EP0916450A1 - Method and apparatus for polishing semiconductor wafers - Google Patents

Method and apparatus for polishing semiconductor wafers Download PDF

Info

Publication number
EP0916450A1
EP0916450A1 EP98119004A EP98119004A EP0916450A1 EP 0916450 A1 EP0916450 A1 EP 0916450A1 EP 98119004 A EP98119004 A EP 98119004A EP 98119004 A EP98119004 A EP 98119004A EP 0916450 A1 EP0916450 A1 EP 0916450A1
Authority
EP
European Patent Office
Prior art keywords
polishing
radial
areas
semiconductor wafers
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98119004A
Other languages
German (de)
French (fr)
Other versions
EP0916450B1 (en
Inventor
Heinrich Hennhöfer
Hans Krämer
Helmut Kirschner
Manfred Thurner
Thomas Buschhardt
Klaus Dr. Röttger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Wacker Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Siltronic AG filed Critical Wacker Siltronic AG
Publication of EP0916450A1 publication Critical patent/EP0916450A1/en
Application granted granted Critical
Publication of EP0916450B1 publication Critical patent/EP0916450B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/015Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor

Definitions

  • the invention relates to a method for polishing Semiconductor wafers with at least one side at least a semiconductor wafer against one covered with a polishing cloth Polishing plate is pressed and polished, the Semiconductor wafer and the polishing plate a relative movement To run.
  • the invention also relates to a device which is suitable for performing the method.
  • planarization of a semiconductor wafer using a chemo-mechanical Polishing is an important processing step in the process flow for the production of a flat, defect-free and smooth semiconductor wafer.
  • This polishing step provides the final form in many production processes and thus decisively determining the surface properties Step before reusing the semiconductor wafer as raw material for the production of electrical, electronic and microelectronic components.
  • Objectives of Polishing processes are particularly high Flatness and parallelism of the two disc sides, the removal pretreatment of damaged surface layers ("damage removal") and the reduction of the microroughness of the Semiconductor wafer.
  • polishing processes When polishing a group of several semiconductor wafers (“single side batch polishing") the semiconductor wafers with one side on the front a carrier plate mounted by between the side and the carrier plate has a positive and non-positive connection, for example by adhesion, gluing, kitten or vacuum application, will be produced.
  • the semiconductor wafers mounted on the carrier plate so that it is a Form a pattern of concentric rings.
  • the free sides of the disc are fed with a polishing agent against a polishing plate over which a polishing cloth is stretched is pressed with a certain polishing force and polished.
  • the carrier plate and the polishing plate are thereby usually rotated at different speeds.
  • the necessary polishing force is provided by a pressure stamp hereinafter referred to as "polishing head” transfer the back of the carrier plate.
  • a variety of used polishing machines are designed so that they over have several polishing pots and accordingly several carrier plates be able to record.
  • Double side polishing With double side polishing (DSP) the front and back are polished simultaneously by several semiconductor wafers between two covered with polishing cloths, upper and lower polishing plates.
  • the semiconductor wafers lie in thin guide cages ("wafer carrier"), which are referred to as rotor disks and in a similar form when lapping semiconductor wafers be used.
  • wafer carrier thin guide cages
  • Double-sided polishing processes and devices are always for the treatment of groups of semiconductor wafers designed ("batch polishing").
  • Polished semiconductor wafers often have pages that are not parallel to each other but in cross-section the shape of a wedge take in.
  • the shape of the wedge can be described with the term linear thickness variation describe.
  • the linear thickness variation is the largest measured difference in thickness between two measuring points, the on the same diameter symmetrical to the center of the semiconductor wafer lie.
  • the measuring points are usually symmetrical on a circle that is a distance of, for example 6 mm from the edge of the wafer of the semiconductor wafer. Is the edge the semiconductor wafer, which faces the edge of the carrier plate, thicker (thinner) than the edge of the pane, towards the center of the carrier plate shows, one speaks of a positive (negative) linear Wedging.
  • TTV total thickness variation
  • a wedge of a semiconductor wafer caused by the polish is ultimately the result of an uneven Material removal. It can arise if the carrier plate radially deformed during polishing by its own weight or a certain radial wedge, due to the manufacturing process Has. Sometimes there is also wear and tear of the polishing cloth cause that the disc geometry deteriorated in the course of several polishing runs.
  • a certain one Basic wedge results even when used ideally level Carrier plates because of the kinematic conditions in the Single disc polishing, which is an inhomogeneous material removal promote.
  • EP-4033 A1 proposes intermediate layers made of soft elastic bodies between the polishing pot and the back insert the carrier plate, thereby the carrier plate is deliberately curved a little radially symmetrically.
  • the carrier plate In order to can be prevented to a certain extent from the semiconductor wafers be wedge-polished.
  • this procedure is cannot be automated and prone to errors, since its success is largely from the experience and care of the operators depends on the width of the liners must select and insert. But even if there are no mistakes made, the wedge of the polished semiconductor wafers remains above a certain limit.
  • the present invention solves the problem in polishing of semiconductor wafers an improved uniformity of the To achieve polishing removal, so that in particular the wedge the polished semiconductor wafers is low.
  • the invention relates to a method for polishing Semiconductor wafers with at least one side at least a semiconductor wafer against one covered with a polishing cloth Polishing plate is pressed and polished, the Semiconductor wafer and the polishing plate a relative movement execute, characterized in that the semiconductor wafer at least two areas on the polishing plate during polishing sweeps that have certain radial widths and have different temperatures, and tempering agents are provided in the polishing plate, with the aid of which the number, the radial latitudes and the temperatures of the areas before Polishing the semiconductor wafers can be determined.
  • the invention further relates to a device for Implementation of the procedure, which is characterized by a Chamber system made of concentric in the polishing plate arranged annular chambers through which a tempering medium flows that a certain, adjustable in each annular chamber Temperature.
  • polishing occurs a radially convex temperature profile on the polishing plate, this is partly responsible for the wedge shape of polished semiconductor wafers is.
  • the temperature profile causes an inhomogeneous Material removal through the use of the above elastic intermediate layers (e.g. when using ceramic carrier plates that are practically not arched may) or not sufficient (when using carrier plates less rigid material) can be compensated.
  • Such compensation is provided by the present invention possible because of the creation of tempered areas specified a radial temperature profile of the polishing plate that decisively determines the material removal.
  • the invention allowed to polish the wedge shape of semiconductor wafers set within comparatively wide limits. By the invention can produce semiconductor wafers, which are specifically positive or negative wedge.
  • the invention is used for kinematic influences and influences of the carrier plate or the polishing cloth, which too Wedges would lead to compensate and for example an extension of the service life of the polishing cloth to reach.
  • the invention can be used both for one-sided polishing (one and Multi-disc polish), as well as for double-sided polish become.
  • the invention is illustrated below using the example multi-disc single-side polishing (single-side batch polishing) explained in more detail.
  • the semiconductor wafers at least two areas during polishing paint over the polishing plate, which is caused by temperature control in the Polishing pads are kept at certain temperatures.
  • the Areas are preferably laid out in concentric rings, taking temperatures from at least two of the ranges differentiate. The number, the radial latitudes and the temperatures the areas are determined before a polishing run. Not excluded is the temperature at which the areas be held during a polishing run change.
  • the polishing cloth wears during polishing Semiconductor wafers on a conventional polishing plate are not homogeneous Temperature before.
  • the temperature often increases from the edge r / 2 of the polishing plate (r is the radius of the polishing plate) and drops to the center of the polishing plate, making a radial convex temperature profile results.
  • r is the radius of the polishing plate
  • a homogenization of the temperature profile can be achieved.
  • a radially convex temperature profile should be at least two tempered areas can be set up on the polishing plate.
  • radial temperature profile are made uniform.
  • the number of areas, their radial latitude and the temperatures, on which they are held are before polishing of the semiconductor wafers.
  • the basis for the determination can data from an analysis of the geometry previously polished Semiconductor wafers are used, for example the linear thickness variation determined for these semiconductor wafers. Measurement data of the radial temperature profile can also form the basis of the polishing plate during a previous one Polishing run were determined.
  • the functional relationship between that after a polish too expected geometry of the semiconductor wafers and the one to be determined Number, width and temperatures of the areas on the The polishing plate is expediently carried out by routine experimentation determined. In such experiments, the number is radial Systematic changes in width and temperature of the areas and the effects on the geometry of the polished semiconductor wafers examined.
  • a host computer receives as input data the radial temperature profile, which during a previous polishing run or data on the geometry (for example on the wedge shape) of semiconductor wafers, which polished on a previous polishing run were and is based on the empirically found connection those to achieve a desired one Disc geometry necessary parameters (number, radial width and temperature of the areas).
  • FIG. 1 is a preferred embodiment of the claimed device shown schematically.
  • the figure shows a vertical section through the device in side view.
  • Figure 2 is a horizontal section through the polishing plate the device shown in plan view.
  • 3a, 3b and 4a, 4b is shown schematically as the Geometry of semiconductor wafers through the application of the invention can be influenced. Below is only on characteristics pointed out that necessary to illustrate the invention are. Similar features are used in the figures pointed out the same reference numerals.
  • FIG. 1 In the shown Embodiment is a single side polishing machine with several polishing pots, one of which can be seen is.
  • the polishing pot 1 presses a carrier plate 2 with a polishing force K against a polishing plate covered with a polishing cloth 3 4.
  • the carrier plate is, for example, vacuum suction held on the polishing pot.
  • the semiconductor wafers 5 are on the front of the carrier plate facing the polishing cloth 3 2 fixed.
  • Essential characteristic of the Device are in the polishing plate in concentric Orbital ring chambers through which a tempering medium flows.
  • Each annulus becomes independent of one others from a temperature control medium, for example water, flows through, the tempering medium in each annular chamber has certain temperature and the temperatures are different could be.
  • the temperature control medium is through flow lines VZ1 to VZ5 pumped into the respective ring chambers and leaves this again through return lines RZ1 to RZ5.
  • the Flow and return lines run through a rotating union 6, which is attached to the underside of the polishing plate 4. For the sake of clarity, the supply and return lines are shown interrupted.
  • the temperature control medium is from a thermostat 7 at a desired temperature held.
  • the thermostat is operated by one Control computer 8 controlled, the target temperatures SZ1 to SZ5 specifies for the temperature control medium in the annular chambers Z1 to Z5.
  • the master computer accesses a data store 9 back, stored in the measurement data of previous polishing runs and automatically calculates the Target temperatures.
  • the temperature control medium holds a certain one in each annular chamber Temperature upright, so that on the polishing plate radially symmetrical Areas with a characteristic temperature arise that sweep over the semiconductor wafers during polishing.
  • the number of available areas depends on the number of the provided ring chambers.
  • the radial widths of the areas are of the chosen radial widths of the annular chambers and depending on the temperature of the temperature control medium flows through the annular chambers.
  • FIG 2 is a horizontal section through the polishing plate the device shown in Figure 1 in plan view. If the temperature of the temperature control medium in each ring chamber Z1 to Z5 of the temperatures of the tempering medium in the rest Differentiates annular chambers, produce the annular chambers the polishing plate corresponds to the number of annular chambers Number of annular areas. These areas are on a Temperature maintained, which is essentially the temperature of the Temperature control medium in the associated ring chamber corresponds. The Number of areas is correspondingly lower when the temperature of the temperature control medium in two or more neighboring ones Annular chambers is the same.
  • Is the temperature of the temperature control medium the same in two adjacent ring chambers results from this an area on the polishing plate whose radial width is approximately the sum of the radial widths of these annular chambers corresponds. 2 to 5 annular chambers are preferred provided.
  • the radial widths of the annular chambers are preferably 25 to 120% of the diameter of the to be polished Semiconductor wafers.
  • the annular chambers can deviate from the illustration in Fig. 2 also be structured in itself (for example meandering).
  • the specification of a certain radial temperature profile the polishing plate by providing areas with a certain temperature can also be considered other than described above can be achieved, for example by the integration of heating and cooling elements in the polishing plate. These can be done inductively or through a likewise in the polishing plate housed power supply are operated.
  • FIGS. 3a, 3b and 4a, 4b show schematically like the geometry of semiconductor wafers through the application the invention can be influenced.
  • the figures reflect that Result of exemplary embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

