EP0916816B1 - Heat exchanger, specially with a valve, and a method for controling the exchange of heat - Google Patents

Heat exchanger, specially with a valve, and a method for controling the exchange of heat Download PDF

Info

Publication number
EP0916816B1
EP0916816B1 EP98120967A EP98120967A EP0916816B1 EP 0916816 B1 EP0916816 B1 EP 0916816B1 EP 98120967 A EP98120967 A EP 98120967A EP 98120967 A EP98120967 A EP 98120967A EP 0916816 B1 EP0916816 B1 EP 0916816B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
control valve
temperature
inlet
oil cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120967A
Other languages
German (de)
French (fr)
Other versions
EP0916816A1 (en
Inventor
Viktor Dipl.-Ing. Brost
Klaus Dipl.-Ing. Kalbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP0916816A1 publication Critical patent/EP0916816A1/en
Application granted granted Critical
Publication of EP0916816B1 publication Critical patent/EP0916816B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant
    • F01M5/007Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/916Oil cooler

Definitions

  • the invention relates to a heat exchanger, in particular an oil cooler, according to the preamble of claim 1. Furthermore, the invention relates to a control method according to the preamble of claim 14.
  • the heat exchanger thus known from US Pat. No. 4,669,532 has a control valve which reacts to the oil temperature as a bimetal element, which responds above a predetermined oil temperature and opens the flow opening for the oil through the oil cooler in order to cool the oil. Below the predetermined oil temperature, the oil flows through a bypass without being cooled. This is a method which has been known for a long time and which contributes to the oil reaching the optimum temperature very quickly and consequently also quickly overcoming the starting phase of a vehicle driven by a liquid-cooled internal combustion engine.
  • the bypass is located inside the heat exchanger, specifically in its outer channels. The temperature of the agent to be cooled is measured. When cooling is required, the medium is passed through the channels to cool it. The medium flows through the bypass below a set temperature.
  • the oil cooler designed as a plate heat exchanger has a soldered adapter plate and a mounting plate in which a valve responsive to the oil pressure is arranged for the purpose described above.
  • control thermostats which respond to the oil or water temperature and thus to adapt the output of the oil cooler to the need.
  • the control thermostats provided for this purpose are usually located in the lines to or from the oil cooler and are designed such that they block the coolant throughput below a predetermined temperature or reduce them to a low constant bypass flow and regulate the coolant throughput from minimum to maximum above the predetermined temperature value can.
  • a thermostatic valve unit provided for this purpose is the subject of the unpublished patent application DE 196 37 818.
  • control thermostats can be designed in such a way that the coolant flow which can be conducted through the heat exchanger can be mixed from recooled and non-recooled coolant.
  • the arrangement of the control thermostats in the inflow or outflow lines - usually in separate housings with additional connections - results in a correspondingly high outlay for the control technology and also for the installation, for example in a motor vehicle.
  • Some control thermostats - including the one from the EP mentioned - are equipped with an electrical heater that is suitable for meeting previously recognizable operating conditions, for example the expected high performance requirements for the oil cooler in such a way that the coolant throughput is increased even before such operating conditions are reached.
  • the object of the invention is to provide a generic heat exchanger, in particular an oil cooler and a method for regulating the cooling capacity, with which the flow through the heat exchanger can be regulated as required.
  • a heat exchanger of the type mentioned at least one of the inflow or outflow channels of an agent is provided with a receptacle opposite its connection, in which the control valve consisting of a temperature-sensing part and a movable part is arranged, and that the control valve and at least one further cover comprising the inflow or outflow channels of the other means has at least one media connection, the size of the flow cross section of the additional channel can be changed by means of the control valve, so that the throughput between the media connection and the further inflow or outflow channel of the other means can be regulated.
  • the method for controlling a heat exchanger, in particular an oil cooler, in which the flow through the heat exchanger is changed as a function of the temperature of an agent which is taken up in the heat exchanger provides according to the invention that the heat exchanger is regulated in such a way that the temperature of the medium to be cooled (oil) is taken up directly in the heat exchanger and that a control valve belonging to the heat exchanger executes opening movements as the temperature rises and closing movements within the control range of the control valve as the temperature falls, as a result of which the heat exchanger flows through Amount of coolant is regulated
  • the accuracy of the control has been improved by this method, because the temperature is picked up exactly there - directly in the heat exchanger - and the amount of coolant is set directly where no or only minor environmental influences can falsify the temperature uptake. It is particularly advantageous if, in addition to the control valve controlled via the oil temperature, an additional bypass valve controlled via the temperature of the coolant is used. If the heat exchanger is used as an oil cooler in a vehicle, when the vehicle is cold started, the bypass valve can be used to influence the shortening of the preheating phase by passing preheated coolant through the bypass. The bypass valve can then be closed. The control valve and the valve-receiving cover have become part of the heat exchanger according to the invention, so that the heat exchanger itself regulates the flow as required.
  • the new heat exchanger only has to be connected to the inflow and outflow lines.
  • the built-in control valve has such a control range as is required for the respective application, so that no additional connections or settings need to be made with regard to the cooling capacity control.
  • the heat exchanger according to the invention also reduces the costs for installation, for example in a vehicle.
  • the so-called housing-free heat exchanger 1 (oil cooler) consists, in a manner known from the prior art, of a plurality of heat exchanger plates stacked one inside the other.
  • the plate pack is delimited at the top by a cover plate 18 and at the bottom by a base plate 18.
  • the inflow and outflow channels 2, 3 for the oil outlet and the oil inlet and the not shown inflow and outflow channels 9 and 13 for the cooling water break through the plate stack.
  • the above-mentioned channels 2 and 3 for the oil are connected to the horizontal flow channels 11 and the channels 9 and 13 for the cooling water are connected to the flow channels 10.
  • the flow channels 10 and 11 arranged one above the other alternate.
  • the corresponding inlet connector has been designated 20.
  • an inlet port 21 is arranged on the cover plate 18 on the only broken-out channel 9 for the cooling water.
  • a receptacle 8 is provided in the cover plate 18, which is designed as a receptacle 14.
  • the heat exchanger 1 described so far has been produced in this embodiment as a completely soldered heat exchanger.
  • the control valve 6 a thermostatically controlled valve, the details of which are described in detail below.
  • the thermostat 31 is surrounded by two seals 15 and 16.
  • the seal 15 seals upwards, towards the cooling water and the seal 16 downwards, towards the oil side.
  • the receptacle connector 14 has a through hole 17 in its wall, approximately in the middle between the two seals 15 and 16.
  • the through hole 17 is connected to the outside of the heat exchanger 1, specifically here in FIG. 1 there was a small distance between the vertical boundary wall of the cover 4 and the cover plate 18 of the heat exchanger 1 are observed.
  • the control valve 6 is of course in a manner not shown so attached in the receiving port 14 that it can withstand the pressure on the oil side.
  • the cover 4 in FIG. 1 has two nozzle-like receptacles at the bottom, towards the cover plate 18, namely the left nozzle-like receptacle 23, which comprises the control valve 6 with the receptacle 14, and the right nozzle-like receptacle 22, which connects the cooling water channel 9 with the connecting piece 21 includes. Sealing rings 24 and 25 arranged between them ensure appropriate sealing to the outside. Both socket-like receptacles 22 and 23 serve as a flow channel and are connected to the additional channel 5 within the cover 4.
  • the cover 4 has on the left side a media connection 12, which is designed here as a connecting piece.
  • the control valve 6, which has already been partially described above.
  • the thermostat 31 there is a piston rod 26 which is pressed out of the thermostat 31 due to the expansion of the material caused by heating.
  • the piston rod 26 is connected to the Change in the flow cross section directly bringing about part, namely via a rod 32 arranged in the center of the rotationally symmetrical valve plate 27, which can be viewed as an extension of the piston rod 26.
  • a housing cage 28 is also to be understood as an embodiment which has only two struts, by means of which the upper and lower openings are connected.
  • the housing cage 28 is connected to the thermostat 31 at its lower, smaller opening, while the upper, larger opening is covered by the valve plate 27.
  • the larger opening has an inward edge or the like, suitable for forming the upper abutment of the compression spring 29.
  • the operation of the oil cooler with the built-in control valve 6 is as follows: When the oil is cold, the control valve 6 has the position shown in FIG. 1, ie the valve plate 27 keeps the upper opening of the housing cage 28 closed. The oil is not cooled in this position and can therefore warm up to operating temperature very quickly. The heating can be accelerated according to the later embodiments if preheated cooling liquid is passed through a bypass through the oil cooler. After the oil has warmed up to a temperature which requires heat exchange with the cooling water, the thermostat 31 responds and extends the piston 26, which leads to the valve plate 27 being moved upwards against the force of the compression spring 29 and thereby the upper opening of the housing cage 28 releases more and more, whereby the amount of cooling water flowing through is increased.
  • FIG.2 An exemplary embodiment with a bypass 33 was shown in Fig.2. In order to provide clarity, only the reference numerals of the components that make up the difference from FIG. 1 have been given here. Openings 37 are provided in the housing cage 28.
  • the bypass designated 33 is arranged as a through hole at the upper end of the socket-like receptacle 23.
  • a bimetallic element is generally designated by 34, the closing part of which is arranged above the bypass 33.
  • the bimetallic element 34 is here stored in a separate opening 35 in the cover 4 and sealed to the outside with a suitable seal 36. If, for a special application, the constant bypass flow is not desired or does not fit into the overall concept of vehicle cooling, the bimetallic element 34 can be set so that the bypass 33 is closed when the control valve 6 approaches the maximum degree of opening.
  • the type of bypass formation with the bimetal element 34 is only to be regarded as an example. Any other design that serves the purpose could be used here.
  • control valve 6 controlled by oil temperature and bimetal element 34 controlled by water temperature can also be adapted to the requirements.
  • the bimetal element 34 could be set so that the bypass is closed even at relatively low temperatures.
  • FIG. 4 only the principle of a further expedient embodiment has been shown, for example, in FIG. 4, in which a second thermostat 39 is used, which was arranged here in the downwardly sealed space 38 between the two socket-like receptacles 22 and 23.
  • the space 38 has an inflow opening 40 and an outflow opening 41. The coolant can flow in through the inflow opening 40 and activate the thermostat 39.
  • the thermostat 39 shuts off the outflow opening 41 in accordance with the set coolant temperature.
  • 3 shows an adjacent variant in which the control valve 6 is located in the coolant channel 9, that is to say a variant which is controlled according to the temperature of the coolant.
  • a constantly open bypass 33 is provided, which, in addition to its purpose already described, serves to ensure that a cooling water stream is constantly flowing around the thermostat 31.
  • the cooling water flows in through the media connection 12, passes through the bypass 33 and via the additional duct 5 to the connecting piece 21, further into the duct 13 and via the duct 9 to the water outlet.
  • On the oil side only the connecting piece 7 and part of the channel 2 (broken out) was shown here.
  • a cheaper variant could be used because cooling water flows on both sides of the seal.
  • the heat exchanger 1 has an oil inlet (connection 20) and an oil outlet (connection 7) on one side.
  • the oil inlet is connected to channel 3 and the oil outlet to channel 2.
  • Both channels 2; 3 break through the horizontal flow channels 11 for the oil and are connected to them.
  • the flow channels 10 disposed therebetween are for the coolant, which are in communication with the channels 9 and 13 formed by the housing 42.
  • This housing 42 comprises the entire heat exchanger 1 and has an inlet connection and an outlet connection for the coolant, both of which have the reference symbol 21.
  • the control valve 6 is located in channel 2 and is fastened in the manner already described.
  • the cover 4 has a coolant connection 12, includes the additional channel 5 and has the nozzle-like receptacle 22, which receives the inlet nozzle 21 for the coolant and the nozzle-like receptacle 23, which receives the control valve 6.
  • 6 and 7 show the principle of different variants with regard to the arrangement of the inlets and outlets and their connection by the cover 4 in a top view.
  • the cover 4 is arranged approximately diagonally above the heat exchanger 1 and includes the oil channel 2 and the coolant channel 13.
  • the control valve 6 was arranged in the oil channel 2. As already stated above, the control valve 6 could also be located in the oil channel 3.
  • the arrangement in oil channel 2, which is the outlet channel has the advantage that the temperature present there is the most important parameter in many cases.
  • a memory spring 34 and a bypass bore 33 are indicated.
  • a memory spring has the advantage over the bimetal element that it can be used to switch between "closed” and "open” within narrow temperature limits. 6 differs from FIG. 7 only in that oil channel 2 and coolant channel 13 are not diagonally opposite but are arranged in adjacent corner areas. As a result, coolant and oil flow in cocurrent in FIG. 7 and in countercurrent in FIG. 6.
  • a number of other connection variants are possible and depend on the local installation constraints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Temperature-Responsive Valves (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher, insbesondere Ölkühler, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Regelungsverfahren gemäß dem Oberbegriff des Anspruchs 14.
Der so ausgebildete aus dem US-PS 4 669 532 bekannte Wärmetauscher besitzt ein auf die Öltemperatur reagierendes Regelventil als Bimetall-Element, welches oberhalb einer vorbestimmten Öltemperatur anspricht und die Strömungsöffnung für das Öl durch den Ölkühler hindurch freigibt, um das Öl zu kühlen. Unterhalb der vorbestimmten Öltemperatur strömt das Öl ohne gekühlt zu werden über einen Bypaß ab. Hierbei handelt es sich um eine seit langem bekannte Methode, die dazu beiträgt, daß das Öl sehr schnell die optimale Temperatur erreicht und daß demzufolge auch die Startphase eines mit einem flüssigkeitsgekühlten Verbrennungsmotor angetriebenen Fahrzeuges schnell überwunden wird. Ferner wird damit der Verstopfung des Ölkühlers durch kaltes, zähflüssiges und zur Verklumpung neigendes Öl vorgebeugt.
In der WO 97/00415 befindet sich der Bypaß innerhalb des Wärmetauschers und zwar in seinen außen liegenden Kanälen. Die Temperatur des zu kühlenden Mittels wird gemessen. Bei Kühlungsbedarf wird das Mittel durch die Kanäle geleitet, um es zu kühlen. Unterhalb einer eingestellten Temperatur fließt das Mittel durch den Bypaß.
Bei dem aus WO 94/29659 bekannten Wärmetauscher hat der als Plattenwärmetauscher ausgeführte Ölkühler eine angelötete Adapterplatte und eine Befestigungsplatte, in der für den zuvor beschriebenen Zweck ein auf den Öldruck ansprechendes Ventil angeordnet ist.
The invention relates to a heat exchanger, in particular an oil cooler, according to the preamble of claim 1. Furthermore, the invention relates to a control method according to the preamble of claim 14.
The heat exchanger thus known from US Pat. No. 4,669,532 has a control valve which reacts to the oil temperature as a bimetal element, which responds above a predetermined oil temperature and opens the flow opening for the oil through the oil cooler in order to cool the oil. Below the predetermined oil temperature, the oil flows through a bypass without being cooled. This is a method which has been known for a long time and which contributes to the oil reaching the optimum temperature very quickly and consequently also quickly overcoming the starting phase of a vehicle driven by a liquid-cooled internal combustion engine. It also prevents the oil cooler from becoming blocked by cold, viscous oil that tends to clump.
In WO 97/00415 the bypass is located inside the heat exchanger, specifically in its outer channels. The temperature of the agent to be cooled is measured. When cooling is required, the medium is passed through the channels to cool it. The medium flows through the bypass below a set temperature.
In the heat exchanger known from WO 94/29659, the oil cooler designed as a plate heat exchanger has a soldered adapter plate and a mounting plate in which a valve responsive to the oil pressure is arranged for the purpose described above.

