EP0922781B1 - Iron aluminide coating and process for application of this iron aluminide coating - Google Patents

Iron aluminide coating and process for application of this iron aluminide coating

Info

Publication number
EP0922781B1
EP0922781B1 EP98811151A EP98811151A EP0922781B1 EP 0922781 B1 EP0922781 B1 EP 0922781B1 EP 98811151 A EP98811151 A EP 98811151A EP 98811151 A EP98811151 A EP 98811151A EP 0922781 B1 EP0922781 B1 EP 0922781B1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminide coating
iron aluminide
iron
yttrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811151A
Other languages
German (de)
French (fr)
Other versions
EP0922781A1 (en
Inventor
Mohamed Dr. Nazmy
Markus Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7850773&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0922781(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0922781A1 publication Critical patent/EP0922781A1/en
Application granted granted Critical
Publication of EP0922781B1 publication Critical patent/EP0922781B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component

Definitions

  • the invention relates to an iron aluminide coating.
  • the invention also relates to a method for applying an iron aluminide coating according to the preamble of the independent process claim.
  • the invention has for its object in an iron aluminide coating of the type mentioned at the outset to improve the oxidation behavior.
  • the iron aluminide coating has the following composition: 5 - 35% by weight aluminum 15 - 25% by weight chrome 0.5-10% by weight of molybdenum, tungsten, tantalum and niobium 0 - 0.3% by weight zircon 0 -1% by weight boron 0 -1% by weight yttrium Remainder iron and manufacturing-related impurities.
  • the advantages of the invention can be seen, inter alia, in the fact that the coating has good oxidation resistance, in particular at temperatures above 1000 ° C.
  • the use of intermetallic phases also has the advantage that the coating does not fail even at high temperatures. This is particularly advantageous if the layer is used as a binding layer for a thermal insulation layer.
  • the iron aluminide coating is therefore ideally suited as a coating and bonding layer for thermally stressed elements of thermal turbomachines.
  • the ductile-brittle transition temperature DBTT Ductile Brittle Transition Temperature
  • Coatings based on intermetallic phases based on iron aluminides have been developed.
  • a preferred area is: 5 - 35% by weight aluminum 15 - 25% by weight chrome 0.5-10% by weight of molybdenum, tungsten, tantalum and niobium 0 - 0.3% by weight zircon 0-1% by weight boron 0-1% by weight yttrium Remainder iron and manufacturing-related impurities.
  • a particularly preferred area is: 10 - 25% by weight aluminum 15-20% by weight chrome 2 - 10% by weight of molybdenum, tungsten, tantalum and niobium 0.1 - 0.3% by weight zircon 0.1 - 0.5% by weight boron 0.2 - 0.5% by weight yttrium Remainder iron and manufacturing-related impurities.
  • the coatings can be applied by means of CVD, PVD, plasma spraying, etc. thermally stressed elements applied by thermal flow machines become.
  • Aluminum is absolutely necessary to have an excellent resistance to oxidation to reach. If the aluminum content drops below 5% by weight, it becomes insufficient Oxidation resistance achieved with an aluminum content of over 35% by weight the material becomes brittle.
  • the aluminum content is therefore between 5% by weight and 35% by weight, preferably between 10% by weight and 25% by weight.
  • Chromium increases the resistance to oxidation and increases the effect of aluminum on the resistance to oxidation. If the chromium content drops below 15% by weight insufficient resistance to oxidation is achieved with a chromium content The material becomes too brittle over 25% by weight.
  • the chromium content is therefore between 15% by weight and 25% by weight, preferably between 15% by weight and 20 Wt .-%.
  • Molybdenum, tungsten, tantalum and niobium also increase the resistance to oxidation and improve the morphology of the oxide layer and reduce interdiffusion between the coating and the base material.
  • the total salary of these elements should not drop below 0.5% by weight and a content of 10 Do not exceed% by weight.
  • the total content of molybdenum, tungsten, tantalum and niobium is therefore between 0.5% by weight and 10% by weight, preferably between 2 wt% and 10 wt%.
  • Zircon increases the oxidation resistance and the ductility of the material, whereby the zircon content should not exceed 0.3% by weight.
  • the zircon content lies thus at a maximum of 0.3% by weight, preferably between 0.1% by weight and 0.3 Wt .-%.
  • the boron content should be 1% by weight do not exceed.
  • the boron content is therefore at most 1% by weight, preferably between 0.1% and 0.5% by weight.
  • Yttrium forms Y 2 O 3 and increases the adhesion of the coating to the base material
  • the yttrium content should not exceed 1% by weight.
  • the yttrium content is therefore at most 1% by weight, preferably between 0.2% by weight and 0.5% by weight.
  • Example 1 Alloy in% by weight Fe Cr al Ta Mo B Zr Y 1 rest 20 10 4 - 00:05 0.2 0.2 2 rest 17 20 4 - 00:05 0.2 0.5 3 rest 20 15 - 4 00:05 0.2 0.5 4 rest 20 6 4 - 00:05 0.2 0.5 5 rest 25 5 - 4 00:05 0.2 0.5
  • Example 2 Alloy in% by weight Fe Cr al Ta Mo B Zr Y 6 rest 20 15 - 4 00:05 0.2 - 7 rest 15 15 - 4 00:05 0.2 0.2
  • Samples were produced from alloys 6 and 7 listed in Table 2 and investigated the oxidation behavior at 1300 ° C in air.
  • the samples show 2 an excellent oxidation behavior at 1300 ° C, they pointed practically no weight gain after about 10 hours Oxidation more on.
  • the iron aluminide coating can be applied directly to workpieces, especially thermally claimed elements of thermal flow machines, for example Shovels, heat shields, linings of combustion chambers, etc., made of Nikkel-based alloys be applied. It is advantageous between the iron aluminide coating and the nickel-based alloy is a layer of platinum to arrange. This platinum layer acts as a diffusion barrier between the iron aluminide coating and the nickel-based alloy. The platinum layer shows preferably a thickness of 10 to 20 microns.
  • the iron aluminide coating can be used as a binding layer between thermally stressed Elements of thermal flow machines, for example Shovels, heat shields, linings of combustion chambers, etc., and one Thermal insulation layer can be used.
  • the thermal insulation layer is there for example made of zirconium oxide with yttrium oxide, calcium oxide or magnesium oxide was partially or fully stabilized.