During polishing the semiconductor disk (5) slides over at least two radial zones with different temperatures on the polishing tray (4). Means are provided which allow the radial width, temperature and number of such zones to be specified before polishing of the semiconductor disks. The claimed apparatus is characterized in that the polishing tray incorporates a system of concentric annular chambers (Z1, Z2, ...) for flow of a medium whose temperature is adjustable.

Description

Gegenstand der Erfindung ist ein Verfahren zum Polieren von Halbleiterscheiben, bei dem mindestens eine Seite mindestens einer Halbleiterscheibe gegen einen mit einem Poliertuch bespannten Polierteller gedrückt und poliert wird, wobei die Halbleiterscheibe und der Polierteller eine Relativbewegung ausführen. Die Erfindung betrifft auch eine Vorrichtung, die zur Durchführung des Verfahrens geeignet ist.The invention relates to a method for polishing Semiconductor wafers with at least one side at least a semiconductor wafer against one covered with a polishing cloth Polishing plate is pressed and polished, the Semiconductor wafer and the polishing plate a relative movement To run. The invention also relates to a device which is suitable for performing the method.

Die Planarisierung einer Halbleiterscheibe mittels eines chemo-mechanischen Polierverfahrens bildet einen wichtigen Bearbeitungsschritt im Prozeßablauf zur Herstellung einer ebenen, defektfreien und glatten Halbleiterscheibe. Dieser Polierschritt stellt in vielen Fertigungsabläufen den letzten formgebenden und somit die Oberflächeneigenschaften maßgeblich bestimmenden Schritt vor der Weiterverwendung der Halbleiterscheibe als Ausgangsmaterial für die Herstellung elektrischer, elektronischer und mikroelektronischer Bauteile dar. Ziele des Polierverfahrens sind insbesondere das Erreichen einer hohen Ebenheit und Parallelität der beiden Scheibenseiten, der Abtrag durch Vorbehandlungen geschädigter Oberflächenschichten ("damage removal") und die Reduktion der Mikrorauhigkeit der Halbleiterscheibe.The planarization of a semiconductor wafer using a chemo-mechanical Polishing is an important processing step in the process flow for the production of a flat, defect-free and smooth semiconductor wafer. This polishing step provides the final form in many production processes and thus decisively determining the surface properties Step before reusing the semiconductor wafer as raw material for the production of electrical, electronic and microelectronic components. Objectives of Polishing processes are particularly high Flatness and parallelism of the two disc sides, the removal pretreatment of damaged surface layers ("damage removal") and the reduction of the microroughness of the Semiconductor wafer.