Außerdem ist es bekannt, mittels auf die Öl - oder auch auf die Wassertemperatur ansprechender Regelthermostate die Durchströmung des Kühlmittels durch den Ölkühler zu regeln und damit die Leistung des Ölkühlers dem Bedarf entsprechend anzupassen. Die dafür vorgesehenen Regelthermostate befinden sich gewöhnlich in den Leitungen zu oder vom Ölkühler und sind so ausgebildet, daß sie unterhalb einer vorbestimmten Temperatur den Kühlmitteldurchsatz blockieren oder bis auf einen geringen ständigen Bypaßstrom reduzieren und oberhalb des vorbestimmten Temperaturwertes den Kühlmitteldurchsatz von minimal bis maximal regeln können. Eine dafür vorgesehene Thermostatventileinheit ist Gegenstand der nicht vorveröffentlichten Patentanmeldung DE 196 37 818.
Die Regelthermostate können zur weiteren Optimierung der Regelung gemäß letztgenannter Patentanmeldung und auch gemäß EP 0 787 929, so ausgebildet sein, daß der durch den Wärmetauscher leitbare Kühlmittelstrom aus rückgekühlter und nicht rückgekühlter Kühlflüssigkeit mischbar ist.
Die Anordnung der Regelthermostate in den Zu-oder Abflußleitungen - meist in separaten Gehäusen mit zusätzlichen Anschlüssen - hat entsprechend hohen Aufwand für die Regelungstechnik zur Folge und auch für die Installation, beispielsweise in einem Kraftfahrzeug.
Manche Regelthermostate - auch der aus dem genannten EP - sind mit einer elektrischen Beheizung ausgestattet, die dazu geeignet ist, vorher erkennbare Betriebszustände, also beispielsweise zu erwartende hohe Leistungsanforderungen an den Ölkühler derart zu entsprechen, daß bereits vor Erreichen solcher Betriebszustände der Kühlmitteldurchsatz erhöht wird, indem durch die elektrische Beheizung am Regelthermostat eine über der eigentlichen Öl-oder Kühlmitteltemperatur liegende Temperatur eingestellt wird, die zu einer größeren Öffnung des Strömungsquerschnittes für das Kühlmittel führt. Damit werden schädliche Temperaturspitzen abgebaut, deren Entstehung darüber hinaus auch durch die relative Trägheit im Regelverhalten von Thermostaten begünstigt ist. Die elektrische Beheizung trägt dazu bei, daß die Regelung ständig innerhalb optimaler Temperaturgrenzen erfolgt.
In addition, it is known to regulate the flow of coolant through the oil cooler by means of control thermostats which respond to the oil or water temperature and thus to adapt the output of the oil cooler to the need. The control thermostats provided for this purpose are usually located in the lines to or from the oil cooler and are designed such that they block the coolant throughput below a predetermined temperature or reduce them to a low constant bypass flow and regulate the coolant throughput from minimum to maximum above the predetermined temperature value can. A thermostatic valve unit provided for this purpose is the subject of the unpublished patent application DE 196 37 818.
To further optimize the control according to the last-mentioned patent application and also according to EP 0 787 929, the control thermostats can be designed in such a way that the coolant flow which can be conducted through the heat exchanger can be mixed from recooled and non-recooled coolant.
The arrangement of the control thermostats in the inflow or outflow lines - usually in separate housings with additional connections - results in a correspondingly high outlay for the control technology and also for the installation, for example in a motor vehicle.
Some control thermostats - including the one from the EP mentioned - are equipped with an electrical heater that is suitable for meeting previously recognizable operating conditions, for example the expected high performance requirements for the oil cooler in such a way that the coolant throughput is increased even before such operating conditions are reached. in that a temperature above the actual oil or coolant temperature is set by the electrical heating on the control thermostat, which leads to a larger opening of the flow cross section for the coolant. This reduces harmful temperature peaks, the creation of which is also favored by the relative inertia in the control behavior of thermostats. The electrical heating contributes to the fact that the regulation takes place constantly within optimal temperature limits.