Description

Technisches GebietTechnical field

Die Erfindung betrifft einer Eisenaluminidbeschichtung. Die Erfindung betrifft ebenfalls ein Verfahren zum Aufbringen einer Eisenaluminidbeschichtung nach dem Oberbegriff des unabhängigen Verfahrensanspruches.The invention relates to an iron aluminide coating. The invention also relates to a method for applying an iron aluminide coating according to the preamble of the independent process claim.

Stand der TechnikState of the art

Aus der EP 0 625 585 B1 ist eine Fe-Cr-Al-Legierung mit hoher Oxidationsbeständigkeit bekanntgeworden. Aus dieser Legierung wurden Folien für Katalysatorträger in katalytischen Konvertern hergestellt.
Beschichtungen die aus dieser Legierung hergestellt wurden zeigten aber insbesondere bei hohen Temperaturen und als Beschichtung von thermisch beanspruchten Elementen von thermischen Strömungsmaschinen ungenügende Oxidationseigenschaften.
Um Wärmedämmschichten auf Schaufeln, Hitzeschilder, usw., von thermischen Strömungsmaschinen und Brennkammern aufzubringen wird auf diese Elemente üblicherweise eine Bindeschicht aufgebracht, die im Vakuum-Plasma-Verfahren aufgetragen wird. Nachteile dieser Bindeschichten sind, dass bei Anwendungstemperaturen über 900°C die Bindeschicht üblicherweise versagt und die Wärmedämmschicht abfällt sowie die ungenügende Oxidationsbeständigkeit der Bindeschicht.
An Fe-Cr-Al alloy with high oxidation resistance has become known from EP 0 625 585 B1. This alloy was used to produce foils for catalyst supports in catalytic converters.
Coatings made from this alloy showed insufficient oxidation properties, particularly at high temperatures and as a coating of thermally stressed elements of thermal turbomachines.
In order to apply thermal insulation layers to blades, heat shields, etc., of thermal turbomachines and combustion chambers, a binding layer is usually applied to these elements, which is applied in a vacuum plasma process. Disadvantages of these bonding layers are that the bonding layer usually fails at application temperatures above 900 ° C. and the thermal insulation layer falls off, and the inadequate resistance to oxidation of the bonding layer.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Eisenaluminidbeschichtung der eingangs genannten Art das Oxidationsverhalten zu verbessern.The invention has for its object in an iron aluminide coating of the type mentioned at the outset to improve the oxidation behavior.

Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht.According to the invention, this is achieved by the features of the first claim.