Üblicherweise werden Einseiten- und Doppelseiten-Polierverfahren eingesetzt. Bei der Einseitenpolitur einer Gruppe von mehreren Halbleiterscheiben ("single side batch polishing") werden die Halbleiterscheiben mit einer Seite auf die Vorderseite einer Trägerplatte montiert, indem zwischen der Seite und der Trägerplatte eine form- und kraftschlüssige Verbindung, beispielsweise durch Adhäsion, Kleben, Kitten oder Vakuumanwendung, hergestellt wird. In der Regel werden die Halbleiterscheiben so auf die Trägerplatte montiert, daß sie ein Muster von konzentrischen Ringen ausbilden. Nach der Montage werden die freien Scheibenseiten unter Zuführung eines Poliermittels gegen einen Polierteller, über den ein Poliertuch gespannt ist, mit einer bestimmten Polierkraft gedrückt und poliert. Die Trägerplatte und der Polierteller werden dabei üblicherweise mit unterschiedlicher Geschwindigkeit gedreht. Die notwendige Polierkraft wird von einem Druckstempel, der nachfolgend Poliertopf ("polishing head") genannt wird, auf die Rückseite der Trägerplatte übertragen. Eine Vielzahl der verwendeten Poliermaschinen sind so konstruiert, daß sie über mehrere Poliertöpfe verfügen und dementsprechend mehrere Trägerplatten aufnehmen können.Commonly used are single-sided and double-sided polishing processes used. When polishing a group of several semiconductor wafers ("single side batch polishing") the semiconductor wafers with one side on the front a carrier plate mounted by between the side and the carrier plate has a positive and non-positive connection, for example by adhesion, gluing, kitten or vacuum application, will be produced. As a rule, the semiconductor wafers mounted on the carrier plate so that it is a Form a pattern of concentric rings. After assembly the free sides of the disc are fed with a polishing agent against a polishing plate over which a polishing cloth is stretched is pressed with a certain polishing force and polished. The carrier plate and the polishing plate are thereby usually rotated at different speeds. The necessary polishing force is provided by a pressure stamp hereinafter referred to as "polishing head" transfer the back of the carrier plate. A variety of used polishing machines are designed so that they over have several polishing pots and accordingly several carrier plates be able to record.

Bei der Doppelseitenpolitur ("double side polishing", DSP) werden Vorderseite und Rückseite gleichzeitig poliert, indem mehrere Halbleiterscheiben zwischen zwei mit Poliertüchern bespannten, oberen und unteren Poliertellern geführt werden. Dabei liegen die Halbleiterscheiben in dünnen Führungskäfigen ("wafer carrier"), die als Läuferscheiben bezeichnet werden und in ähnlicher Form auch beim Läppen von Halbleiterscheiben verwendet werden. Doppelseiten-Polierverfahren und -Vorrichtungen sind stets für die Behandlung von Gruppen von Halbleiterscheiben ausgelegt ("batch polishing").With double side polishing (DSP) the front and back are polished simultaneously by several semiconductor wafers between two covered with polishing cloths, upper and lower polishing plates. Here the semiconductor wafers lie in thin guide cages ("wafer carrier"), which are referred to as rotor disks and in a similar form when lapping semiconductor wafers be used. Double-sided polishing processes and devices are always for the treatment of groups of semiconductor wafers designed ("batch polishing").

Mehrere Faktoren machen es schwierig, die angestrebte Ebenheit und Parallelität der Halbleiterscheiben, nachfolgend angestrebte Geometrie genannt, zu erreichen. Polierte Halbleiterscheiben weisen oftmals Seiten auf, die nicht parallel zueinander liegen, sondern im Querschnitt die Form eines Keils einnehmen.Several factors make it difficult to achieve the desired flatness and parallelism of the semiconductor wafers, subsequently sought Called geometry. Polished semiconductor wafers often have pages that are not parallel to each other but in cross-section the shape of a wedge take in.

Die Form des Keils läßt sich mit dem Begriff lineare Dickenvariation beschreiben. Die lineare Dickenvariation ist der größte gemessene Dickenunterschied zwischen zwei Meßstellen, die auf gleichem Durchmesser symmetrisch zum Mittelpunkt der Halbleiterscheibe liegen. Üblicherweise liegen die Meßstellen symmetrisch auf einem Kreis, der einen Abstand von beispielsweise 6 mm vom Scheibenrand der Halbleiterscheibe hat. Ist der Rand der Halbleiterscheibe, der zum Trägerplattenrand zeigt, dicker (dünner), als der Scheibenrand, der zur Trägerplattenmitte zeigt, spricht man von einer positiven (negativen) linearen Keiligkeit. The shape of the wedge can be described with the term linear thickness variation describe. The linear thickness variation is the largest measured difference in thickness between two measuring points, the on the same diameter symmetrical to the center of the semiconductor wafer lie. The measuring points are usually symmetrical on a circle that is a distance of, for example 6 mm from the edge of the wafer of the semiconductor wafer. Is the edge the semiconductor wafer, which faces the edge of the carrier plate, thicker (thinner) than the edge of the pane, towards the center of the carrier plate shows, one speaks of a positive (negative) linear Wedging.

Ein anderes Maß für die Keiligkeit von Halbleiterscheiben ist der sogenannte TTV-Wert (TTV = total thickness variation). Dieser Wert gibt die Differenz zwischen der dicksten und der dünnsten Stelle auf der Halbleiterscheibe an.Another measure of the wedge shape of semiconductor wafers is the so-called TTV value (TTV = total thickness variation). This value gives the difference between the thickest and the thinnest point on the semiconductor wafer.

Eine durch die Politur verursachte Keiligkeit einer Halbleiterscheibe ist letztlich das Resultat eines ungleichmäßigen Materialabtrags. Sie kann entstehen, wenn die Trägerplatte während der Politur durch ihr Eigengewicht radial deformiert wird oder eine bestimmte, herstellungsbedingte radiale Keiligkeit hat. Manchmal ist auch eine sich einstellende Abnutzung des Poliertuchs Ursache dafür, daß sich die Scheibengeometrie im Verlauf mehrerer Polierfahren verschlechtert. Eine gewisse Grundkeiligkeit resultiert selbst bei Verwendung ideal ebener Trägerplattten wegen der kinematischen Verhältnisse bei der Einzelscheibenpolitur, die einen inhomogenen Materialabtrag fördern.A wedge of a semiconductor wafer caused by the polish is ultimately the result of an uneven Material removal. It can arise if the carrier plate radially deformed during polishing by its own weight or a certain radial wedge, due to the manufacturing process Has. Sometimes there is also wear and tear of the polishing cloth cause that the disc geometry deteriorated in the course of several polishing runs. A certain one Basic wedge results even when used ideally level Carrier plates because of the kinematic conditions in the Single disc polishing, which is an inhomogeneous material removal promote.

In der EP-4033 A1 wird vorgeschlagen, Zwischenlagen aus weichen elastischen Körpern zwischen den Poliertopf und der Rückseite der Trägerplatte einzulegen, wodurch die Trägerplatte absichtlich ein wenig radialsymmetrisch gewölbt wird. Damit kann zu einem gewissen Maß verhindert werden, daß die Halbleiterscheiben keilig poliert werden. Dieses Verfahren ist jedoch nicht automatisierbar und fehleranfällig, da sein Erfolg größtenteils von der Erfahrung und der Umsicht des Bedienungspersonals abhängt, das die Zwischenlagen an Hand deren Breite auswählen und einlegen muß. Aber auch wenn dabei keine Fehler gemacht werden, bleibt die Keiligkeit der polierten Halbleiterscheiben über einem bestimmten Grenzwert.EP-4033 A1 proposes intermediate layers made of soft elastic bodies between the polishing pot and the back insert the carrier plate, thereby the carrier plate is deliberately curved a little radially symmetrically. In order to can be prevented to a certain extent from the semiconductor wafers be wedge-polished. However, this procedure is cannot be automated and prone to errors, since its success is largely from the experience and care of the operators depends on the width of the liners must select and insert. But even if there are no mistakes made, the wedge of the polished semiconductor wafers remains above a certain limit.