Die Aufgabe der Erfindung besteht darin, einen gattungsgemäßen Wärmetauscher, insbesondere Ölkühler und ein Verfahren zur Regelung der Kühlleistung zur Verfügung zu stellen, mit dem die Durchströmung des Wärmetauschers bedarfsgerecht geregelt werden kann.
Erfindungsgemäß ist bei einem Wärmetauscher der genannten Art vorgesehen, daß mindestens einer der Zu - oder Abflußkanäle eines Mittels gegenüber seinem Anschluß mit einer Aufnahme versehen ist, in der das aus einem temperaturfühlenden Teil und einem bewegbaren Teil bestehende Regelventil angeordnet ist und daß der das Regelventil und mindestens einen weiteren der Zu - oder Abflußkanäle des anderen Mittels umfassende Deckel mindestens einen Medienanschluß aufweist, wobei die Größe des Strömungsquerschnitts des Zusatzkanals mittels des Regelventils veränderbar ist, so daß der Durchsatz zwischen dem Medienanschluß und dem weiteren Zu - oder Abflußkanal des anderen Mittels regelbar ist.
Das Verfahren zur Regelung eines Wärmetauschers, insbesondere eines Ölkühlers, bei dem die Durchströmung des Wärmetauschers in Abhängigkeit von der Temperatur eines Mittels verändert wird, die innerhalb des Wärmetauschers aufgenommen wird, sieht erfindungsgemäß vor, daß
eine Leistungsregulierung des Wärmetauschers derart erfolgt, daß unmittelbar im Wärmetauscher die Temperatur des zu kühlenden Mittels (Öl) aufgenommen wird und daß ein zum Wärmetauscher gehörendes Regelventil bei steigender Temperatur Öffnungsbewegungen und bei sinkender Temperatur Schließbewegungen innerhalb des Regelbereiches des Regelventiles ausführt, wodurch die den Wärmetauscher durchströmende Menge des Kühlmittels geregelt wird
The object of the invention is to provide a generic heat exchanger, in particular an oil cooler and a method for regulating the cooling capacity, with which the flow through the heat exchanger can be regulated as required.
According to the invention, in the case of a heat exchanger of the type mentioned, at least one of the inflow or outflow channels of an agent is provided with a receptacle opposite its connection, in which the control valve consisting of a temperature-sensing part and a movable part is arranged, and that the control valve and at least one further cover comprising the inflow or outflow channels of the other means has at least one media connection, the size of the flow cross section of the additional channel can be changed by means of the control valve, so that the throughput between the media connection and the further inflow or outflow channel of the other means can be regulated.
The method for controlling a heat exchanger, in particular an oil cooler, in which the flow through the heat exchanger is changed as a function of the temperature of an agent which is taken up in the heat exchanger, provides according to the invention that
the heat exchanger is regulated in such a way that the temperature of the medium to be cooled (oil) is taken up directly in the heat exchanger and that a control valve belonging to the heat exchanger executes opening movements as the temperature rises and closing movements within the control range of the control valve as the temperature falls, as a result of which the heat exchanger flows through Amount of coolant is regulated

Durch dieses Verfahren ist die Genauigkeit der Regelung verbessert worden, weil die Temperatur genau dort - unmittelbar im Wärmetauscher - aufgenommen und unmittelbar die Kühlmittelmenge eingestellt wird, wo keine oder nur geringe Umgebungseinflüsse die Temperaturaufnahme verfälschen können. Besonders vorteilhaft ist es, wenn neben dem über die Öltemperatur gesteuerten Regelventil ein zusätzliches über die Temperatur des Kühlmittels gesteuertes Bypaßventil verwendet wird. Wenn der Wärmetauscher als Ölkühler in einem Fahrzeug eingesetzt ist, kann bei einem Kaltstart des Fahrzeuges mit dem Bypaßventil Einfluß auf die Verkürzung der Vorwärmphase ausgeübt werden, indem durch den Bypaß vorgewärmtes Kühlmittel geleitet wird. Anschließend kann das Bypaßventil geschlossen werden.
Das Regelventil und der das Ventil aufnehmende Deckel sind nach der Erfindung Teil des Wärmetauschers geworden, so daß der Wärmetauscher selbst die bedarfsgerechte Durchströmung regelt. Der neue Wärmetauscher muß lediglich an die Zu - und Abströmleitungen angeschlossen werden. Das eingebaute Regelventil hat einen solchen Regelbereich, wie er für den jeweiligen Einsatzzweck erforderlich ist, so daß keine zusätzlichen Anschlüsse oder Einstellungen hinsichtlich der kühlleistungsmäßigen Regelung vorgenommen werden müssen. Somit reduziert der erfindungsgemäße Wärmetauscher darüber hinaus die Kosten für den Einbau, z.B. in ein Fahrzeug.
The accuracy of the control has been improved by this method, because the temperature is picked up exactly there - directly in the heat exchanger - and the amount of coolant is set directly where no or only minor environmental influences can falsify the temperature uptake. It is particularly advantageous if, in addition to the control valve controlled via the oil temperature, an additional bypass valve controlled via the temperature of the coolant is used. If the heat exchanger is used as an oil cooler in a vehicle, when the vehicle is cold started, the bypass valve can be used to influence the shortening of the preheating phase by passing preheated coolant through the bypass. The bypass valve can then be closed.
The control valve and the valve-receiving cover have become part of the heat exchanger according to the invention, so that the heat exchanger itself regulates the flow as required. The new heat exchanger only has to be connected to the inflow and outflow lines. The built-in control valve has such a control range as is required for the respective application, so that no additional connections or settings need to be made with regard to the cooling capacity control. Thus, the heat exchanger according to the invention also reduces the costs for installation, for example in a vehicle.

Es soll nach der erfinderischen Grundidee auch möglich sein, die Durchströmung des zu kühlenden Mittels zu regeln, falls dies erforderlich sein sollte.
Vorzugsweise wird jedoch die Durchströmung des Kühlmittels geregelt.
Ebenfalls nur vorzugsweise erfolgt die Regelung aufgrund der Temperatur des zu kühlenden Mittels. Die Regelung über die Öltemperatur, auf die, wie bereits angegeben, die Erfindung nicht beschränkt sein soll, hat den Vorteil, daß nur bei direkter Kühlungsanforderung der Kühlmittelstrom durch den Wärmetauscher geleitet wird. Deshalb ist der Medienanschluß an dem Deckel für das Kühlmittel vorgesehen und das Regelventil ist über die Temperatur des zu kühlenden Mittels, bzw. über die Öltemperatur geregelt, derart, daß das temperaturfühlende Organ des Regelventils sich in den Ölkanal erstreckt und das den Strömungsquerschnitt des Zusatzkanals in dem Deckel für das Kühlmittel verändernde Organ des Regelventils in diesen Deckel ragt. Das in den Kanal ragende Ventil hat den Vorteil, daß die Temperaturaufnahme dort in dem Kanal die Regelung genauer macht als eine Temperaturaufnahme, die an einer weiter entfernten Stelle stattfindet, an der sich die Temperatur schon wieder verändert haben könnte.
Der Deckel ist ähnlich einer nach unten offenen Kappe ausgebildet und wird von oben beispielsweise auf die Deckplatte eines gehäuselosen Plattenwärmetauschers aufgesetzt und dichtet dabei mindestens um einen der Zu - oder Abflußkanäle des Kühlmittels und um das Regelventil herum nach außen ab. Die Erfindung ist nicht nur bei gehäuselosen Plattenwärmetauschern (Anspruch 6) sondern genau so vorteilhaft bei den Wärmetauschern einzusetzen, die von einem Gehäuse umgeben sind. (Anspruch 7)
Der Deckel hat in einem Ausführungsbeispiel mindestens zwei nach unten offene stutzenartige Aufnahmen, die innen mit geeigneten Dichtungen versehen und durch den Zusatzkanal verbunden sind. Eine derartige Aufnahme ist für das Regelventil vorgesehen und die andere für den Zu - oder Abflußkanal des Mittels. Beide stutzenartige Aufnahmen sind gleichzeitig selbst auch Zusatzkanal. Ferner ist der Deckel mit einem Medienanschluß versehen.
Eine andere Ausführungsform des Deckels hat zwei Medienanschlüsse, einen Einlaß und einen Auslaß und eine dazwischen verlaufende Trennwand im Deckel, um Einlaß-Zusatzkanal vom Auslaß-Zusatzkanal abzuschotten. Darüber hinaus sind insgesamt mindestens drei stutzenartige Aufnahmen an der nach unten offenen Deckelseite angeordnet. Eine davon für das Regelventil, eine für den Einlaß in den Wärmetauscher und die andere für den Auslaß aus demselben.
Der Deckel besteht vorzugsweise aus Metall oder Kunststoff.
Zur Befestigung des Regelventiles, beispielsweise im Ölkanal des Wärmetauschers, ist der Ölkanal gegenüber dem Anschluß, beispielsweise einem Anschlußstutzen, mit einer Aufnahme ausgerüstet, die ebenfalls stutzenartig ausgebildet ist. Bei einem gelöteten Wärmetauscher kann dieser Aufnahmestutzen gleich mit angelötet werden. In diesem Aufnahmestutzen ist das Regelventil abdichtend befestigt, so daß kein Öl aus dem Ölkanal in den vom Kühlmittel durchflossenen Deckel gelangen kann. Dazu besitzt das Regelventil zwei sich um den Umfang erstreckende Dichtungen. Die Dichtungen sind mit einem Abstand übereinander angeordnet - eine davon zur Kühlmittelseite hin und die andere zur zu kühlenden Medienseite (Ölseite) hin. Innerhalb dieses Abstandes ist im Aufnahmestutzen eine Durchgangsbohrung angebracht, die in Verbindung nach außerhalb des Wärmetauschers ist. Diese an und für sich bekannte Art der Abdichtung dient der Absicherung gegen Undichtigkeiten und gegen Vermischung der beiden Medien. Wenn eine der beiden genannten Dichtungen undicht werden sollte, tritt eines der Mittel, beispielsweise entweder Öl oder Wasser, nach außerhalb, wodurch die Undichtigkeit erkannt werden kann bevor die Vermischung passiert. Wenn ein elektrisch beheiztes Regelventil, ein Regelthermostat, eingesetzt werden soll, kann die vorstehend genannte Durchgangsbohrung sehr einfach und günstig zur Führung der Heizleitung genutzt werden.
Bei einer anderen Ausführungform hat das Regelventil einen Abschnitt, der ein Außengewinde aufweist, mit dem das Regelventil in der ein Innengewinde aufweisenden Aufnahme eingeschraubt ist.
Das Regelventil besitzt einen käfigartigen Teil, (Gehäusekäfig) beispielsweise in der Form eines Kegelstumpfes, das oben, an der größeren, offenen Seite vom Ventilteller verschließbar ist. Der Ventilteller ist verbunden mit dem temperaturaufnehmenden Teil, beispielsweise mit der Kolbenstange eines Wachsthermostaten und ist demzufolge entsprechend der anliegenden Temperatur stufenlos zwischen der offenen und der geschlossenen Stellung bewegbar. Innerhalb des käfigartigen Teiles befindet sich eine Druckfeder, die oben am käfigartigen Teil und unten am Fußpunkt der Kolbenstange abgestützt ist. Die Öffnungsbewegung erfolgt gegen die Kraft der Druckfeder und die Schließbewegung wird durch die Druckfeder herbeigeführt oder unterstützt.
In weiterer Ausbildung der Erfindung kann für die Regelung des Bypaßstromes ein zweites Ventil in dem Deckel integriert sein. Dieses Ventil kann mittels Bimetall oder Memoryfeder oder mittels eines Thermostaten gesteuert werden und ist so eingestellt, daß ab einer vorbestimmten Temperatur eines Mittels der Bypaßkanal vollständig geschlossen ist. Dabei ist das Regelventil über die Temperatur des zu kühlenden Mittels geregelt und das Bypaßventil über die Temperatur des Kühlmittels.
Weitere Merkmale der Erfindung ergeben sich aus den Patentansprüchen. Femer gehen Merkmale und Wirkungen aus der nachfolgenden Beschreibung hervor, die ebenfalls erfindungswesentlich sein könnten.
Die Erfindung wird in Ausführungsbeispielen anhand der beiliegenden Zeichnungen erläutert.
Es zeigen:

Fig. 1
Plattenwärmetauscher mit Regelventil im Ölkanal
Fig. 2
Plattenwärmetauscher mit Regelventil und zusätzlichem Bypaßventil
Fig. 3
Plattenwärmetauscher mit Regelventil im Kühlmittelkanal und mit Bypaßkanal
Fig. 4
Variante zu Fig.2 mit zwei Thermostaten
Fig.5
Wärmetauscher mit Gehäuse und Regelventil
Fig. 6
Draufsicht auf Wärmetauscher, bei dem die Medien im Gegenstrom fließen
Fig. 7
Variante zu Fig. 6 mit Medienfluß im Gleichstrom
According to the basic idea of the invention, it should also be possible to regulate the flow through the agent to be cooled, if this should be necessary.
However, the flow of coolant is preferably regulated.
The control is also only preferably based on the temperature of the agent to be cooled. The regulation of the oil temperature, to which, as already stated, the invention is not to be limited, has the advantage that the coolant flow is passed through the heat exchanger only when there is a direct cooling request. Therefore, the media connection is provided on the cover for the coolant and the control valve is controlled via the temperature of the medium to be cooled, or via the oil temperature, such that the temperature-sensing element of the control valve extends into the oil channel and the flow cross section of the additional channel in the cover for the coolant-changing organ of the control valve protrudes into this cover. The valve protruding into the channel has the advantage that the temperature recording there in the channel makes the control more precise than a temperature recording taking place at a more distant point where the temperature could have changed again.
The cover is designed similarly to a cap which is open at the bottom and is placed from above, for example on the cover plate of a housing-free plate heat exchanger, and seals off at least around one of the inlet or outlet channels of the coolant and around the control valve. The invention is not only to be used in the case of plate heat exchangers without a housing (claim 6), but also just as advantageously in the heat exchangers which are surrounded by a housing. (Claim 7)
In one exemplary embodiment, the cover has at least two neck-like receptacles open at the bottom, which are provided on the inside with suitable seals and are connected by the additional channel. Such a receptacle is provided for the control valve and the other for the inflow or outflow channel of the agent. Both socket-like recordings are also additional channels themselves. Furthermore, the cover is provided with a media connection.
Another embodiment of the cover has two media connections, an inlet and an outlet and an intermediate partition wall in the cover, in order to isolate the additional inlet channel from the additional outlet channel. In addition, there are a total of at least three socket-like receptacles on the bottom open lid side arranged. One for the control valve, one for the inlet into the heat exchanger and the other for the outlet from the same.
The lid is preferably made of metal or plastic.
To fasten the control valve, for example in the oil duct of the heat exchanger, the oil duct is equipped with a receptacle opposite the connection, for example a connecting piece, which is also designed as a piece. In the case of a soldered heat exchanger, this socket can also be soldered on. The control valve is fastened in a sealing manner in this receptacle so that no oil can get from the oil channel into the cover through which the coolant flows. For this purpose, the control valve has two seals that extend around the circumference. The seals are spaced one above the other - one towards the coolant side and the other towards the media side to be cooled (oil side). Within this distance, a through hole is made in the receptacle, which is connected to the outside of the heat exchanger. This type of sealing, which is known per se, serves to protect against leaks and against mixing of the two media. If one of the two seals mentioned should leak, one of the agents, for example either oil or water, escapes, so that the leak can be detected before the mixing takes place. If an electrically heated control valve, a control thermostat, is to be used, the above-mentioned through hole can be used very easily and inexpensively to guide the heating line.
In another embodiment, the control valve has a section which has an external thread with which the control valve is screwed into the receptacle which has an internal thread.
The control valve has a cage-like part (housing cage), for example in the form of a truncated cone, which can be closed at the top on the larger, open side by the valve plate. The valve disk is connected to the temperature-absorbing part, for example to the piston rod of a wax thermostat, and can therefore be moved continuously between the open and the closed position in accordance with the temperature present. Within the cage-like part there is a compression spring which is supported at the top of the cage-like part and at the bottom at the base of the piston rod. The opening movement takes place against the force of the compression spring and the closing movement are brought about or supported by the compression spring.
In a further embodiment of the invention, a second valve can be integrated in the cover for regulating the bypass flow. This valve can be controlled by means of a bimetal or memory spring or by means of a thermostat and is set so that the bypass channel is completely closed from a predetermined temperature of an agent. The control valve is regulated via the temperature of the medium to be cooled and the bypass valve via the temperature of the coolant.
Further features of the invention emerge from the patent claims. Features and effects also appear from the following description, which could also be essential to the invention.
The invention is explained in exemplary embodiments with reference to the accompanying drawings.
Show it:
Fig. 1
Plate heat exchanger with control valve in the oil duct
Fig. 2
Plate heat exchanger with control valve and additional bypass valve
Fig. 3
Plate heat exchanger with control valve in the coolant channel and with bypass channel
Fig. 4
Variant of Fig. 2 with two thermostats
Fig. 5
Heat exchanger with housing and control valve
Fig. 6
Top view of a heat exchanger with the media flowing in counterflow
Fig. 7
6 variant with media flow in direct current