Kern der Erfindung ist es also, dass die Eisenaluminidbeschichtung folgende Zusammensetzung aufweist: 5 - 35 Gew.-% Aluminium 15 - 25 Gew.-% Chrom 0.5 - 10 Gew.-% von Molybdän, Wolfram, Tantal und Niob 0 - 0.3 Gew.-% Zirkon 0 -1 Gew.-% Bor 0 -1 Gew.-% Yttrium    Rest Eisen sowie herstellungsbedingte Verunreinigungen.The essence of the invention is therefore that the iron aluminide coating has the following composition: 5 - 35% by weight aluminum 15 - 25% by weight chrome 0.5-10% by weight of molybdenum, tungsten, tantalum and niobium 0 - 0.3% by weight zircon 0 -1% by weight boron 0 -1% by weight yttrium Remainder iron and manufacturing-related impurities.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Beschichtung einen guten Oxidationswiderstand aufweist, dies insbesondere bei Temperaturen über 1000°C. Die Verwendung von intermetallischen Phasen hat zudem den Vorteil, das die Beschichtung auch bei hohen Temperaturen nicht versagt, dies ist insbesondere ein Vorteil wenn die Schicht als Bindeschicht für eine Wärmedämmschicht verwendet wird. Die Eisenaluminidbeschichtung ist somit hervorragend geeignet als Beschichtung und Bindeschicht für thermisch beanspruchte Elemente von thermischen Strömungsmaschinen.
Die Duktil-Spröd-Uebergangstemperatur DBTT (engl.: Ductile Brittle Transition Temperature) liegt bei den erfindungsgemässen Beschichtungen tiefer als bei herkömmlichen Ni-Basis-Beschchtungen, was sehr vorteilhaft für die Anwendung als Beschichtung ist.
The advantages of the invention can be seen, inter alia, in the fact that the coating has good oxidation resistance, in particular at temperatures above 1000 ° C. The use of intermetallic phases also has the advantage that the coating does not fail even at high temperatures. This is particularly advantageous if the layer is used as a binding layer for a thermal insulation layer. The iron aluminide coating is therefore ideally suited as a coating and bonding layer for thermally stressed elements of thermal turbomachines.
The ductile-brittle transition temperature DBTT (Ductile Brittle Transition Temperature) is lower in the coatings according to the invention than in conventional Ni-based coatings, which is very advantageous for use as a coating.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.Further advantageous embodiments of the invention result from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In den Zeichnungen sind Messbeispiele schematisch dargestellt.
Es zeigen:

Fig. 1
die Gewichtsänderung in Bezug zur Oberfläche [Δm/A] bei 1050°C über die Zeit in Minuten;
Fig. 2
die Gewichtsänderung [Δm] bei 1300°C über die Zeit in Minuten.
Measurement examples are shown schematically in the drawings.
Show it:
Fig. 1
the change in weight in relation to the surface [Δm / A] at 1050 ° C over time in minutes;
Fig. 2
the change in weight [Δm] at 1300 ° C over time in minutes.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Only the elements essential for understanding the invention are shown.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Es wurden Beschichtungen auf der Basis von intermetallischen Phasen auf der Basis von Eisenaluminiden entwickelt. Ein bevorzugter Bereich ist: 5 - 35 Gew.-% Aluminium 15 - 25 Gew.-% Chrom 0.5 - 10 Gew.-% von Molybdän, Wolfram, Tantal und Niob 0 - 0.3 Gew.-% Zirkon 0 - 1 Gew.-% Bor 0 - 1 Gew.-% Yttrium    Rest Eisen sowie herstellungsbedingte Verunreinigungen.Coatings based on intermetallic phases based on iron aluminides have been developed. A preferred area is: 5 - 35% by weight aluminum 15 - 25% by weight chrome 0.5-10% by weight of molybdenum, tungsten, tantalum and niobium 0 - 0.3% by weight zircon 0-1% by weight boron 0-1% by weight yttrium Remainder iron and manufacturing-related impurities.

Ein besonders bevorzugter Bereich ist: 10 - 25 Gew.-% Aluminium 15 - 20 Gew.-% Chrom 2 - 10 Gew.-% von Molybdän, Wolfram, Tantal und Niob 0.1 - 0.3 Gew.-% Zirkon 0.1 - 0.5 Gew.-% Bor 0.2 - 0.5 Gew.-% Yttrium    Rest Eisen sowie herstellungsbedingte Verunreinigungen. A particularly preferred area is: 10 - 25% by weight aluminum 15-20% by weight chrome 2 - 10% by weight of molybdenum, tungsten, tantalum and niobium 0.1 - 0.3% by weight zircon 0.1 - 0.5% by weight boron 0.2 - 0.5% by weight yttrium Remainder iron and manufacturing-related impurities.

Durch die erfindungsgemässe Kombination der oben beschriebenen Elemente wird eine intermetallische Phase mit hervorragenden Oxidationseigenschaften und hoher Temperaturbeständigkeit erzeugt.Through the combination according to the invention of the elements described above becomes an intermetallic phase with excellent oxidation properties and high temperature resistance.