Die vorliegende Erfindung löst die Aufgabe, bei der Politur von Halbleiterscheiben eine verbesserte Vergleichmäßigung des Polierabtrages zu erreichen, so daß insbesondere die Keiligkeit der polierten Halbleiterscheiben gering ist. The present invention solves the problem in polishing of semiconductor wafers an improved uniformity of the To achieve polishing removal, so that in particular the wedge the polished semiconductor wafers is low.

Gegenstand der Erfindung ist ein Verfahren zum Polieren von Halbleiterscheiben, bei dem mindestens eine Seite mindestens einer Halbleiterscheibe gegen einen mit einem Poliertuch bespannten Polierteller gedrückt und poliert wird, wobei die Halbleiterscheibe und der Polierteller eine Relativbewegung ausführen, dadurch gekennzeichnet, daß die Halbleiterscheibe während des Polierens mindestens zwei Bereiche auf dem Polierteller überstreicht, die bestimmte radiale Breiten aufweisen und unterschiedliche Temperaturen haben, und Temperiermittel im Polierteller vorgesehen sind, mit deren Hilfe die Anzahl, die radialen Breiten und die Temperaturen der Bereiche vor dem Polieren der Halbleiterscheiben festgelegt werden.The invention relates to a method for polishing Semiconductor wafers with at least one side at least a semiconductor wafer against one covered with a polishing cloth Polishing plate is pressed and polished, the Semiconductor wafer and the polishing plate a relative movement execute, characterized in that the semiconductor wafer at least two areas on the polishing plate during polishing sweeps that have certain radial widths and have different temperatures, and tempering agents are provided in the polishing plate, with the aid of which the number, the radial latitudes and the temperatures of the areas before Polishing the semiconductor wafers can be determined.

Gegenstand der Erfindung ist ferner eine Vorrichtung zur Durchführung des Verfahrens, die gekennzeichnet ist durch ein im Polierteller untergebrachtes Kammersystem aus konzentrisch angeordenten Ringkammern, durch die ein Temperiermedium strömt, das in jeder Ringkammer eine bestimmte, einstellbare Temperatur aufweist.The invention further relates to a device for Implementation of the procedure, which is characterized by a Chamber system made of concentric in the polishing plate arranged annular chambers through which a tempering medium flows that a certain, adjustable in each annular chamber Temperature.

Untersuchungen der Erfinder zufolge stellt sich beim Polieren ein radial konvexes Temperaturprofil auf dem Polierteller ein, das für die Keiligkeit polierter Halbleiterscheiben mitverantwortlich ist. Das Temperaturprofil verursacht einen inhomogenen Materialabtrag, der durch den Einsatz der oben genannten elastischen Zwischenlagen nicht (beispielsweise bei Verwendung keramischer Trägerplatten, die praktisch nicht gewölbt werden können) oder nicht ausreichend (bei Verwendung von Trägerplatten aus weniger steifem Material) kompensiert werden kann. Durch die vorliegende Erfindung ist eine solche Kompensation möglich, weil durch die Schaffung von temperierten Bereichen ein radiales Temperaturprofil des Poliertellers vorgegeben wird, das den Materialabtrag entscheidend mitbestimmt. Die Erfindung erlaubt, durch Polieren die Keiligkeit von Halbleiterscheiben in vergleichsweise weiten Grenzen einzustellen. Durch die Erfindung können Halbleiterscheiben hergestellt werden, die gezielt positiv oder negativ keilig sind. In erster Linie wird die Erfindung jedoch genutzt, um kinematische Einflüsse und Einflüsse der Trägerplatte oder des Poliertuchs, die zu Keiligkeiten führen würden, zu kompensieren und beispielsweise eine Verlängerung der Nutzungsdauer des Poliertuches zu erreichen.Investigations by the inventors have shown that polishing occurs a radially convex temperature profile on the polishing plate, this is partly responsible for the wedge shape of polished semiconductor wafers is. The temperature profile causes an inhomogeneous Material removal through the use of the above elastic intermediate layers (e.g. when using ceramic carrier plates that are practically not arched may) or not sufficient (when using carrier plates less rigid material) can be compensated. Such compensation is provided by the present invention possible because of the creation of tempered areas specified a radial temperature profile of the polishing plate that decisively determines the material removal. The invention allowed to polish the wedge shape of semiconductor wafers set within comparatively wide limits. By the invention can produce semiconductor wafers, which are specifically positive or negative wedge. Primarily However, the invention is used for kinematic influences and influences of the carrier plate or the polishing cloth, which too Wedges would lead to compensate and for example an extension of the service life of the polishing cloth to reach.

Die Erfindung kann sowohl bei der Einseitenpolitur (Ein- und Mehrscheibenpolitur), als auch bei der Doppelseitenpolitur angewendet werden. Die Erfindung wird nachstehend am Beispiel der Mehrscheiben-Einseitenpolitur (single-side-batch-polishing) näher erläutert.The invention can be used both for one-sided polishing (one and Multi-disc polish), as well as for double-sided polish become. The invention is illustrated below using the example multi-disc single-side polishing (single-side batch polishing) explained in more detail.

Gemäß der Erfindung wird sichergestellt, daß die Halbleiterscheiben während des Polierens mindestens zwei Bereiche auf dem Polierteller überstreichen, die durch Temperiermittel im Polierteller auf bestimmten Temperaturen gehalten werden. Die Bereiche sind vorzugsweise in konzentrischen Ringen angelegt, wobei sich die Temperaturen von mindestens zwei der Bereiche unterscheiden. Die Anzahl, die radialen Breiten und die Temperaturen der Bereiche werden vor einer Polierfahrt festgelegt. Nicht ausgeschlossen ist, die Temperaturen, auf denen die Bereiche gehalten werden, während einer Polierfahrt zu verändern.According to the invention it is ensured that the semiconductor wafers at least two areas during polishing paint over the polishing plate, which is caused by temperature control in the Polishing pads are kept at certain temperatures. The Areas are preferably laid out in concentric rings, taking temperatures from at least two of the ranges differentiate. The number, the radial latitudes and the temperatures the areas are determined before a polishing run. Not excluded is the temperature at which the areas be held during a polishing run change.

Aufgrund von Einflüssen der Polierkinematik, der Verwendung nicht vollkommen ebener Trägerplatten und einer inhomogenen Abnutzung des Poliertuches herrscht während des Polierens von Halbleiterscheiben auf einem üblichen Polierteller keine homogene Temperatur vor. Die Temperatur nimmt häufig vom Rand bis r/2 des Poliertellers zu (r ist der Radius des Poliertellers) und fällt zum Zentrum des Poliertellers ab, so daß ein radial konvexes Temperaturprofil resultiert. Durch die Einrichtung von Bereichen auf dem Polierteller, die von im Polierteller untergebrachten Temperiermitteln auf bestimmten Temperaturen gehalten werden können, kann eine Homogenisierung des Temperaturprofils erreicht werden. Zur Vermeidung der Ausbildung eines radial konvexen Temperaturprofils sollten mindestens zwei temperierte Bereiche auf dem Polierteller eingerichtet werden. Geeignet sind beispielsweise drei Bereiche in der Form konzentrischer Ringe, wobei der äußere und der innere auf einer höheren Temperatur gehalten werden als der mittlere Bereich. Dadurch wird Wärme, die im Zentrumsbereich des Poliertellers während des Polierens von Halbleiterscheiben entsteht, über das Temperiermittel abgeführt. Der äußere und innere Ring und somit die randnahen Teile des Poliertellers erhalten hingegen zusätzlich Wärmeenergie, so daß insgesamt ein flacheres radiales Temperaturprofil resultiert. Grundsätzlich kann durch die Erfindung jedes beliebige, sich beim Polieren einstellende, radiale Temperaturprofil vergleichmäßigt werden.Due to influences of the polishing kinematics, the use not completely flat carrier plates and an inhomogeneous one The polishing cloth wears during polishing Semiconductor wafers on a conventional polishing plate are not homogeneous Temperature before. The temperature often increases from the edge r / 2 of the polishing plate (r is the radius of the polishing plate) and drops to the center of the polishing plate, making a radial convex temperature profile results. By the establishment from areas on the polishing plate, from areas in the polishing plate housed temperature control agents at certain temperatures can be maintained, a homogenization of the temperature profile can be achieved. To avoid training a radially convex temperature profile should be at least two tempered areas can be set up on the polishing plate. For example, three areas in the shape are suitable concentric rings, the outer and the inner on one higher temperature than the middle range. This creates heat in the center area of the polishing plate arises during the polishing of semiconductor wafers, dissipated via the temperature control. The outer and inner ring and thus preserve the parts of the polishing plate near the edge additional thermal energy, so that overall a flatter radial temperature profile results. Basically, by the invention of any polishing process radial temperature profile are made uniform.

