR1, HR2) pour les deux débits différents (D1, D2);
    comparaison d'une relation établie à partir desdites mesures de valeurs d'humidité relative (HR1, HR2) avec une relation prédéterminée dépendante d'une quantité de produit à sécher ; et
    déduction de l'état de séchage des produits en fonction du résultat de ladite comparaison.
  2. Procédé selon la revendication 1, caractérisé en ce que ladite relation prédéterminée est une différence entre des valeurs d'humidité relative mesurées pour les deux débits différents.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'on mesure en outre la température de l'air de séchage en au moins un point de son circuit, afin de corriger, le cas échéant, les mesures d'humidité relative.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on mesure la pente de la loi d'évolution de l'humidité relative, afin de tenir compte du type du produit à sécher et de ses caractéristiques de séchage.
  5. Machine de séchage de produits par un courant d'air de séchage, comportant un microcontrôleur (2) auquel est relié au moins un capteur d'humidité relative (3, 7), caractérisée en ce qu'elle comprend un capteur (11) de débit d'air de séchage relié au microcontôleur (2) et une mémoire (8) dans laquelle sont stockées des valeurs de taux de séchage en fonction de valeurs de différences d'humidité relative pour les débits d'air de la machine (D1, D2).
  6. Machine selon la revendication 5, caractérisée en ce que l'un au moins des capteurs d'humidité relative (3) est un capteur capacitif du type "humidistance".
  7. Machine selon l'une des revendications 5 ou 6, caractérisée en ce que l'un au moins des capteurs d'humidité relative (7) est un capteur résistif.
  8. Machine selon la revendication 5 à 7, caractérisée en ce qu'elle comporte en outre au moins un capteur (9) de température d'air de séchage.
  9. Machine selon l'une des revendications 5 à 8, caractérisée en ce qu'elle est un sèche-linge ou une lavante-séchante.
EP98403088A 1997-12-19 1998-12-08 Procédé de détermination de l'évolution du séchage dans un processus de séchage, et machine de mise en oeuvre Expired - Lifetime EP0926292B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9716146 1997-12-19
FR9716146A FR2772898B1 (fr) 1997-12-19 1997-12-19 Procede de determination de l'evolution du sechage dans un processus de sechage, et machine de mise en oeuvre

Publications (2)

Publication Number Publication Date
EP0926292A1 EP0926292A1 (fr) 1999-06-30
EP0926292B1 true EP0926292B1 (fr) 2003-04-16

Family

ID=9514835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98403088A Expired - Lifetime EP0926292B1 (fr) 1997-12-19 1998-12-08 Procédé de détermination de l'évolution du séchage dans un processus de séchage, et machine de mise en oeuvre

Country Status (4)

Country Link
EP (1) EP0926292B1 (fr)
DE (1) DE69813489T2 (fr)
ES (1) ES2195295T3 (fr)
FR (1) FR2772898B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081448A1 (fr) 2017-10-25 2019-05-02 BSH Hausgeräte GmbH Procédé permettant de déterminer des caractéristiques du linge dans un sèche-linge et sèche-linge approprié pour ledit procédé

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872263B1 (fr) * 2004-06-28 2006-11-10 Brandt Ind Sas Procede de suivi d'un cycle de sechage, notamment pour machine a secher le linge
CN100523359C (zh) * 2005-02-02 2009-08-05 昆山科技大学 电热干燥器的省能自动停机的方法
KR101275553B1 (ko) * 2006-06-09 2013-06-20 엘지전자 주식회사 세탁기 및 그 동작방법
DE102006037239A1 (de) * 2006-08-09 2008-02-14 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und Wäschetrockner bzw. Waschtrockner zum Steuern des Trocknens von feuchter Wäsche
DE102006051504A1 (de) 2006-10-31 2008-05-08 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Betreiben eines Hausgeräts zur Pflege von Wäschestücken
US9371609B2 (en) 2014-06-24 2016-06-21 General Electric Company Dryer appliances and methods for operating same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB901954A (en) * 1960-05-19 1962-07-25 Gen Motors Corp Improvements in or relating to clothes dryers
GB2275992B (en) * 1993-03-08 1997-01-08 Europ Gas Turbines Ltd Process and apparatus for drying articles or materials
US5570520A (en) * 1995-05-17 1996-11-05 Eaton Corporation Clothes dryer dryness detection system
US5649372A (en) * 1996-03-14 1997-07-22 American Dryer Corporation Drying cycle controller for controlling drying as a function of humidity and temperature
JPH09285696A (ja) * 1996-04-22 1997-11-04 Matsushita Electric Ind Co Ltd 衣類乾燥機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081448A1 (fr) 2017-10-25 2019-05-02 BSH Hausgeräte GmbH Procédé permettant de déterminer des caractéristiques du linge dans un sèche-linge et sèche-linge approprié pour ledit procédé