Die Beschichtungen können mittels CVD, PVD, Plasmaspritzen, usw., auf die thermisch beanspruchten Elementen von thermischen Strömungsmaschinen aufgebracht werden.The coatings can be applied by means of CVD, PVD, plasma spraying, etc. thermally stressed elements applied by thermal flow machines become.

Aluminium ist unbedingt nötig um eine hervorragende Oxidationsbeständigkeit zu erreichen. Wenn der Aluminiumgehalt unter 5 Gew.-% sinkt wird eine ungenügende Oxidationsbeständigkeit erzielt, bei einem Aluminiumgehalt über 35 Gew.-% versprödet der Werkstoff. Der Aluminiumgehalt liegt somit zwischen 5 Gew.-% und 35 Gew.-%, vorzugsweise zwischen 10 Gew.-% und 25 Gew.-%.Aluminum is absolutely necessary to have an excellent resistance to oxidation to reach. If the aluminum content drops below 5% by weight, it becomes insufficient Oxidation resistance achieved with an aluminum content of over 35% by weight the material becomes brittle. The aluminum content is therefore between 5% by weight and 35% by weight, preferably between 10% by weight and 25% by weight.

Chrom erhöht die Oxidationsbeständigkeit und verstärkt den Effekt von Aluminium auf die Oxidationsbeständigkeit. Wenn der Chromgehalt unter 15 Gew.-% sinkt wird eine ungenügende Oxidationsbeständigkeit erzielt, bei einem Chromgehalt über 25 Gew.-% wird der Werkstoff zu spröde. Der Chromgehalt liegt somit zwischen 15 Gew.-% und 25 Gew.-%, vorzugsweise zwischen 15 Gew.-% und 20 Gew.-%.Chromium increases the resistance to oxidation and increases the effect of aluminum on the resistance to oxidation. If the chromium content drops below 15% by weight insufficient resistance to oxidation is achieved with a chromium content The material becomes too brittle over 25% by weight. The chromium content is therefore between 15% by weight and 25% by weight, preferably between 15% by weight and 20 Wt .-%.

Molybdän, Wolfram, Tantal und Niob erhöhen ebenfalls die Oxidationsbeständigkeit und verbessern die Morphologie der Oxydschicht und reduzieren die Interdiffusion zwischen der Beschichtung und dem Grundwerkstoff. Der Gesamtgehalt dieser Elemente sollte nicht unter 0.5 Gew.-% sinken und einen Gehalt von 10 Gew.-% nicht überschreiten. Der Gesamtgehalt von Molybdän, Wolfram, Tantal und Niob liegt somit zwischen 0.5 Gew.-% und 10 Gew.-%, vorzugsweise zwischen 2 Gew.-% und 10 Gew.-%. Molybdenum, tungsten, tantalum and niobium also increase the resistance to oxidation and improve the morphology of the oxide layer and reduce interdiffusion between the coating and the base material. The total salary of these elements should not drop below 0.5% by weight and a content of 10 Do not exceed% by weight. The total content of molybdenum, tungsten, tantalum and niobium is therefore between 0.5% by weight and 10% by weight, preferably between 2 wt% and 10 wt%.

Zirkon erhöht die Oxidationsbeständigkeit und die Duktilität des Werkstoffes, wobei der Zirkongehalt 0.3 Gew.-% nicht übersteigen sollte. Der Zirkongehalt liegt somit bei maximal 0.3 Gew.-%, vorzugsweise zwischen 0.1 Gew.-% und 0.3 Gew.-%.Zircon increases the oxidation resistance and the ductility of the material, whereby the zircon content should not exceed 0.3% by weight. The zircon content lies thus at a maximum of 0.3% by weight, preferably between 0.1% by weight and 0.3 Wt .-%.

Bor erhöht ebenfalls die Duktilität des Werkstoffes, der Borgehalt sollte 1 Gew.-% nicht übersteigen. Der Borgehalt liegt somit bei maximal 1 Gew.-%, vorzugsweise zwischen 0.1 Gew.-% und 0.5 Gew.-%.Boron also increases the ductility of the material, the boron content should be 1% by weight do not exceed. The boron content is therefore at most 1% by weight, preferably between 0.1% and 0.5% by weight.