Die Anzahl der Bereiche, ihre radiale Breite und die Temperaturen, auf denen sie gehalten werden, werden vor dem Polieren der Halbleiterscheiben festgelegt. Als Grundlage für die Festlegung können Daten von einer Analyse der Geometrie zuvor polierter Halbleiterscheiben verwendet werden, beispielsweise die bei diesen Halbleiterscheiben ermittelte lineare Dickenvariation. Grundlage können auch Meßdaten des radialen Temperaturprofils des Poliertellers sein, die während einer vorangegangenen Polierfahrt ermittelt wurden.The number of areas, their radial latitude and the temperatures, on which they are held are before polishing of the semiconductor wafers. As the basis for the determination can data from an analysis of the geometry previously polished Semiconductor wafers are used, for example the linear thickness variation determined for these semiconductor wafers. Measurement data of the radial temperature profile can also form the basis of the polishing plate during a previous one Polishing run were determined.

Der Funktionszusammenhang zwischen der nach einer Politur zu erwartenden Geometrie der Halbleiterscheiben und der festzulegenden Anzahl, Breite und Temperaturen der Bereiche auf dem Polierteller wird zweckmäßigerweise durch Routineexperimete ermittelt. Bei solchen Experimenten werden die Anzahl, radiale Breite und Temperaturen der Bereiche systematisch verändert und die Auswirkungen auf die Geometrie der polierten Halbleiterscheiben untersucht.The functional relationship between that after a polish too expected geometry of the semiconductor wafers and the one to be determined Number, width and temperatures of the areas on the The polishing plate is expediently carried out by routine experimentation determined. In such experiments, the number is radial Systematic changes in width and temperature of the areas and the effects on the geometry of the polished semiconductor wafers examined.

Nach Abschluß solcher Experimente kann das Polierverfahren auf einfache Weise automatisiert werden. Ein Leitrechner erhält als Eingangsdaten das radiale Temperaturprofil, das während einer vorangegangenen Polierfahrt ermittelt wurde oder Daten zur Geometrie (beispielsweise zur Keiligkeit) von Halbleiterscheiben, die bei einer vorhergehenden Polierfahrt poliert wurden und legt auf der Grundlage des empirisch gefundenen Zusammenhangs die zum Erreichen einer gewünschten Scheibengeometrie notwendigen Parameter (Anzahl, radiale Breite und Temperatur der Bereiche) fest.After completing such experiments, the polishing process can be started be automated easily. A host computer receives as input data the radial temperature profile, which during a previous polishing run or data on the geometry (for example on the wedge shape) of semiconductor wafers, which polished on a previous polishing run were and is based on the empirically found connection those to achieve a desired one Disc geometry necessary parameters (number, radial width and temperature of the areas).

Die Erfindung wird nachfolgend anhand von Figuren näher beschrieben. In Figur 1 ist eine bevorzugte Ausführungsform der beanspruchten Vorrichtung schematisch dargestellt. Die Figur zeigt einen Vertikalschnitt durch die Vorrichtung in Seitenansicht. In Figur 2 ist ein Horizontalschnitt durch den Polierteller der Vorrichtung in Draufsicht dargestellt. In den Figuren 3a, 3b und 4a, 4b ist schematisch dargestellt, wie die Geometrie von Halbleiterscheiben durch die Anwendung der Erfindung beeinflußt werden kann. Nachfolgend wird nur auf Merkmale hingewiesen, die zur Verdeutlichung der Erfindung notwendig sind. In den Figuren wird auf gleichartige Merkmale mit denselben Bezugszeichen hingewiesen.The invention is described in more detail below with reference to figures. In Figure 1 is a preferred embodiment of the claimed device shown schematically. The figure shows a vertical section through the device in side view. In Figure 2 is a horizontal section through the polishing plate the device shown in plan view. In the figures 3a, 3b and 4a, 4b is shown schematically as the Geometry of semiconductor wafers through the application of the invention can be influenced. Below is only on characteristics pointed out that necessary to illustrate the invention are. Similar features are used in the figures pointed out the same reference numerals.

Zunächst wird auf die Figur 1 Bezug genommen. Bei der gezeigten Ausführungsform handelt es sich um eine Einseitenpoliermaschine mit mehreren Poliertöpfen, von denen einer zu sehen ist. Der Poliertopf 1 drückt eine Trägerplatte 2 mit einer Polierkraft K gegen einen mit einem Poliertuch 3 bespannten Polierteller 4. Die Trägerplatte wird beispielsweise über Vakuumansaugung am Poliertopf gehalten. Die Halbleiterscheiben 5 sind auf der zum Poliertuch 3 weisenden Vorderseite der Trägerplatte 2 fixiert. Während des Polierens rotiert sowohl die Trägerplatte als auch der Polierteller mit einer bestimmten Geschwindigkeit und Drehrichtung. Wesentliches Merkmal der Vorrichtung sind im Polierteller in konzentrisch angelegten Bahnen laufende Ringkammern, durch die ein Temperiermedium strömt. Im dargestellten Polierteller sind fünf Ringkammern Z1 bis Z5 vorgesehen. Jede Ringkammer wird unabhängig von einer anderen von einem Temperiermedium, beispielsweise Wasser, durchströmt, wobei das Temperiermedium in jeder Ringkammer eine bestimmte Temperatur hat und die Temperaturen unterschiedlich sein können. Das Temperiermedium wird durch Vorlaufleitungen VZ1 bis VZ5 in die jeweiligen Ringkammern gepumpt und verläßt diese wieder durch Rücklaufleitungen RZ1 bis RZ5. Die Vor- und Rücklaufleitungen laufen durch eine Drehdurchführung 6, die an der Unterseite des Poliertellers 4 befestigt ist. Der Übersichtlichkeit wegen sind die Vorlauf- und Rücklaufleitungen unterbrochen dargestellt. Das Temperiermedium wird von einer Thermostatisier-Einrichtung 7 auf einer gewünschten Temperatur gehalten. Die Thermostatisier-Einrichtung wird von einem Leitrechner 8 gesteuert, der die Soll-Temperaturen SZ1 bis SZ5 für das Temperiermedium in den Ringkammern Z1 bis Z5 vorgibt. Der Leitrechner greift wiederum auf einen Datenspeicher 9 zurück, in dem Meßdaten vorangegangener Polierfahrten abgelegt sind und berechnet daraus automatisch die Soll-Temperaturen.First, reference is made to FIG. 1. In the shown Embodiment is a single side polishing machine with several polishing pots, one of which can be seen is. The polishing pot 1 presses a carrier plate 2 with a polishing force K against a polishing plate covered with a polishing cloth 3 4. The carrier plate is, for example, vacuum suction held on the polishing pot. The semiconductor wafers 5 are on the front of the carrier plate facing the polishing cloth 3 2 fixed. During the polishing, both the Carrier plate as well as the polishing plate with a certain Speed and direction of rotation. Essential characteristic of the Device are in the polishing plate in concentric Orbital ring chambers through which a tempering medium flows. There are five annular chambers Z1 in the polishing plate shown provided up to Z5. Each annulus becomes independent of one others from a temperature control medium, for example water, flows through, the tempering medium in each annular chamber has certain temperature and the temperatures are different could be. The temperature control medium is through flow lines VZ1 to VZ5 pumped into the respective ring chambers and leaves this again through return lines RZ1 to RZ5. The Flow and return lines run through a rotating union 6, which is attached to the underside of the polishing plate 4. For the sake of clarity, the supply and return lines are shown interrupted. The temperature control medium is from a thermostat 7 at a desired temperature held. The thermostat is operated by one Control computer 8 controlled, the target temperatures SZ1 to SZ5 specifies for the temperature control medium in the annular chambers Z1 to Z5. The master computer in turn accesses a data store 9 back, stored in the measurement data of previous polishing runs and automatically calculates the Target temperatures.