Der sogenannte gehäuselose Wärmetauscher 1 (Ölkühler) besteht in aus dem Stand der Technik bekannter Weise aus mehreren ineinandergestapelten Wärmetauscherplatten. Das Plattenpaket ist oben von einer Deckplatte 18 und unten von einer Grundplatte 18 begrenzt. Die Zu - und Abflußkanäle 2, 3 für den Ölaustritt und den Öleintritt und die nicht gezeigten Zu - und Abflußkanäle 9 und 13 für das Kühlwasser durchbrechen den Plattenstapel. Die genannten Kanäle 2 und 3 für das Öl stehen mit den horizontalen Strömungskanälen 11 und die Kanäle 9 und 13 für das Kühlwasser sind mit den Strömungskanälen 10 in Verbindung. Die übereinander angeordneten Strömungskanäle 10 und 11 wechseln sich ab. Am Ölaustritt befindet sich ein Anschluß 7, der als Auslaßstutzen 19 ausgebildet ist. Am Öleintritt ist der entsprechende Einlaßstutzen mit 20 bezeichnet worden. Auf der Deckplatte 18 an dem nur herausgebrochen gezeichneten Kanal 9 für das Kühlwasser ist ein Einlaßstutzen 21 angeordnet. Der andere Kühlwasserkanal 13, der ebenfalls einen Auslaßstutzen aufweisen könnte, wurde nicht gezeichnet.
Am Kanal 2, gegenüber dem Anschluß 7, ist in der Deckplatte 18 eine Aufnahme 8 vorgesehen, die als Aufnahmestutzen 14 ausgebildet ist. Der bis hierher beschriebene Wärmetauscher 1 ist in diesem Ausführungsbeispiel als komplett gelöteter Wärmetauscher hergestellt worden.
In dem Aufnahmestutzen 14 befindet sich das Regelventil 6, ein thermostatisch geregeltes Ventil, dessen Einzelheiten weiter unten noch ausführlich beschrieben sind. Das temperaturfühlende Teil des Regelventils 6, der Thermostat 31 selbst, erstreckt sich teilweise in den Ölkanal 2, um die Öltemperatur an dieser Stelle aufnehmen zu können. Der Thermostat 31 ist von zwei Dichtungen 15 und 16 umgeben. Die Dichtung 15 dichtet nach oben, zum Kühlwasser hin ab und die Dichtung 16 nach unten, zur Ölseite. Der Aufnahmestutzen 14 hat in seiner Wandung, etwa in der Mitte zwischen den beiden Dichtungen 15 und 16, eine Durchgangsbohrung 17. Die Durchgangsbohrung 17 steht in Verbindung nach außerhalb des Wärmetauschers 1 und zwar hier in Fig. 1 wurde ein kleiner Abstand zwischen der senkrechten Begrenzungswand des Deckels 4 und der Deckplatte 18 des Wärmetauschers 1 eingehalten. Außerdem ist das Regelventil 6 selbstverständlich in nicht näher gezeigter Weise so in dem Aufnahmestutzen 14 befestigt, daß es dem Druck auf der Ölseite standhalten kann.
Der Deckel 4 in Fig. 1 hat nach unten, zur Deckplatte 18 hin zwei stutzenartige Aufnahmeöffnungen und zwar die linke stutzenartige Aufnahme 23, die das Regelventil 6 mit dem Aufnahmestutzen 14 umfaßt und die rechte stutzenartige Aufnahme 22, die den Kühlwasserkanal 9 mit dem Anschlußstutzen 21 umfaßt. Dazwischen angeordnete Dichtringe 24 und 25 sorgen für entsprechende Abdichtung nach außen. Beide stutzenartige Aufnahmen 22 und 23 dienen als Strömungskanal und stehen mit dem Zusatzkanal 5 innerhalb des Deckels 4 in Verbindung. Darüber hinaus weist der Deckel 4 an der linken Seite einen Medienanschluß 12 auf, der hier als Anschlußstutzen ausgebildet ist. Unmittelbar angrenzend an diesen Anschlußstutzen befindet sich das oben bereits teilweise beschriebene Regelventil 6. In dem Thermostat 31 befindet sich eine Kolbenstange 26, die aufgrund der durch Erwärmung verursachten Ausdehnung des Stoffes innerhalb des Thermostaten 31 herausgedrückt wird. Die Kolbenstange 26 ist verbunden mit dem die Veränderung des Strömungsquerschnittes unmittelbar herbeiführenden Teil, nämlich über eine im Zentrum des rotationssymmetrischen Ventiltellers 27 angeordnete Stange 32, die als Verlängerung der Kolbenstange 26 angesehen werden kann. Am Fußpunkt der Stange 32, dort wo die Verbindung von Stange 32 und Kolbenstange 26 angeordnet ist, befindet sich das eine Widerlager für die Druckfeder 29. Stange 32, Druckfeder 29 und das genannte Widerlager sind von einem kegelstumpfförmigen Gehäusekäfig 28 eingeschlossen. Als Gehäusekäfig 28 ist auch eine solche Ausführung zu verstehen, die lediglich zwei Streben aufweist, mittels derer die obere und untere Öffnung verbunden sind. Der Gehäusekäfig 28 ist an seiner unteren kleineren Öffnung mit dem Thermostaten 31 verbunden, während die obere, größere Öffnung von dem Ventilteller 27 abgedeckt ist. Ferner besitzt die größere Öffnung einen nach innen gerichteten Rand oder dergleichen, geeignet dazu, das obere Widerlager der Druckfeder 29 zu bilden. Um den äußeren Rand der oberen, größeren Öffnung befindet sich ein weiterer Dichtring 30, der für eine ausreichende Abdichtung zur stutzenartigen Aufnahme 23 innerhalb des Deckels 4 sorgt.
Die Arbeitsweise des Ölkühlers mit dem eingebauten Regelventil 6 ist wie folgt: Bei kaltem Öl hat das Regelventil 6 die in Fig. 1 gezeichnete Stellung, d.h. der Ventilteller 27 hält die obere Öffnung des Gehäuseskäfiges 28 geschlossen. Das Öl wird in dieser Stellung nicht gekühlt und kann sich deshalb sehr schnell auf Betriebstemperatur erwärmen.
Die Erwärmung kann nach den später folgenden Ausführungsbeispielen noch beschleunigt werden, wenn vorgewärmte Kühlflüssigkeit über einen Bypaß durch den Ölkühler geleitet wird.
Nachdem sich das Öl auf eine Temperatur erwärmt hat, die einen Wärmeaustausch mit dem Kühlwasser erfordert, spricht der Thermostat 31 an und fährt den Kolben 26 aus, was dazu führt, daß der Ventilteller 27 gegen die Kraft der Druckfeder 29 nach oben bewegt wird und dabei die obere Öffnung des Gehäuseskäfiges 28 mehr und mehr freigibt, wodurch die hindurchströmende Kühlwassermenge erhöht wird.
Bei hoher Temperatur des Öles ist eine hohe Leistung des Ölkühlers erforderlich, die mittels einer hohen Kühlmittelmenge erreicht wird. Sinkt die Öltemperatur wieder auf einen niederen Wert, wird sich der Kolben 26 durch die Kraft der Druckfeder 29 wieder in Richtung Schließstellung bewegen und die Kühlmittelmenge bzw. die Kühlleistung reduzieren.
Eine beispielhafte Ausführung mit einem Bypaß 33 wurde in Fig.2 dargestellt. Um der Übersichtlichkeit zu dienen, wurden hier nur die Bezugszeichen der Bauteile angegeben, die den Unterschied zur Fig.1 ausmachen. Im Gehäusekäfig 28 sind Durchbrechungen 37 vorgesehen. Der mit 33 bezeichnete Bypaß ist als Durchgangsbohrung am oberen Ende der stutzenartigen Aufnahme 23 angeordnet. In dem gezeichneten Zustand kann bei geschlossenem Regelventil 6 vorgewärmtes Kühlwasser durch die Durchbrechungen 37 über den Bypaß 33 in den Ölkühler strömen. Mit 34 ist allgemein ein Bimetall-Element bezeichnet worden, dessen Schließteil oberhalb des Bypasses 33 angeordnet ist. Das Bimetall-Element 34 ist hier in einer separaten Öffnung 35 des Deckels 4 gelagert und mit einer geeigneten Dichtung 36 nach außen abgedichtet worden. Sollte nun für einen speziellen Einsatzfall der ständige Bypaßstrom nicht erwünscht sein oder nicht in das Gesamtkonzept einer Fahrzeugkühlung passen, kann das Bimetall-Element 34 so eingestellt sein, daß der Bypaß 33 geschlossen wird, wenn sich das Regelventil 6 dem maximalen Öffnungsgrad nähert. Die Art der Bypaßausbildung mit dem Bimetall-Element 34 ist nur als beispielhaft zu betrachten. Jede andere, den Zweck erfüllende Ausführung könnte hier zum Einsatz kommen. Auch die Zusammenwirkung von mittels Öltemperatur gesteuertem Regelventil 6 und mittels Wassertemperatur gesteuertem Bimetall-Element 34 kann den Bedürfnissen angepaßt werden. Um den Bypaßstrom beispielsweise nur als Aufheizstrom für sehr kaltes Öl oder als Auftaustrom zu nutzen, ließe sich das Bimetall-Element 34 so einstellen, daß der Bypaß schon bei relativ niedrigen Temperaturen geschlossen wird.
Ebenfalls nur das Prinzip einer weiteren zweckmäßigen Ausführungsform ist beispielsweise in Fig. 4 dargestellt worden, bei der ein zweiter Thermostat 39 zum Einsatz kommt, der hier in dem nach unten abgedichteten Raum 38 zwischen den beiden stutzenartigen Aufnahmen 22 und 23 angeordnet wurde. Der Raum 38 hat eine Einströmöffnung 40 und eine Ausströmöffnung 41. Durch die Einströmöffnung 40 kann das Kühlmittel einströmen und den Thermostaten 39 aktivieren. Der Thermostat 39 sperrt die Ausströmöffnung 41 entsprechend der eingestellten Kühlmitteltemperatur ab.
In Fig. 3 wurde eine benachbarte Variante dargestellt, bei der sich das Regelventil 6 im Kühlmittelkanal 9 befindet, also eine nach der Temperatur des Kühlmittels gesteuerte Variante. Hier ist es von Vorteil, wenn ein ständig geöffneter Bypaß 33 vorgesehen wird, der neben seiner bereits beschriebenen Zweckbestimmung dazu dient, daß der Thermostat 31 ständig von einem Kühlwasserstrom umströmt wird. Das Kühlwasser strömt durch den Medienanschluß 12 ein, gelangt durch den Bypaß 33 und über den Zusatzkanal 5 zum Anschlußstutzen 21, weiter in den Kanal 13 und über den Kanal 9 zum Wasserauslaß. Auf der Ölseite wurde hier nur der Anschlußstutzen 7 und ein Teil des Kanales 2 (herausgebrochen) dargestellt. Bemerkt werden soll noch, daß hinsichtlich der Abdichtung des Regelventiles 6 in der Aufnahme 8 eine billigere Variante angewendet werden könnte, weil beidseitig der Dichtung Kühlwasser strömt.
The so-called housing-free heat exchanger 1 (oil cooler) consists, in a manner known from the prior art, of a plurality of heat exchanger plates stacked one inside the other. The plate pack is delimited at the top by a cover plate 18 and at the bottom by a base plate 18. The inflow and outflow channels 2, 3 for the oil outlet and the oil inlet and the not shown inflow and outflow channels 9 and 13 for the cooling water break through the plate stack. The above-mentioned channels 2 and 3 for the oil are connected to the horizontal flow channels 11 and the channels 9 and 13 for the cooling water are connected to the flow channels 10. The flow channels 10 and 11 arranged one above the other alternate. At the oil outlet there is a connection 7 which is designed as an outlet connection 19. At the oil inlet, the corresponding inlet connector has been designated 20. On the cover plate 18 on the only broken-out channel 9 for the cooling water, an inlet port 21 is arranged. The other cooling water channel 13, which could also have an outlet connection, was not drawn.
On the channel 2, opposite the connection 7, a receptacle 8 is provided in the cover plate 18, which is designed as a receptacle 14. The heat exchanger 1 described so far has been produced in this embodiment as a completely soldered heat exchanger.
In the receptacle 14 there is the control valve 6, a thermostatically controlled valve, the details of which are described in detail below. The temperature-sensing part of the control valve 6, the thermostat 31 itself, extends partially into the oil channel 2 in order to be able to record the oil temperature at this point. The thermostat 31 is surrounded by two seals 15 and 16. The seal 15 seals upwards, towards the cooling water and the seal 16 downwards, towards the oil side. The receptacle connector 14 has a through hole 17 in its wall, approximately in the middle between the two seals 15 and 16. The through hole 17 is connected to the outside of the heat exchanger 1, specifically here in FIG. 1 there was a small distance between the vertical boundary wall of the cover 4 and the cover plate 18 of the heat exchanger 1 are observed. In addition, the control valve 6 is of course in a manner not shown so attached in the receiving port 14 that it can withstand the pressure on the oil side.
The cover 4 in FIG. 1 has two nozzle-like receptacles at the bottom, towards the cover plate 18, namely the left nozzle-like receptacle 23, which comprises the control valve 6 with the receptacle 14, and the right nozzle-like receptacle 22, which connects the cooling water channel 9 with the connecting piece 21 includes. Sealing rings 24 and 25 arranged between them ensure appropriate sealing to the outside. Both socket-like receptacles 22 and 23 serve as a flow channel and are connected to the additional channel 5 within the cover 4. In addition, the cover 4 has on the left side a media connection 12, which is designed here as a connecting piece. Immediately adjacent to this connection piece is the control valve 6, which has already been partially described above. In the thermostat 31 there is a piston rod 26 which is pressed out of the thermostat 31 due to the expansion of the material caused by heating. The piston rod 26 is connected to the Change in the flow cross section directly bringing about part, namely via a rod 32 arranged in the center of the rotationally symmetrical valve plate 27, which can be viewed as an extension of the piston rod 26. At the base of the rod 32, where the connection between the rod 32 and the piston rod 26 is arranged, there is an abutment for the compression spring 29. Rod 32, compression spring 29 and the abutment mentioned are enclosed by a frustoconical housing cage 28. A housing cage 28 is also to be understood as an embodiment which has only two struts, by means of which the upper and lower openings are connected. The housing cage 28 is connected to the thermostat 31 at its lower, smaller opening, while the upper, larger opening is covered by the valve plate 27. Furthermore, the larger opening has an inward edge or the like, suitable for forming the upper abutment of the compression spring 29. Around the outer edge of the upper, larger opening there is a further sealing ring 30, which provides sufficient sealing for the socket-like receptacle 23 within the cover 4.
The operation of the oil cooler with the built-in control valve 6 is as follows: When the oil is cold, the control valve 6 has the position shown in FIG. 1, ie the valve plate 27 keeps the upper opening of the housing cage 28 closed. The oil is not cooled in this position and can therefore warm up to operating temperature very quickly.
The heating can be accelerated according to the later embodiments if preheated cooling liquid is passed through a bypass through the oil cooler.
After the oil has warmed up to a temperature which requires heat exchange with the cooling water, the thermostat 31 responds and extends the piston 26, which leads to the valve plate 27 being moved upwards against the force of the compression spring 29 and thereby the upper opening of the housing cage 28 releases more and more, whereby the amount of cooling water flowing through is increased.
When the temperature of the oil is high, the oil cooler needs a high output, which is achieved by using a large amount of coolant. If the oil temperature drops again to a low value, the piston 26 will move due to the force of the compression spring 29 again in the direction of the closed position and reduce the amount of coolant or the cooling capacity.
An exemplary embodiment with a bypass 33 was shown in Fig.2. In order to provide clarity, only the reference numerals of the components that make up the difference from FIG. 1 have been given here. Openings 37 are provided in the housing cage 28. The bypass designated 33 is arranged as a through hole at the upper end of the socket-like receptacle 23. In the illustrated state, with the control valve 6 closed, preheated cooling water can flow through the openings 37 via the bypass 33 into the oil cooler. A bimetallic element is generally designated by 34, the closing part of which is arranged above the bypass 33. The bimetallic element 34 is here stored in a separate opening 35 in the cover 4 and sealed to the outside with a suitable seal 36. If, for a special application, the constant bypass flow is not desired or does not fit into the overall concept of vehicle cooling, the bimetallic element 34 can be set so that the bypass 33 is closed when the control valve 6 approaches the maximum degree of opening. The type of bypass formation with the bimetal element 34 is only to be regarded as an example. Any other design that serves the purpose could be used here. The interaction of control valve 6 controlled by oil temperature and bimetal element 34 controlled by water temperature can also be adapted to the requirements. In order to use the bypass flow, for example, only as a heating current for very cold oil or as a thawing stream, the bimetal element 34 could be set so that the bypass is closed even at relatively low temperatures.
Likewise, only the principle of a further expedient embodiment has been shown, for example, in FIG. 4, in which a second thermostat 39 is used, which was arranged here in the downwardly sealed space 38 between the two socket-like receptacles 22 and 23. The space 38 has an inflow opening 40 and an outflow opening 41. The coolant can flow in through the inflow opening 40 and activate the thermostat 39. The thermostat 39 shuts off the outflow opening 41 in accordance with the set coolant temperature.
3 shows an adjacent variant in which the control valve 6 is located in the coolant channel 9, that is to say a variant which is controlled according to the temperature of the coolant. It is advantageous here if a constantly open bypass 33 is provided, which, in addition to its purpose already described, serves to ensure that a cooling water stream is constantly flowing around the thermostat 31. The cooling water flows in through the media connection 12, passes through the bypass 33 and via the additional duct 5 to the connecting piece 21, further into the duct 13 and via the duct 9 to the water outlet. On the oil side, only the connecting piece 7 and part of the channel 2 (broken out) was shown here. It should also be noted that with regard to the sealing of the control valve 6 in the receptacle 8, a cheaper variant could be used because cooling water flows on both sides of the seal.