Yttrium bildet Y2O3 und erhöht die Haftung der Beschichtung auf dem Grundwerkstoff, der Yttriumgehalt sollte 1 Gew.-% nicht übersteigen. Der Yttriumgehalt liegt somit bei maximal 1 Gew.-%, vorzugsweise zwischen 0.2 Gew.-% und 0.5 Gew.-%. Ausführungsbeispiel 1: Legierung in Gew.-% Fe Cr Al Ta Mo B Zr Y 1 Rest 20 10 4 -- 0.05 0.2 0.2 2 Rest 17 20 4 -- 0.05 0.2 0.5 3 Rest 20 15 -- 4 0.05 0.2 0.5 4 Rest 20 6 4 -- 0.05 0.2 0.5 5 Rest 25 5 -- 4 0.05 0.2 0.5 Yttrium forms Y 2 O 3 and increases the adhesion of the coating to the base material, the yttrium content should not exceed 1% by weight. The yttrium content is therefore at most 1% by weight, preferably between 0.2% by weight and 0.5% by weight. Example 1: Alloy in% by weight Fe Cr al Ta Mo B Zr Y 1 rest 20 10 4 - 00:05 0.2 0.2 2 rest 17 20 4 - 00:05 0.2 0.5 3 rest 20 15 - 4 00:05 0.2 0.5 4 rest 20 6 4 - 00:05 0.2 0.5 5 rest 25 5 - 4 00:05 0.2 0.5

Es wurden knopfgrosse Proben von ca. 20 mg durch Lichtbogenschmelzen aus den Legierungen 1 bis 5 der Tabelle 1 hergestellt. Die Proben wurden dreimal eingeschmolzen, um eine genügende Homogenität zu gewährleisten. Danach wurden die Proben bei 900°C isothermisch geschmiedet mit einer Querhaupt-Geschwindigkeit von 0.1 mm/s. Die Proben wurden dabei mit einem Deformationsfaktor von 1.28 verformt. Danach wurden die Proben wärmebehandelt, d.h. sie wurden bei 1000°C eine Stunde gehalten und dann im Ofen abgekühlt. Die Oberfläche der Proben wurde danach sandgestrahlt. Die Endgrösse der Proben betrug ca. 40 mm im Durchmesser bei 2 bis 2.5 mm Dicke.Button-sized samples of approx. 20 mg were melted by arc Alloys 1 to 5 of Table 1 are produced. The samples were taken three times melted down to ensure sufficient homogeneity. After that the samples were isothermally forged at 900 ° C with a crosshead speed of 0.1 mm / s. The samples were used with a deformation factor deformed by 1.28. The samples were then heat treated, i.e. she were held at 1000 ° C for one hour and then cooled in the oven. The surface the samples were then sandblasted. The final size of the samples was approx. 40 mm in diameter with 2 to 2.5 mm thickness.

Diese Proben wurden nun bei 1050°C an Luft gehalten und die Gewichtsänderung im Verhältnis zur Oberfläche gemessen.
Nach Fig. 1 zeigen die Proben der Legierungen 1, 3 und 4 ein hervoragendes Oxidationsverhalten. Schon nach wenigen Minuten zeigen die Proben keine Gewichtszunahme mehr und die Gewichtszunahme in Bezug zur Oberfläche [Δm/A] liegt unterhalb 1 mg/cm2.
Auch die Probe nach der Legierung 2 zeigt ein hervorragendes Oxidationsverhalten, ist aber leicht schlechter als die Proben nach den Legierungen 1, 3 und 4. Trotzdem zeigt die Probe 2 auch nach wenigen Minuten keine Gewichtszunahme mehr und die Gewichtszunahme in Bezug zur Oberfläche [Δm/A] liegt immer noch unterhalb 1 mg/cm2.
Die Probe nach der Legierung 5, die in ihrem Cr- und Al-Gehalt der EP 0 625 585 B1 entspricht zeigt ein deutlich schlechteres Oxidationsverhalten. Die Gewichtszunahme in Bezug zur Oberfläche [Δm/A] nimmt zwar nach einigen Minuten nicht mehr so stark zu, es wurde jedoch eine stetige Gewichtszunahme über die gesamte Messdauer gemessen. Ausführungsbeispiel 2: Legierung in Gew.-% Fe Cr Al Ta Mo B Zr Y 6 Rest 20 15 -- 4 0.05 0.2 -- 7 Rest 15 15 -- 4 0.05 0.2 0.2
These samples were then kept in air at 1050 ° C. and the change in weight in relation to the surface was measured.
1, the samples of alloys 1, 3 and 4 show an excellent oxidation behavior. After a few minutes, the samples no longer show any weight gain and the weight gain in relation to the surface [Δm / A] is below 1 mg / cm 2 .
The sample after alloy 2 also shows excellent oxidation behavior, but is slightly worse than the samples after alloys 1, 3 and 4. Nevertheless, sample 2 shows no weight gain even after a few minutes and the weight gain in relation to the surface [Δm / A] is still below 1 mg / cm 2 .
The sample after alloy 5, which corresponds in its Cr and Al content to EP 0 625 585 B1, shows a significantly poorer oxidation behavior. The weight gain in relation to the surface [Δm / A] does not increase so much after a few minutes, but a steady weight gain was measured over the entire measurement period. Example 2: Alloy in% by weight Fe Cr al Ta Mo B Zr Y 6 rest 20 15 - 4 00:05 0.2 - 7 rest 15 15 - 4 00:05 0.2 0.2