Das Temperiermedium hält in jeder Ringkammer eine bestimmte Temperatur aufrecht, so daß auf dem Polierteller radialsymmetrische Bereiche mit charakteristischer Temperatur entstehen, die die Halbleiterscheiben beim Polieren überstreichen. Die Anzahl der verfügbaren Bereiche richtet sich nach der Anzahl der bereitgestellten Ringkammern. Die radialen Breiten der Bereiche sind von den gewählten radialen Breiten der Ringkammern und von der Temperatur des Temperiermediums abhängig, das durch die Ringkammern strömt.The temperature control medium holds a certain one in each annular chamber Temperature upright, so that on the polishing plate radially symmetrical Areas with a characteristic temperature arise that sweep over the semiconductor wafers during polishing. The The number of available areas depends on the number of the provided ring chambers. The radial widths of the areas are of the chosen radial widths of the annular chambers and depending on the temperature of the temperature control medium flows through the annular chambers.

In Figur 2 ist ein Horizontalschnitt durch den Polierteller der Vorrichtung gemäß Fig.1 in Draufsicht dargestellt. Wenn sich die Temperatur des Temperiermediums in jeder Ringkammer Z1 bis Z5 von den Temperaturen des Temperiermediums in den übrigen Ringkammern unterscheidet, erzeugen die Ringkammern auf dem Polierteller eine der Zahl der Ringkammern entsprechende Anzahl ringfömiger Bereiche. Diese Bereiche werden auf einer Temperatur gehalten, die im wesentlichen der Temperatur des Temperiermediums in der zugehörigen Ringkammer entspricht. Die Anzahl der Bereiche ist entsprechend geringer, wenn die Temperatur des Temperiermediums in zwei oder mehreren benachbarten Ringkammern gleich ist. Ist die Temperatur des Temperiermediums in zwei benachbarten Ringkammern gleich, resultiert daraus ein Bereich auf dem Polierteller, dessen radiale Breite näherungsweise der Summe der radialen Breiten dieser Ringkammern entspricht. Vorzugsweise werden 2 bis 5 Ringkammern bereitgestellt. Die radialen Breiten der Ringkammern betragen bevorzugt 25 bis 120 % des Durchmessers der zu polierenden Halbleiterscheiben.In Figure 2 is a horizontal section through the polishing plate the device shown in Figure 1 in plan view. If the temperature of the temperature control medium in each ring chamber Z1 to Z5 of the temperatures of the tempering medium in the rest Differentiates annular chambers, produce the annular chambers the polishing plate corresponds to the number of annular chambers Number of annular areas. These areas are on a Temperature maintained, which is essentially the temperature of the Temperature control medium in the associated ring chamber corresponds. The Number of areas is correspondingly lower when the temperature of the temperature control medium in two or more neighboring ones Annular chambers is the same. Is the temperature of the temperature control medium the same in two adjacent ring chambers, results from this an area on the polishing plate whose radial width is approximately the sum of the radial widths of these annular chambers corresponds. 2 to 5 annular chambers are preferred provided. The radial widths of the annular chambers are preferably 25 to 120% of the diameter of the to be polished Semiconductor wafers.

Die Ringkammern können abweichend von der Darstellung in Fig.2 auch in sich strukturiert sein (beispielsweise mäanderförmig). Die Vorgabe eines bestimmten radialen Temperaturprofils auf dem Polierteller durch die Bereitstellung von Bereichen mit einer bestimmten Temperatur kann auch auf andere Weise, als vorstehend beschrieben, erreicht werden, beispielsweise durch die Integration von Heiz- und Kühlelementen im Polierteller. Diese können induktiv oder durch eine ebenfalls im Polierteller untergebrachte Stromversorgung betrieben werden.The annular chambers can deviate from the illustration in Fig. 2 also be structured in itself (for example meandering). The specification of a certain radial temperature profile the polishing plate by providing areas with a certain temperature can also be considered other than described above can be achieved, for example by the integration of heating and cooling elements in the polishing plate. These can be done inductively or through a likewise in the polishing plate housed power supply are operated.

In den Figuren 3a, 3b und 4a, 4b ist schematisch dargestellt, wie die Geometrie von Halbleiterscheiben durch die Anwendung der Erfindung beeinflußt werden kann. Die Figuren spiegeln das Ergebnis von Ausführungsbeispielen wider.FIGS. 3a, 3b and 4a, 4b show schematically like the geometry of semiconductor wafers through the application the invention can be influenced. The figures reflect that Result of exemplary embodiments.

Nach einer Polierfahrt in einer Vorrichtung gemäß Fig.1 wurden Halbleiterscheiben mit positiver Keiligkeit erhalten. Während der Polierfahrt strömte durch die Ringkammern Temperiermedium, das in den Ringkammern Z1 bis Z5 folgendermaßen temperiert war: Z1=30°C, Z2=30°C, Z3=40°C, Z4=30°C und Z5=30°C (Fig. 3a). Durch eine Änderung der Temperaturen in den Ringkammern (Z1=40°C, Z2=40°C, Z3=30°C, Z4=40°C und Z5=40°C) konnten nach einer folgenden Polierfahrt Halbleiterscheiben mit nahezu planparallelen Seiten erhalten werden (Fig. 3b).After a polishing run in a device according to FIG Preserved semiconductor wafers with positive taper. While during the polishing run, tempering medium flowed through the ring chambers, which is tempered in the annular chambers Z1 to Z5 as follows was: Z1 = 30 ° C, Z2 = 30 ° C, Z3 = 40 ° C, Z4 = 30 ° C and Z5 = 30 ° C (Fig. 3a). By changing the temperatures in the annular chambers (Z1 = 40 ° C, Z2 = 40 ° C, Z3 = 30 ° C, Z4 = 40 ° C and Z5 = 40 ° C) were able to a subsequent polishing run with nearly semiconductor wafers plane-parallel sides can be obtained (Fig. 3b).

Nach einer Polierfahrt in einer Vorrichtung gemäß Fig.1 wurden Halbleiterscheiben mit negativer Keiligkeit erhalten. Während der Polierfahrt strömte durch die Ringkammern Temperiermedium, das in den Ringkammern Z1 bis Z5 folgendermaßen temperiert war: Z1=30°C, Z2=30°C, Z3=40°C, Z4=30°C und Z5=30°C (Fig. 4a). Durch eine Änderung der Temperaturen in den Ringkammern (Z1=20°C, Z2=20°C, Z3=50°C, Z4=20°C und Z5=20°C) konnten nach einer folgenden Polierfahrt widerum Halbleiterscheiben mit nahezu planparallelen Seiten erhalten werden (Fig. 4b).After a polishing run in a device according to FIG Preserved semiconductor wafers with negative wedge. While during the polishing run, tempering medium flowed through the ring chambers, which is tempered in the annular chambers Z1 to Z5 as follows was: Z1 = 30 ° C, Z2 = 30 ° C, Z3 = 40 ° C, Z4 = 30 ° C and Z5 = 30 ° C (Fig. 4a). By changing the temperatures in the annular chambers (Z1 = 20 ° C, Z2 = 20 ° C, Z3 = 50 ° C, Z4 = 20 ° C and Z5 = 20 ° C) were able to a subsequent polishing run around semiconductor wafers with almost plane-parallel sides can be obtained (Fig. 4b).