Fig. 5 zeigt einen Wärmetauscher 1 bekannten Typs mit einem Gehäuse 42, an dem die Erfindung verwirklicht ist. Der Wärmetauscher 1 hat einen Öleintritt (Anschluß 20) und einen Ölaustritt (Anschluß 7) an einer Seite. Der Öleintritt ist am Kanal 3 angeschlossen und der Ölaustritt am Kanal 2. Beide Kanäle 2; 3 durchbrechen die horizontalen Strömungskanäle 11 für das Öl und stehen mit diesen in Verbindung. Die Strömungskanäle 10, die dazwischen angeordnet sind (nicht gezeigt) sind für das Kühlmittel gedacht, die mit den Kanälen 9 und 13 in Verbindung sind, die durch das Gehäuse 42 gebildet werden. Dieses Gehäuse 42 umfaßt den gesamten Wärmetauscher 1 und weist einen Einlaßstutzen und einen Auslaßstutzen für das Kühlmittel auf, die beide das Bezugszeichen 21 haben. Im Kanal 2 befindet sich das Regelventil 6 und ist in bereits beschriebener Art befestigt. Der Deckel 4 weist einen Kühlmittelanschluß 12 auf, schließt den Zusatzkanal 5 ein und hat die stutzenartige Aufnahme 22, die den Einlaßstutzen 21 für das Kühlmittel aufnimmt und die stutzenartige Aufnahme 23, die das Regelventil 6 aufnimmt.
Die Fig. 6 und 7 zeigen das Prinzip verschiedener Varianten hinsichtlich der Anordnung der Ein-und Auslässe und deren Verbindung durch den Deckel 4 in der Draufsicht. In Fig. 7 ist der Deckel 4 etwa diagonal über dem Wärm etauscher 1 angeordnet und schließt den Ölkanal 2 und den Kühlmittelkanal 13 ein. Das Regelventil 6 wurde im Ölkanal 2 angeordnet. Wie vorne bereits angegeben, könnte sich das Regelventil 6 auch im Ölkanal 3 befinden. Die Anordnung im Ölkanal 2, der der Auslaßkanal ist, hat den Vorteil, daß die dort vorhandene Temperatur in vielen Fällen den wichtigsten Parameter darstellt. Angedeutet ist eine Memory-Feder 34 und eine Bypaßbohrung 33. Eine Memory - Feder hat gegenüber dem Bimetall - Element den Vorteil, daß damit innerhalb enger Temperaturgrenzen zwischen "zu" und "auf" geschaltet werden kann. Die Fig. 6 unterscheidet sich lediglich dadurch von der Fig. 7, daß der Ölkanal 2 und der Kühlmittelkanal 13 nicht diagonal gegenüberliegen sondern in benachbarten Eckbereichen angeordnet sind. Dadurch strömen in Fig. 7 Kühlmittel und Öl im Gleichstrom und in Fig. 6 im Gegenstrom.
Eine Reihe anderer Anschlußvarianten sind möglich und hängen von den örtlichen Einbauzwängen ab.
Nicht extra dargestellt, aber anhand der Fig. 6 und 7 gut verständlich, wurde die vorne genannte Variante, bei der der Deckel 4 neben dem Medienanschluß 12 für den Einlaß einen weiteren Medienanschluß 12 für den Auslaß des Kühlmittels aufweist. In diesem Fall wäre dann der Deckel 4 so ausgebildet, daß er auch noch den Kühlmittelkanal 13 einschließt und würde ein Schott aufweisen, um beide Seiten voneinander zu trennen.
5 shows a heat exchanger 1 of known type with a housing 42 on which the invention is implemented. The heat exchanger 1 has an oil inlet (connection 20) and an oil outlet (connection 7) on one side. The oil inlet is connected to channel 3 and the oil outlet to channel 2. Both channels 2; 3 break through the horizontal flow channels 11 for the oil and are connected to them. The flow channels 10 disposed therebetween (not shown) are for the coolant, which are in communication with the channels 9 and 13 formed by the housing 42. This housing 42 comprises the entire heat exchanger 1 and has an inlet connection and an outlet connection for the coolant, both of which have the reference symbol 21. The control valve 6 is located in channel 2 and is fastened in the manner already described. The cover 4 has a coolant connection 12, includes the additional channel 5 and has the nozzle-like receptacle 22, which receives the inlet nozzle 21 for the coolant and the nozzle-like receptacle 23, which receives the control valve 6.
6 and 7 show the principle of different variants with regard to the arrangement of the inlets and outlets and their connection by the cover 4 in a top view. In Fig. 7, the cover 4 is arranged approximately diagonally above the heat exchanger 1 and includes the oil channel 2 and the coolant channel 13. The control valve 6 was arranged in the oil channel 2. As already stated above, the control valve 6 could also be located in the oil channel 3. The arrangement in oil channel 2, which is the outlet channel has the advantage that the temperature present there is the most important parameter in many cases. A memory spring 34 and a bypass bore 33 are indicated. A memory spring has the advantage over the bimetal element that it can be used to switch between "closed" and "open" within narrow temperature limits. 6 differs from FIG. 7 only in that oil channel 2 and coolant channel 13 are not diagonally opposite but are arranged in adjacent corner areas. As a result, coolant and oil flow in cocurrent in FIG. 7 and in countercurrent in FIG. 6.
A number of other connection variants are possible and depend on the local installation constraints.
The variant mentioned above, in which the cover 4 has, in addition to the media connection 12 for the inlet, a further media connection 12 for the outlet of the coolant, was not shown separately, but is easy to understand with reference to FIGS. 6 and 7. In this case, the cover 4 would then be designed such that it also includes the coolant channel 13 and would have a bulkhead in order to separate the two sides from one another.