Aus den in der Tabelle 2 genannten Legierungen 6 und 7 wurden Proben hergestellt und das Oxidationsverhalten bei 1300°C an Luft untersucht. Die Proben zeigen nach Fig. 2 ein hervorragendes Oxidationsverhalten bei 1300°C, sie wiesen nach ungefähr 10 Stunden ebenfalls praktisch keine Gewichtszunahme durch Oxidation mehr auf.Samples were produced from alloys 6 and 7 listed in Table 2 and investigated the oxidation behavior at 1300 ° C in air. The samples show 2 an excellent oxidation behavior at 1300 ° C, they pointed practically no weight gain after about 10 hours Oxidation more on.

Die Eisenaluminidbeschichtung kann direkt auf Werkstücke, insbesondere thermisch beanspruchte Elemente von thermischen Strömungsmaschinen, beispielsweise Schaufeln, Hitzeschilde, Auskleidungen von Brennkammern, usw., aus Nikkel-Basis-Legierungen aufgetragen werden. Vorteilhaft ist es, zwischen der Eisenaluminidbeschichtung und der Nickel-Basis-Legierung eine Schicht aus Platin anzuordnen. Diese Platinschicht fungiert als Diffusionsbarriere zwischen der Eisenaluminidbeschichtung und der Nickel-Basis-Legierung. Die Platinschicht weist vorzugsweise eine Dicke von 10 bis 20 µm auf.The iron aluminide coating can be applied directly to workpieces, especially thermally claimed elements of thermal flow machines, for example Shovels, heat shields, linings of combustion chambers, etc., made of Nikkel-based alloys be applied. It is advantageous between the iron aluminide coating and the nickel-based alloy is a layer of platinum to arrange. This platinum layer acts as a diffusion barrier between the iron aluminide coating and the nickel-based alloy. The platinum layer shows preferably a thickness of 10 to 20 microns.

Die Eisenaluminidbeschichtung kann als Bindeschicht zwischen thermisch beanspruchten Elementen von thermischen Strömungsmaschinen, beispielsweise Schaufeln, Hitzeschilde, Auskleidungen von Brennkammern, usw., und einer Wärmedämmschicht verwendet werden. Die Wärmedämmschicht besteht dabei beispielsweise aus Zirkonoxid das mit Yttriumoxid, Calciumoxid oder Magnesiumoxid teil- oder vollstabilisiert wurde.The iron aluminide coating can be used as a binding layer between thermally stressed Elements of thermal flow machines, for example Shovels, heat shields, linings of combustion chambers, etc., and one Thermal insulation layer can be used. The thermal insulation layer is there for example made of zirconium oxide with yttrium oxide, calcium oxide or magnesium oxide was partially or fully stabilized.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt.Of course, the invention is not limited to that shown and described Embodiment limited.

Claims (9)

  1. Iron aluminide coating consisting essentially of: 5-35% by weight aluminium 15-25% by weight chromium 0.5-10% by weight molybdenum, tungsten, tantalum and niobium 0-0.3% by weight zirconium 0-1% by weight boron 0-1% by weight yttrium
    the remainder being iron and also impurities and additaments arising from its production.
  2. Iron aluminide coating according to Claim 1, consisting essentially of: 10-25% by weight aluminium 15-20% by weight chromium 2-10% by weight molybdenum, tungsten, tantalum and niobium 0.1-0.3% by weight zirconium 0.1-0.5% by weight boron 0.2-0.5% by weight yttrium
    the remainder being iron and also impurities and additaments arising from its production.
  3. Iron aluminide coating according to Claim 1 or 2 as a bonding layer between thermally stressed elements of thermal turbomachines and a heat insulation coat.
  4. Use according to Claim 3, wherein the thermally stressed element consists of a nickel-based alloy.
  5. Use of an iron aluminide coating according to either of Claims 1 and 3, wherein a platinum layer is disposed between the thermally stressed element and the iron aluminide coating.
  6. Method of applying an iron aluminide coating either of Claims 1 and 2, characterzied in that the workpiece that is to be coated is covered with a platinum layer and comprises applying the iron aluminide coating to the platinum layer.
  7. Method according to Claim 6, characterized in that the platinum layer has a thickness of from 10 to 20 µm.
  8. Method according to Claim 6 or 7, characterized in that a heat insulation coat is applied to the iron aluminide coating.
  9. Method according to Claim 8, characterized in that the heat insulation coat consists of zirconium oxide which has been partly or fully stabilized with yttrium oxide, calcium oxide or magnesium oxide.
EP98811151A 1997-12-05 1998-11-20 Iron aluminide coating and process for application of this iron aluminide coating Expired - Lifetime EP0922781B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19753876 1997-12-05
DE19753876A DE19753876A1 (en) 1997-12-05 1997-12-05 Iron aluminide coating and method of applying an iron aluminide coating