Claims (10)

Verfahren zum Polieren von Halbleiterscheiben, bei dem mindestens eine Seite mindestens einer Halbleiterscheibe gegen einen mit einem Poliertuch bespannten Polierteller gedrückt und poliert wird, wobei die Halbleiterscheibe und der Polierteller eine Relativbewegung ausführen, dadurch gekennzeichnet, daß die Halbleiterscheibe während des Polierens mindestens zwei Bereiche auf dem Polierteller überstreicht, die bestimmte radiale Breiten aufweisen und unterschiedliche Temperaturen haben, und Temperiermittel im Polierteller vorgesehen sind, mit deren Hilfe die Anzahl, die radialen Breiten und die Temperaturen der Bereiche vor dem Polieren der Halbleiterscheiben festgelegt werden.Method for polishing semiconductor wafers, in which at least one side against at least one semiconductor wafer pressed a polishing plate covered with a polishing cloth and is polished, the semiconductor wafer and the polishing plate perform a relative movement, characterized in that that the semiconductor wafer at least during polishing swept over two areas on the polishing plate that determined have radial latitudes and different temperatures and temperature control agents are provided in the polishing plate, with their help the number, the radial latitudes and the temperatures the areas before polishing the wafers be determined. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Bereiche in Draufsicht auf den Polierteller konzentrische Ringe ausbilden.A method according to claim 1, characterized in that the Areas in plan view of the polishing plate concentric rings form. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Anzahl, die radialen Breiten und die Temperaturen der Bereiche in Abhängigkeit des Ergebnisses einer während einer vorangegangenen Polierfahrt durchgeführten Messung des radialen Temperaturprofils des Poliertellers festgelegt werden.Method according to claim 1 or claim 2, characterized in that that the number, the radial latitudes and the temperatures of areas depending on the result of one Measurement performed during a previous polishing run the radial temperature profile of the polishing plate become. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Anzahl, die radialen Breiten und die Temperaturen der Bereiche in Abhängigkeit des Ergebnisses einer Analyse der Geometrie von zuvor polierten Halbleiterscheiben festgelegt werden.Method according to claim 1 or claim 2, characterized in that that the number, the radial latitudes and the temperatures of areas depending on the result of one Analysis of the geometry of previously polished semiconductor wafers be determined. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Anzahl, die radialen Breiten und die Temperaturen der Bereiche rechnergestützt und automatisch festgelegt werden. Method according to one of claims 1 to 4, characterized in that that the number, the radial latitudes and the temperatures of the areas computer-aided and automatically determined become. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Temperaturen der Bereiche während des Polierens verändert werden.Method according to one of claims 1 to 5, characterized in that that the temperatures of the areas during polishing to be changed. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, das das Polieren ausgewählt ist aus einer Gruppe von Polierverfahren, die die Einseitenpolitur, die Doppelseitenpolitur, die Einscheibenpolitur und die Mehrscheibenpolitur umfaßt.Method according to one of claims 1 to 6, characterized in that that the polishing is selected from a group of Polishing process, the one-sided polishing, the double-sided polishing, the single-disc polish and the multi-disc polish includes. Vorrichtung zum Polieren von Halbleiterscheiben, mit mindestens einem Polierteller, der mit einem Poliertuch bespannt ist, gekennzeichnet durch ein im Polierteller untergebrachtes Kammersystem aus konzentrisch angeordenten Ringkammern, durch die ein Temperiermedium strömt, das in jeder Ringkammer eine bestimmte, einstellbare Temperatur aufweist.Device for polishing semiconductor wafers, with at least a polishing plate that is covered with a polishing cloth is characterized by a concentric chamber system housed in the polishing plate arranged annular chambers through which a tempering medium flows that a certain, adjustable in each annular chamber Temperature. Vorrichtung nach Anspruch 8, gekennzeichnet durch einen Leitrechner, der auf der Grundlage übermittelter Prozeßdaten die Temperatur des Temperiermediums in jeder Ringkammer steuert.Device according to claim 8, characterized by a Master computer based on transmitted process data the temperature of the temperature control medium in each ring chamber controls. Vorrichtung nach Anspruch 8 oder Anspruch 9, dadurch gekennzeichnet, daß jede Ringkammer eine radiale Breite von 25 bis 120 % des Durchmessers der Halbleiterscheiben besitzt.Device according to claim 8 or claim 9, characterized in that that each annular chamber has a radial width of 25 has up to 120% of the diameter of the semiconductor wafers.
EP98119004A 1997-10-30 1998-10-08 Method and apparatus for polishing semiconductor wafers Expired - Lifetime EP0916450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748020A DE19748020A1 (en) 1997-10-30 1997-10-30 Method and device for polishing semiconductor wafers
DE19748020 1997-10-30

Publications (2)

Publication Number Publication Date
EP0916450A1 true EP0916450A1 (en) 1999-05-19
EP0916450B1 EP0916450B1 (en) 2002-01-09

Family

ID=7847146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98119004A Expired - Lifetime EP0916450B1 (en) 1997-10-30 1998-10-08 Method and apparatus for polishing semiconductor wafers

Country Status (8)

Country Link
US (1) US6095898A (en)
EP (1) EP0916450B1 (en)
JP (1) JPH11207605A (en)
KR (1) KR100315162B1 (en)
DE (2) DE19748020A1 (en)
MY (1) MY133888A (en)
SG (1) SG75876A1 (en)
TW (1) TW407311B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012840C2 (en) * 2000-03-16 2001-08-02 Wacker Siltronic Halbleitermat Process for the production of a large number of polished semiconductor wafers
DE102004017452A1 (en) * 2004-04-08 2005-11-03 Siltronic Ag Laminar and abrasive machining device for e.g. crystalline silicon wafer, has supporting device with surface bearing and bearing supports supporting rear side of work disk which is pressed against carrier`s front with work piece
DE10009656B4 (en) * 2000-02-24 2005-12-08 Siltronic Ag Method for producing a semiconductor wafer