Claims (16)

  1. Heat exchanger, in' particular oil cooler (1), of the type having at least two flow passages (10; 11), which are separate from one another, for a cooling fluid and fluid which is to be cooled, which passages are interrupted by inlet and outlet passages (2; 3) for one of the fluids, and having corresponding connections (7; 20; 21) to these inlet arid outlet passages, and having inlet and outlet passages (9; 13) for the other fluid, and having a cover (4) which is sealed with respect to the heat exchanger, forms an additional passage (5) and includes at least one control valve (6), which can be used to control the temperature-dependent flow through one of the flow passages (10; 11), characterized in that at least one of the inlet or outlet passages (2; 3) for one of the fluids is provided, opposite its connection (7; 20; 21), with a receptacle (8) in which the control valve (6) comprising a temperature-sensitive part (31) and a moveable part (27) is arranged, so that its temperature-sensitive part detects the temperature of this one fluid, and in that the cover (4), which encompasses the control valve (6) and at least one more of the inlet nor outlet passages (9; 13) for the other fluid, has at least one medium connection (12), it being possible to change the size of the cross section of flow of the additional passage. (5) by means of the moveable part of the control valve (6), so that the throughput between the medium connection (12) and the further inlet or outlet passage (3; 13) for the other fluid can be controlled.
  2. Heat exchanger, in particular oil cooler, according to Claim 1, characterized in that the control valve (6) projects, by means of the temperature-sensitive part (31), into the inlet or outlet passage (2 or 3) for the fluid which is to be cooled, in that the part which controls the size of the cross section of flow of the additional passage (5) for the cooling fluid or which moves is arranged inside the cover (4), and in that the medium connection (12) is provided on the cover (4) and the further inlet or outlet passage (9; 13), which is encompassed by the said cover, for the cooling fluid.
  3. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the cover (4) is designed with stub-like receptacles (22; 23) towards the heat exchanger (1).
  4. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the cover (4) has a medium connection (12) and a further medium connection, as well as a partition arranged between them, and towards the heat exchanger (1), in addition to the stub-like receptacle (22; 23) for the control valve (6) and the one inlet or outlet passage (9), also comprises a further stub-like receptacle for the other inlet or outlet passage (13).
  5. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the receptacle (8) is soldered onto the heat exchanger (1) as a receptacle stub (14).
  6. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the heat exchanger (1) is designed as a plate-type heat exchanger which has no housing and has heat exchanger plates which are stacked together and form separate horizontal flow passages (10, 11), this heat exchanger being closed off at the bottom and at the top by a base or cover plate (18) and has inlet or outlet passages (2; 3; 9; 13) which pass through the stack of plates, are in communication with the flow passages (10 or 11) and have connections (19; 20; 21).
  7. Heat exchanger, in particular oil cooler, according to one of claims 1 to 5, characterized in that the heat exchanger (1) is surrounded by a housing (42) which forms the inlet or outlet passages (9; 13) for one fluid, which is flowing through the flow passages (11) which are arranged between the flow passages (10) for the other fluid, which are in flow communication and are interrupted by inlet and outlet passages (2; 3).
  8. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the receptacle (8) which receives the control valve (6) is formed inside an inlet or outlet passage (2; 3; 9; 13).
  9. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the control valve (6) controls the output of the heat exchanger (1).
  10. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the control valve (6) is provided, in the receptacle stub (14) with two seals (15; 16) arranged one above the other, and in that a through-bore (17), which is arranged between the seals (15; 16) and connects the space between the seals to the outside of the heat exchanger (1), is provided in the receptacle stub (14).
  11. Heat exchanger, in particular oil cooler, according to one of claims 1 - 9, characterized in that the control valve (6) has a section which is provided with an external screw thread and is screwed into the receptacle (8), which is provided with an internal screw thread.
  12. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that the control valve (6) comprises a thermostat (31) which is connected to a frustoconical housing cage (28), into which the piston rod (26), which is coupled to the valve disc (27) via a rod (32), projects, and in that a compression spring (29), which at the top is supported in the housing cage (28) and at the bottom is supported on the end of the rod (32), is arranged inside the housing cage (28).
  13. Heat exchanger, in particular oil cooler, according to one of the preceding claims, characterized in that a bypass (33) with a bypass valve (34), which is controlled by the temperature of the cooling fluid, is arranged inside the cover (4), and in that the control valve (6) is controlled by the oil temperature.
  14. Method for controlling a heat exchanger, in particular an oil cooler, in which the flow through the heat exchanger (1) is changed as a function of the temperature of a fluid which is accommodated inside the heat exchanger, characterized in that the output of the heat exchanger (1) is regulated in such a manner that the temperature of the fluid to be cooled (oil) is recorded directly in the heat exchanger (1), and in that a control valve (6) which belongs to the heat exchanger (1) executes opening movements when the temperature of the fluid to be cooled rises and executes closing movements when the temperature falls, within the control range of the control valve (6), with the result that the quantity of the cooling fluid flowing through the heat exchanger (1) is controlled.
  15. Control method according to Claim 14, characterized in that a bypass valve (34) is controlled by means of the temperature of the cooling fluid.
  16. Control method according to Claim 15, in which the heat exchanger is used as an oil cooler in a motor vehicle, and the oil is preheated during a cold start of the engine, characterized in that the bypass valve (34) is closed when the preheating phase of the engine has terminated.
EP98120967A 1997-11-17 1998-11-05 Heat exchanger, specially with a valve, and a method for controling the exchange of heat Expired - Lifetime EP0916816B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19750814 1997-11-17
DE19750814A DE19750814C5 (en) 1997-11-17 1997-11-17 Heat exchangers, in particular oil coolers

Publications (2)

Publication Number Publication Date
EP0916816A1 EP0916816A1 (en) 1999-05-19
EP0916816B1 true EP0916816B1 (en) 2001-09-19

Family

ID=7848931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120967A Expired - Lifetime EP0916816B1 (en) 1997-11-17 1998-11-05 Heat exchanger, specially with a valve, and a method for controling the exchange of heat

Country Status (3)

Country Link
US (1) US6182749B1 (en)
EP (1) EP0916816B1 (en)
DE (2) DE19750814C5 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010393A1 (en) 2007-03-03 2008-09-04 Modine Manufacturing Co., Racine Oil cooler for internal combustion engine has temperature sensing part of thermostat valve in housing fixed in region of inflow channel or outflow channel
DE102009022919A1 (en) 2009-05-27 2010-12-02 Modine Manufacturing Co., Racine Heat exchanger unit i.e. oil cooler, for use in motor vehicle, has heat exchanger channels formed by plates, where partial stream is branched from coolant stream in inlet area usina cover plate and is guided through heat exchanger channels