Publications (2)

Publication Number Publication Date
EP0922781A1 EP0922781A1 (en) 1999-06-16
EP0922781B1 true EP0922781B1 (en) 2003-04-02

Family

ID=7850773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811151A Expired - Lifetime EP0922781B1 (en) 1997-12-05 1998-11-20 Iron aluminide coating and process for application of this iron aluminide coating

Country Status (3)

Country Link
US (2) US6245447B1 (en)
EP (1) EP0922781B1 (en)
DE (2) DE19753876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092035B2 (en) 2011-09-12 2021-08-17 Siemens Energy Global GmbH & Co. KG Alloy, protective layer and component

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941228B4 (en) * 1999-08-30 2009-12-31 Alstom Iron aluminide coating and its use
US6475642B1 (en) * 2000-08-31 2002-11-05 General Electric Company Oxidation-resistant coatings, and related articles and processes
US6746782B2 (en) * 2001-06-11 2004-06-08 General Electric Company Diffusion barrier coatings, and related articles and processes
US8020378B2 (en) * 2004-12-29 2011-09-20 Umicore Ag & Co. Kg Exhaust manifold comprising aluminide
US20060140826A1 (en) * 2004-12-29 2006-06-29 Labarge William J Exhaust manifold comprising aluminide on a metallic substrate
US7745029B2 (en) * 2006-11-07 2010-06-29 General Electric Company Ferritic steels for solid oxide fuel cells and other high temperature applications
US7544424B2 (en) * 2006-11-30 2009-06-09 General Electric Company Ni-base superalloy having a coating system containing a stabilizing layer
CN107955921A (en) * 2016-10-17 2018-04-24 丹阳市丹力展览用品有限公司 A kind of high duty metal screw
CN107955920A (en) * 2016-10-17 2018-04-24 丹阳市丹力展览用品有限公司 A kind of ultra-toughness metal screws

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR822317A (en) * 1936-06-08 1937-12-28 Kemet Lab Co Inc Iron alloys for electrical resistances
DE959681C (en) * 1943-08-14 1957-03-07 Eisen & Stahlind Ag Blades and similarly stressed components of gas turbines and other similarly or similarly stressed objects
US3298826A (en) * 1964-04-06 1967-01-17 Carl S Wukusick Embrittlement-resistant iron-chromium-aluminum-yttrium alloys
DE1946237A1 (en) * 1969-09-12 1971-03-25 Kernforschung Gmbh Ges Fuer Vanadium alloys for gas turbine blades
US4004047A (en) * 1974-03-01 1977-01-18 General Electric Company Diffusion coating method
CA1082949A (en) * 1976-06-03 1980-08-05 William F. Schilling High-temperature austenitic alloys and articles utilizing the same
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
DE2922737C2 (en) * 1979-06-05 1982-08-05 Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH & Co, 7302 Ostfildern Composite part
SE8000750L (en) * 1980-01-30 1981-07-31 Bulten Kanthal Ab HEATHOLD FIXED MACHINE COMPONENT AND SET TO MAKE IT
US4321311A (en) * 1980-01-07 1982-03-23 United Technologies Corporation Columnar grain ceramic thermal barrier coatings
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
JPS57155338A (en) * 1981-03-23 1982-09-25 Hitachi Ltd Metallic body with alloy coating resistant to corrosion and thermal shock
US4348433A (en) * 1981-04-06 1982-09-07 Eutectic Corporation Flame spray powder
US4535034A (en) * 1983-12-30 1985-08-13 Nippon Steel Corporation High Al heat-resistant alloy steels having Al coating thereon
CH663219A5 (en) * 1984-01-31 1987-11-30 Castolin Sa FLAME INJECTION MATERIAL.
DE3535548C2 (en) * 1984-10-05 1999-03-04 Baj Coatings Ltd Coated article and method of making a coating of an article
DE3822874A1 (en) * 1987-07-08 1989-01-19 Castolin Sa Metal powder and process therefor
DE3804359C1 (en) * 1988-02-12 1988-11-24 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De
DE3821896A1 (en) * 1988-06-25 1989-12-28 Castolin Sa Pulverulent metal-containing material and process therefor
US4880614A (en) * 1988-11-03 1989-11-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
JPH05320701A (en) * 1992-05-18 1993-12-03 Daido Steel Co Ltd Corrosion-resistant material
DE4229600C1 (en) * 1992-07-07 1993-11-25 Mtu Muenchen Gmbh Protective layer for titanium components and process for their manufacture
DE4303316A1 (en) * 1993-02-05 1994-08-11 Abb Management Ag Oxidation- and corrosion-resistant alloy based on doped iron aluminide and use of this alloy
EP0625585B1 (en) * 1993-05-20 1997-05-02 Kawasaki Steel Corporation Fe-Cr-Al alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
DE59309611D1 (en) * 1993-11-08 1999-07-01 Asea Brown Boveri Iron-aluminum alloy and use of this alloy
US5562998A (en) * 1994-11-18 1996-10-08 Alliedsignal Inc. Durable thermal barrier coating
US5667663A (en) * 1994-12-24 1997-09-16 Chromalloy United Kingdom Limited Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating
US5512382A (en) * 1995-05-08 1996-04-30 Alliedsignal Inc. Porous thermal barrier coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092035B2 (en) 2011-09-12 2021-08-17 Siemens Energy Global GmbH & Co. KG Alloy, protective layer and component