Also Published As

Publication number Publication date
FR2772898B1 (fr) 2000-03-17
DE69813489T2 (de) 2004-04-08
DE69813489D1 (de) 2003-05-22
FR2772898A1 (fr) 1999-06-25
EP0926292A1 (fr) 1999-06-30
ES2195295T3 (es) 2003-12-01

Similar Documents

Publication Publication Date Title
FR2820506A1 (fr) Procede de mesure d&#39;une capacite de condensateur
EP0926292B1 (fr) Procédé de détermination de l&#39;évolution du séchage dans un processus de séchage, et machine de mise en oeuvre
CN103443353B (zh) 转筒式衣物干燥机及控制转筒式衣物干燥机以使易损衣物干燥的方法
CN104805664B (zh) 洗干一体机及其烘干控制方法
EP0523793A1 (fr) Fer à repasser muni d&#39;un détecteur de la nature des tissus
AU2011335133B2 (en) A method of controlling a rotatable-drum laundry drier and a rotatable-drum laundry drier implementing the method
EP0829569B1 (fr) Machine à laver et à sécher
EP2458078B2 (fr) Sèche-linge à tambour rotatif et procédé de contrôle d&#39;un sèche-linge à tambour rotatif
EP1707663B1 (fr) Procédé d&#39;asservissement d&#39;un ou plusieurs paramètres d&#39;un processus de lavage et machine mettant en oeuvre un tel procédé d&#39;asservissement
FR2523817A1 (fr) Procede de sechage de feuilles de tabac dans un secheur et appareil pour regler le processus de sechage de celles-ci
EP1612319A1 (fr) Procédé de suivi d&#39;un cyclede de séchage notamment pour machine à sécher le linge
FR2695415A1 (fr) Procédé d&#39;essorage de linge mouillé.
FR2770631A1 (fr) Procede d&#39;optimisation de la consommation d&#39;energie d&#39;une machine de sechage par courant d&#39;air de produits ou materiaux disposes dans une enceinte
EP0370875B1 (fr) Sèche linge muni d&#39;un système de commande automatique de fonctionnement
EP0523794B1 (fr) Fer à repasser muni d&#39;un détecteur de mouvement
EP0523795A1 (fr) Fer à repasser muni d&#39;un détecteur d&#39;humidité
EP0060698A1 (fr) Sécheur à tambour
EP0648992B1 (fr) Procédé de séchage de produits et dispositif de régulation de la température de l&#39;air de séchage dans une machine de séchage
FR2629484A1 (fr) Perfectionnement aux moyens de detection de balourds dans les lave-linge
EP1306481B1 (fr) Procede de controle du taux d&#39;humidite du linge sortant d&#39;une secheuse répasseuse et sécheuse répasseuse mettant en oeuvre ce procédé
FR2489509A1 (fr) Procede et dispositif de mesure electrique de quantites de chaleur
EP0219387B1 (fr) Procédé de détection du niveau d&#39;eau dans une cuve de lave-linge, et lave-linge mettant en oeuvre ce procédé
FR2729470A1 (fr) Dispositif de mesure du degre de sechage dans un seche-linge
FR2632986A1 (fr) Seche-linge commande par microprocesseur
FR2489946A1 (fr) Appareil de commande du taux d&#39;humidite d&#39;une matiere granulaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991227

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20011023

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69813489

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030806

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080102

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090116

Year of fee payment: 11

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091231

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091208

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: FAGORBRANDT SAS, FR

Effective date: 20110826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FAGORBRANDT SAS

Effective date: 20111021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69813489

Country of ref document: DE

Representative=s name: PRINZ & PARTNER PATENTANWAELTE RECHTSANWAELTE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R081

Ref document number: 69813489

Country of ref document: DE

Owner name: FAGORBRANDT SAS, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121210

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130110

Year of fee payment: 15

Ref country code: FR

Payment date: 20130124

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69813489

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69813489

Country of ref document: DE

Effective date: 20140701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131209

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GROUPE BRANDT, FR

Effective date: 20160420