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8505619B2 (en) * 1997-02-25 2013-08-13 Sundsvall Energi Ab Heat exchanger with temperature-controlled valve
DE10019029C5 (en) * 2000-04-18 2017-11-23 Mahle International Gmbh Device for cooling and / or tempering oil
DE10357175B4 (en) * 2003-12-06 2006-03-16 Mtu Friedrichshafen Gmbh Base plate for a crankcase
US20050161519A1 (en) * 2004-01-28 2005-07-28 Klaus Kalbacher Thermostat-control valve for heat exchanger
DE102004004223A1 (en) * 2004-01-28 2005-08-18 Modine Manufacturing Co., Racine Thermostatic control valve with housing on a heat exchanger
DE102004004975B4 (en) * 2004-01-31 2015-04-23 Modine Manufacturing Co. Plate heat exchangers
DE102004024516A1 (en) * 2004-05-18 2005-12-15 Adam Opel Ag Optimized oil cooling for an internal combustion engine
US20110067853A1 (en) * 2004-08-27 2011-03-24 George Moser Fluid cooling device for a motor vehicle
DE102004045238A1 (en) * 2004-09-17 2006-05-18 Danfoss A/S heat exchangers
AU2005287863B2 (en) * 2004-09-23 2011-04-28 Rheem Australia Pty Limited Overtemperature protection system
WO2006032083A1 (en) * 2004-09-23 2006-03-30 Rheem Australia Pty Limited Overtemperature protection system
DE102005004520A1 (en) * 2005-01-31 2006-08-10 Behr Gmbh & Co. Kg The stacked-plate cooler
DE102005012082A1 (en) * 2005-03-16 2006-09-21 Modine Manufacturing Co., Racine Heat exchangers, in particular cooling liquid coolers
DE102005022723A1 (en) * 2005-05-18 2006-11-23 Daimlerchrysler Ag Thermostat valve for a coolant circuit of an internal combustion engine
DE102005046635A1 (en) * 2005-09-29 2007-04-05 Zf Friedrichshafen Ag Device for uncoupling oil flow through radiator e.g. radiator for transmission with low oil temperatures, has valve unit which comprises heat sensitive element that is displaced inside valve housing in accordance with temperature of oil
DE102005061476A1 (en) * 2005-12-22 2007-06-28 Audi Ag Valve unit, especially for cooling medium circuit in a combustion engine, has closing element in fluid flow responding to actuator in a control fluid flow channel
FR2904857B1 (en) * 2006-08-09 2008-11-07 Peugeot Citroen Automobiles Sa DEVICE FOR CONTROLLING A CIRCUIT CIRCUIT FOR A COOLANT AND A LUBRICATING OIL CIRCUIT FOR A VEHICLE HEAT ENGINE
US8955763B2 (en) * 2007-10-04 2015-02-17 Consolidated Edison Company Of New York, Inc. Building heating system and method of operation
DE102007052263B4 (en) * 2007-11-02 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Thermostatic valve assembly
EP2315995B1 (en) * 2008-04-17 2019-06-12 Dana Canada Corporation U-flow heat exchanger
DE102008051629A1 (en) * 2008-10-14 2010-04-15 Valeo Systemes Thermiques Fastenable to a vehicle cooling module valve housing, vehicle cooling module and combination thereof
DE102009050016A1 (en) 2009-05-27 2011-05-05 Modine Manufacturing Co., Racine Heat exchanger unit
US8689742B2 (en) * 2009-11-24 2014-04-08 Hyundai Motor Company Integrated coolant flow control and heat exchanger device
DE102009056161A1 (en) * 2009-11-27 2011-06-01 Volkswagen Ag A lubricant supply device for an internal combustion engine and a method for operating such a lubricant supply device
CA2710725C (en) 2010-07-22 2017-08-01 Alphora Research Inc. Protected aldehydes for use as intermediates in chemical syntheses, and processes for their preparation
DE202010011010U1 (en) 2010-08-04 2010-11-04 Bucyrus Hex Gmbh Hydraulic preheater for hydraulic oil cooler in a large hydraulic excavator
US10126068B2 (en) * 2010-12-24 2018-11-13 Dana Canada Corporation Fluid flow heat transfer box for multiple fluids with fluid flow control device
US8459389B2 (en) * 2010-12-30 2013-06-11 Hyundai Motor Company Integrated pump, coolant flow control and heat exchange device
US20120168138A1 (en) * 2010-12-30 2012-07-05 Hyundai Motor Company Integrated pump, coolant flow control and heat exchange device
CA2726599C (en) 2010-12-30 2017-07-25 Alphora Research Inc. Process for treprostinil salt preparation
US9239195B2 (en) * 2011-04-26 2016-01-19 Hyundai Motor Company Heat exchanger for vehicle
US8840034B2 (en) * 2011-06-10 2014-09-23 International Business Machines Corporation Automatic in situ coolant flow control in LFT heat exchanger
KR101283591B1 (en) * 2011-09-19 2013-07-05 현대자동차주식회사 Heat exchanger for vehicle
KR20140116131A (en) * 2011-12-22 2014-10-01 다나 캐나다 코포레이션 Heat exchanger with integrated thermal bypass valve
CA2873462C (en) 2012-05-31 2020-03-31 Dana Canada Corporation Heat exchanger assemblies with integrated valve
KR101339250B1 (en) * 2012-06-11 2013-12-09 현대자동차 주식회사 Heat exchanger for vehicle
KR101405186B1 (en) 2012-10-26 2014-06-10 현대자동차 주식회사 Heat exchanger for vehicle
DE102013209856A1 (en) 2013-05-28 2014-12-04 Zf Friedrichshafen Ag Switching element for a transmission cooling circuit
US9823030B2 (en) * 2013-08-14 2017-11-21 Hamilton Sundstrand Corporation Heated bypass valve for heat exchanger
US9522609B2 (en) 2013-12-31 2016-12-20 Hyundai Motor Company Thermal management system for fuel cell vehicles
US10077952B2 (en) 2014-05-02 2018-09-18 Dana Canada Corporation Manifold structure for re-directing a fluid stream
KR101526427B1 (en) * 2014-06-23 2015-06-05 현대자동차 주식회사 Heat exchanger for vehicle
US10087793B2 (en) 2015-01-26 2018-10-02 Modine Manufacturing Company Thermal management unit for vehicle powertrain
DE102015207593A1 (en) 2015-04-24 2016-10-27 Mahle International Gmbh oil cooler
KR101703603B1 (en) * 2015-06-15 2017-02-07 현대자동차 주식회사 Can-type heat exchanger
DE102016202026A1 (en) 2016-02-10 2017-08-10 Mack & Schneider Gmbh valve means
CA3023150A1 (en) 2016-05-06 2017-11-09 Dana Canada Corporation Heat exchangers for battery thermal management applications with integrated bypass
WO2017201252A1 (en) 2016-05-20 2017-11-23 Modine Manufacturing Company Heat exchanger and heat exchange system
US10690233B2 (en) * 2016-07-27 2020-06-23 Ford Global Technologies, Llc Bypass control for U-flow transmission oil coolers
CN110073164B (en) * 2016-11-09 2021-07-20 杭州三花研究院有限公司 Fluid heat exchange assembly and vehicle thermal management system
US10520075B2 (en) * 2017-05-31 2019-12-31 Mahle International Gmbh Apparatus for controlling the temperature of an oil cooler in a motor vehicle
US10900557B2 (en) 2018-11-13 2021-01-26 Dana Canada Corporation Heat exchanger assembly with integrated valve with pressure relief feature for hot and cold fluids
IT202100010346A1 (en) 2021-04-23 2022-10-23 Centro Radiatori di Mastellone Sergio MONOBLOC RADIATOR WITH A SYSTEM OF TANKS, CHAMBERS AND PRIVILEGED DUCTS WHICH ALLOWS EFFECTIVE TEMPERATURE CONTROL OF THE LIQUIDS PRESENT INSIDE
US20230422452A1 (en) * 2022-06-23 2023-12-28 Hamilton Sundstrand Corporation Mini-channel cold plate with three-dimensional adaptive flow-path using bi-metal fins

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382569A (en) * 1920-11-20 1921-06-21 American Pasteurizer Company I Temperature-controller
US2070092A (en) * 1929-04-11 1937-02-09 Gen Motors Corp Oil cooling system
US2213017A (en) * 1938-06-09 1940-08-27 Modine Mfg Co Air conditioner for automobiles
DE751785C (en) * 1941-01-07 1953-02-02 Sueddeutsche Kuehler Behr Heat measuring device for adjustable coolers of internal combustion engines
US2655351A (en) * 1948-04-14 1953-10-13 Separator Ab Temperature control for heat exchangers
US2776092A (en) * 1953-03-05 1957-01-01 Jr Theron T Collins Control method and apparatus for heat recovery condensers
US3343536A (en) * 1964-08-27 1967-09-26 United Aircraft Corp Space suit heat exchanger with liquid boiling point control
US3513907A (en) * 1968-04-17 1970-05-26 United Aircraft Prod Plural mode heat exchange apparatus
BE794794A (en) * 1971-11-04 1973-05-16 Modine Mfg Cy HEAT EXCHANGER
DE2755464A1 (en) * 1977-12-13 1979-06-21 Daimler Benz Ag THERMOSTATIC CONTROL VALVE
FR2481791B1 (en) * 1980-05-05 1985-11-22 Ferodo Sa HEAT EXCHANGER, PARTICULARLY FOR A COOLING CIRCUIT OF A MOTOR VEHICLE ENGINE
DE3112202C2 (en) * 1981-03-27 1984-11-15 Bayerische Motoren Werke Ag, 8000 Muenchen Cooling device for liquid-cooled internal combustion engines
JPS5992391U (en) * 1982-12-11 1984-06-22 大生工業株式会社 Heat exchange medium control device
US4669532A (en) * 1984-04-23 1987-06-02 Kabushiki Kaisha Tsuchiya Seisakusho Heat exchanger with temperature responsive bypass
JPH089978B2 (en) * 1988-05-12 1996-01-31 株式会社豊田自動織機製作所 Regulator for LPG
DE3923936C2 (en) * 1989-07-19 1996-07-11 Laengerer & Reich Kuehler Heat exchangers, especially oil coolers
IL107850A0 (en) * 1992-12-07 1994-04-12 Multistack Int Ltd Improvements in plate heat exchangers
DE9309741U1 (en) * 1993-06-30 1993-08-26 Filterwerk Mann & Hummel Gmbh, 71638 Ludwigsburg Heat exchanger
SE9502189D0 (en) * 1995-06-16 1995-06-16 Tetra Laval Holdings & Finance plate heat exchangers
DE59703327D1 (en) * 1996-02-01 2001-05-17 Modine Mfg Co Device for tempering the gear oil of a motor vehicle
DE19637818C1 (en) * 1996-09-17 1998-04-16 Laengerer & Reich Gmbh & Co Thermostatic valve unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007010393A1 (en) 2007-03-03 2008-09-04 Modine Manufacturing Co., Racine Oil cooler for internal combustion engine has temperature sensing part of thermostat valve in housing fixed in region of inflow channel or outflow channel
DE102009022919A1 (en) 2009-05-27 2010-12-02 Modine Manufacturing Co., Racine Heat exchanger unit i.e. oil cooler, for use in motor vehicle, has heat exchanger channels formed by plates, where partial stream is branched from coolant stream in inlet area usina cover plate and is guided through heat exchanger channels

Also Published As

Publication number Publication date
US6182749B1 (en) 2001-02-06
DE19750814C2 (en) 2000-11-23
DE19750814A1 (en) 1999-06-02
DE19750814C5 (en) 2005-08-18
DE59801507D1 (en) 2001-10-25
EP0916816A1 (en) 1999-05-19

Similar Documents

Publication Publication Date Title
EP0916816B1 (en) Heat exchanger, specially with a valve, and a method for controling the exchange of heat
DE102012113213B4 (en) Heat exchanger for a vehicle
DE2755466C3 (en) Thermostatic control valve
DE112013002728T5 (en) Heat exchanger arrangements with integrated valve
DE102004020589B4 (en) Temperature-dependent flow control valve for engine cooling systems with a tubular valve coil
DE3440504A1 (en) COOLING SYSTEM AND METHOD FOR COOLING AN INTERNAL COMBUSTION ENGINE
DE102007010393B4 (en) Heat exchanger
DE19606202A1 (en) Cooling system for an internal combustion engine
DE1673454A1 (en) Control device for a pressure medium
DE112017003477T5 (en) HEAT EXCHANGER WITH DUAL INTERNAL VALVE
DE102004020588A1 (en) Engine cooling system
DE102016209592B4 (en) valve for a vehicle
DE3630084C2 (en)
DE202021102042U1 (en) Two heat exchangers with an integrated bypass valve
DE10048792A1 (en) thermostatic valve
DE2811144C2 (en) Vehicle internal combustion engine
DE4325975A1 (en) Thermostatic valve
DE10102640A1 (en) Heat exchanger, for vehicle cooling systems, uses adjacent water and oil heat exchange channels for an improved heat exchange action
DE3226191A1 (en) WATER TANK WITH INTEGRATED EXPANSION TANK FOR AN EXAMPLE OF THE COOLANT CIRCUIT OF AN INTERNAL COMBUSTION ENGINE RELATED TO HEAT EXCHANGER
DE69014339T2 (en) Wax pellet thermostat.
DE2916691C2 (en) Cooling device for internal combustion engines
DE3305041C2 (en)
DE69924647T2 (en) PLATE HEAT EXCHANGER WITH INTEGRATED VALVE
DE2755462C2 (en) Thermostatic control valve
DE102013209965A1 (en) thermostatic valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990406

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MODINE MANUFACTURING COMPANY

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20000117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59801507

Country of ref document: DE

Date of ref document: 20011025

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131122

Year of fee payment: 16

Ref country code: GB

Payment date: 20131120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131114

Year of fee payment: 16

Ref country code: IT

Payment date: 20131121

Year of fee payment: 16

Ref country code: FR

Payment date: 20131118

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801507

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105