Also Published As

Publication number Publication date
EP0922781A1 (en) 1999-06-16
DE59807727D1 (en) 2003-05-08
US6361835B2 (en) 2002-03-26
DE19753876A1 (en) 1999-06-10
US6245447B1 (en) 2001-06-12
US20010002296A1 (en) 2001-05-31

Similar Documents

Publication Publication Date Title
DE2657288C2 (en) Coated superalloy article and its uses
EP0786017B1 (en) Protective layer for protecting parts against corrosion, oxidation and excessive thermal stresses, as well as process for producing the same
DE2520192C2 (en) Use of Nicocraly alloys as materials for coating superalloy articles
DE60305329T2 (en) HIGHLY OXIDATION-RESISTANT COMPONENT
EP1082216B1 (en) Product with an anticorrosion protective layer and a method for producing an anticorrosion protective layer
DE60112382T2 (en) Oxidation resistant materials of low density superalloys, suitable for applying thermal barrier coatings without adhesive layer
DE2801016C2 (en) Article made from a superalloy body with a coating of a powder applied by flame spraying and a process for its production
DE69732046T2 (en) PROTECTIVE COATING FOR HIGH TEMPERATURE
DE19861160C5 (en) Laminated material for sliding elements
DE19983957B4 (en) Coating composition for high temperature protection
DE60302396T2 (en) Procedures for the production of thermal barrier coating with nitride particles
EP1616979B1 (en) Applying a protective coating on a substrate and method for manufacturing the protective layer
EP0922781B1 (en) Iron aluminide coating and process for application of this iron aluminide coating
WO2006133980A1 (en) Layer system for a component comprising a thermally insulating layer and a metallic anti-erosion layer, method for the production and method for the operation of a steam turbine
EP0486489A1 (en) High-temperature-resistant, corrosion-resistant coating, in particular for components of gas turbines.
EP1754801A2 (en) Coated component
EP2796588B1 (en) Method for producing a high temperature protective coating
EP1692371A1 (en) Turbine component comprising a thermal insulation layer and an anti-erosion layer
DE60022300T2 (en) Articles with corrosion-resistant coatings
EP0840809B1 (en) Product with a metallic base body provided with cooling channels and its manufacture
EP3333281B1 (en) High-temperature protective layer for titanium aluminide alloys
DE3036206A1 (en) WEAR-RESISTANT COATING, OXIDATION AND CORROSION PROTECTIVE COATING, CORROSION- AND WEAR-RESISTANT COATING ALLOY, ITEM PROVIDED WITH SUCH A COATING AND METHOD FOR PRODUCING SUCH A COATING
EP1892311B1 (en) Turbine Blade with a coating system
DE19941228B4 (en) Iron aluminide coating and its use
DE3704473C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991203

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59807727

Country of ref document: DE

Date of ref document: 20030508

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20031013

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAG Information modified related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSCREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20100622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59807727

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59807727

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59807727

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161121

Year of fee payment: 19

Ref country code: GB

Payment date: 20161122

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59807727

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59807727

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807727

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120