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700180A (en) 1993-08-25 1997-12-23 Micron Technology, Inc. System for real-time control of semiconductor wafer polishing
JP3693483B2 (en) * 1998-01-30 2005-09-07 株式会社荏原製作所 Polishing equipment
US6020262A (en) * 1998-03-06 2000-02-01 Siemens Aktiengesellschaft Methods and apparatus for chemical mechanical planarization (CMP) of a semiconductor wafer
US6352466B1 (en) * 1998-08-31 2002-03-05 Micron Technology, Inc. Method and apparatus for wireless transfer of chemical-mechanical planarization measurements
JP2000334658A (en) * 1999-05-28 2000-12-05 Fujitsu Ltd Lapping device
US6358119B1 (en) * 1999-06-21 2002-03-19 Taiwan Semiconductor Manufacturing Company Way to remove CU line damage after CU CMP
US6244944B1 (en) * 1999-08-31 2001-06-12 Micron Technology, Inc. Method and apparatus for supporting and cleaning a polishing pad for chemical-mechanical planarization of microelectronic substrates
KR100413493B1 (en) * 2001-10-17 2004-01-03 주식회사 하이닉스반도체 Polishing Platen of Chemical Mechanical Polishing Equipment and method for plating
JP4510362B2 (en) * 2001-11-30 2010-07-21 俊郎 土肥 CMP apparatus and CMP method
US20050161814A1 (en) * 2002-12-27 2005-07-28 Fujitsu Limited Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus
US20060226123A1 (en) * 2005-04-07 2006-10-12 Applied Materials, Inc. Profile control using selective heating
US7201634B1 (en) 2005-11-14 2007-04-10 Infineon Technologies Ag Polishing methods and apparatus
US20070227901A1 (en) * 2006-03-30 2007-10-04 Applied Materials, Inc. Temperature control for ECMP process
DE102006032455A1 (en) * 2006-07-13 2008-04-10 Siltronic Ag Method for simultaneous double-sided grinding of a plurality of semiconductor wafers and semiconductor wafer with excellent flatness
DE102007063232B4 (en) * 2007-12-31 2023-06-22 Advanced Micro Devices, Inc. Process for polishing a substrate
US8149256B2 (en) * 2008-06-04 2012-04-03 Varian Semiconductor Equipment Associates, Inc. Techniques for changing temperature of a platen
US20100279435A1 (en) * 2009-04-30 2010-11-04 Applied Materials, Inc. Temperature control of chemical mechanical polishing
CN111512425A (en) 2018-06-27 2020-08-07 应用材料公司 Temperature control for chemical mechanical polishing
US11633833B2 (en) 2019-05-29 2023-04-25 Applied Materials, Inc. Use of steam for pre-heating of CMP components
TW202110575A (en) 2019-05-29 2021-03-16 美商應用材料股份有限公司 Steam treatment stations for chemical mechanical polishing system
US11628478B2 (en) 2019-05-29 2023-04-18 Applied Materials, Inc. Steam cleaning of CMP components
US11897079B2 (en) 2019-08-13 2024-02-13 Applied Materials, Inc. Low-temperature metal CMP for minimizing dishing and corrosion, and improving pad asperity
JP2023518650A (en) 2020-06-29 2023-05-08 アプライド マテリアルズ インコーポレイテッド Steam generation control for chemical mechanical polishing
JP2023516871A (en) 2020-06-29 2023-04-21 アプライド マテリアルズ インコーポレイテッド Control of temperature and slurry flow rate in CMP
CN115461193A (en) 2020-06-30 2022-12-09 应用材料公司 Apparatus and method for CMP temperature control
US11577358B2 (en) 2020-06-30 2023-02-14 Applied Materials, Inc. Gas entrainment during jetting of fluid for temperature control in chemical mechanical polishing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471579A (en) * 1981-07-22 1984-09-18 Peter Wolters Lapping or polishing machine
JPS60201868A (en) * 1984-03-23 1985-10-12 Hitachi Ltd Polishing of wafer
EP0562718A1 (en) * 1992-02-28 1993-09-29 Shin-Etsu Handotai Company Limited Polishing machine and method of dissipating heat therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809274A1 (en) * 1978-03-03 1979-09-13 Wacker Chemitronic PROCESS FOR COMPARISON OF POLISHING REMOVAL FROM DISCS DURING POLISHING
US5036630A (en) * 1990-04-13 1991-08-06 International Business Machines Corporation Radial uniformity control of semiconductor wafer polishing
US5873769A (en) * 1997-05-30 1999-02-23 Industrial Technology Research Institute Temperature compensated chemical mechanical polishing to achieve uniform removal rates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471579A (en) * 1981-07-22 1984-09-18 Peter Wolters Lapping or polishing machine
JPS60201868A (en) * 1984-03-23 1985-10-12 Hitachi Ltd Polishing of wafer
EP0562718A1 (en) * 1992-02-28 1993-09-29 Shin-Etsu Handotai Company Limited Polishing machine and method of dissipating heat therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 051 (M - 457) 28 February 1986 (1986-02-28) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10009656B4 (en) * 2000-02-24 2005-12-08 Siltronic Ag Method for producing a semiconductor wafer
DE10012840C2 (en) * 2000-03-16 2001-08-02 Wacker Siltronic Halbleitermat Process for the production of a large number of polished semiconductor wafers
DE102004017452A1 (en) * 2004-04-08 2005-11-03 Siltronic Ag Laminar and abrasive machining device for e.g. crystalline silicon wafer, has supporting device with surface bearing and bearing supports supporting rear side of work disk which is pressed against carrier`s front with work piece

Also Published As

Publication number Publication date
JPH11207605A (en) 1999-08-03
SG75876A1 (en) 2000-10-24
KR19990037292A (en) 1999-05-25
DE19748020A1 (en) 1999-05-06
DE59802824D1 (en) 2002-02-28
US6095898A (en) 2000-08-01
MY133888A (en) 2007-11-30
KR100315162B1 (en) 2002-06-20
EP0916450B1 (en) 2002-01-09
TW407311B (en) 2000-10-01

Similar Documents

Publication Publication Date Title
EP0916450B1 (en) Method and apparatus for polishing semiconductor wafers
EP0847835B1 (en) Method and apparatus for polishing semiconductor substrates
EP0004033B1 (en) Process for equalizing the material removal rate of wafers by polishing
DE2462565C2 (en) Pressing device with press ram for fastening several semiconductor workpieces on a mounting plate
DE112016005417B4 (en) Wafer polishing process
DE112005001447B4 (en) Double side polishing carrier and manufacturing method thereof
DE102014112190B4 (en) Apparatus and method for double-sided polishing of a workpiece
DE69302944T2 (en) Polishing device and method for dissipating its heat
DE112012001943B4 (en) A method of adjusting the height position of a polishing head and a method of polishing a workpiece
DE2132174A1 (en) Method and apparatus for producing a dielectrically isolated semiconductor structure
DE112016005920T5 (en) A process for polishing a wafer on both sides, a method for producing an epitaxial wafer and use thereof as well as epitaxial wafers
DE3112019A1 (en) METHOD AND DEVICE FOR POLISHING SEMICONDUCTOR DISC
DE19755705A1 (en) Double sided lapping method for large sized wafer
DE4105145A1 (en) METHOD AND DEVICE FOR PLANAR GRINDING THE SURFACE OF A DIELECTRIC APPLIED ON A SEMICONDUCTOR SUBSTRATE
DE102007056628A1 (en) Method for simultaneously grinding a plurality of semiconductor wafers
DE112015006224B4 (en) SINGLE WAFER PROCESSING METHOD FOR POLISHING A SIDE OF A SEMICONDUCTOR WAFER AND SINGLE WAFER PROCESSING APPARATUS FOR POLISHING A SIDE OF A SEMICONDUCTOR WAFER
DE19543847A1 (en) Polishing machine for flat, mirror-like finish
DE102017210423A1 (en) Method, control system and plant for processing a semiconductor wafer and semiconductor wafer
DE102008056276A1 (en) Method for regulating working gap of double side processing machine, involves deforming working disk of consecutively delivered working disks by adjustment device for changing form of working gap
DE102009014550A1 (en) Planarization
DE102019213657A1 (en) Method and device for pressing a polishing cloth
DE69917826T2 (en) Ceramic substrate and its polishing process
DE112013006059B4 (en) Double side polishing machine with a platen parallelism control
DE102015217279B4 (en) Wafer polishing device
DE10261306B4 (en) Retaining ring with reduced wear and contamination rate for a polishing head of a CMP system and polishing head and CMP device with retaining ring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 19990518

AKX Designation fees paid

Free format text: DE FI GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI GB IT

REF Corresponds to:

Ref document number: 59802824

Country of ref document: DE

Date of ref document: 20020228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59802824

Country of ref document: DE