EP0914557A1 - Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule - Google Patents

Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule

Info

Publication number
EP0914557A1
EP0914557A1 EP97931890A EP97931890A EP0914557A1 EP 0914557 A1 EP0914557 A1 EP 0914557A1 EP 97931890 A EP97931890 A EP 97931890A EP 97931890 A EP97931890 A EP 97931890A EP 0914557 A1 EP0914557 A1 EP 0914557A1
Authority
EP
European Patent Office
Prior art keywords
valve body
outlet
plunger core
solenoid valve
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97931890A
Other languages
German (de)
English (en)
Other versions
EP0914557B1 (fr
Inventor
Cornel Stan
Jean-Louis Lefebvre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peugeot Motocycles SA
Original Assignee
Peugeot Motocycles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Motocycles SA filed Critical Peugeot Motocycles SA
Publication of EP0914557A1 publication Critical patent/EP0914557A1/fr
Application granted granted Critical
Publication of EP0914557B1 publication Critical patent/EP0914557B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/06Use of pressure wave generated by fuel inertia to open injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle

Definitions

  • the present invention relates to a solenoid valve for example impact for a fuel injection system by water hammer effect in a vehicle engine. 5 Pollution control standards and the energy savings imposed on vehicle manufacturers have led them to develop different systems for injecting fuel into engines.
  • the energy necessary for such an increase in pressure must be supplied by the engine itself or by an auxiliary energy source and on board the vehicle if the application relates to a vehicle.
  • a so-called impact electrovalve is connected to the fuel injector in the engine, in order to create, by successive opening and closing of the latter, fuel pressure waves at the level of the injector.
  • valves and solenoid valves including impact for such systems.
  • This magnetic piece and this plunger core are arranged one in the extension of the other, in the recess of the electromagnet coil and the plunger core is connected to means for closing the outlet.
  • valve body to control the opening and closing of the latter in response to a command to supply the electromagnet coil, by axial displacement of the plunger core with respect to the magnetic part, and coming into contact with contact surfaces facing this magnetic part and this plunger core.
  • the object of the invention is therefore to solve these problems.
  • the subject of the invention is a solenoid valve, for example an impact valve for a fuel injection system by the effect of water hammer in a vehicle engine, of the type comprising a tubular valve body having at its ends, a fuel inlet and outlet, and in which is disposed an electromagnet coil connected to means for feeding the latter and associated with a magnetic part tubular and a tubular plunger, arranged in the extension of one another in the recess of the electromagnet coil, and having facing contact surfaces, the plunger being connected to means closing the outlet of the valve body so that, in response to the excitation or not of the electromagnet coil under the control of the supply means thereof, open or close the outlet of the valve body, by axial displacement of the plunger core with respect to the magnetic part and bearing against the contact surfaces thereof in the open position of the outlet of the valve body, and means for elastic biasing of the plunger core in the closed position from the valve body outlet, characterized in that the means for controlling the supply of the electromagnet coil are adapted to apply to it
  • - Fig.l shows a sectional view illustrating the general structure of an exemplary embodiment of an impact solenoid valve according to the invention
  • - Fig.2 illustrates the form of a supply current delivered by control means to a coil of electromagnet used in the constitution of this solenoid valve.
  • a solenoid valve designated by the general reference 1 which can be used as an impact solenoid valve for a water hammer injection system in a vehicle engine.
  • the solenoid valve according to the invention conventionally comprises a tubular valve body designated by the general reference 2 having at its ends, a fuel inlet and outlet, respectively 3 and 4.
  • valve body In this valve body is arranged an electromagnet coil designated by the general reference 5, this electromagnet coil being associated with a tubular magnetic part designated by the general reference 6 and with a tubular plunger core designated by the general reference 7.
  • this electromagnet coil is connected to means for controlling its power supply designated by the reference 5a in this figure 1.
  • the magnetic part 6 and the plunger core 7 are arranged 1 'in the extension of 1' other, in the recess of the electromagnet coil between the fuel inlet and outlet and the plunger core 7 is connected to means 8 for closing the outlet 4 of the valve body 2, to control the opening and closing of the latter in response to a command to supply the electromagnet coil 5, by axial displacement of the plunger core 7 relative to the magnetic part.
  • the sealing means can have different suitable forms known in the state of the art.
  • outlet 4 of this valve body can be associated with a nozzle 9 having for example a hollow flared ent, either in stages as shown, or continuously.
  • the means 10 for guiding the displacements of the plunger core comprise, for example, a tubular guide sleeve, a first end of which, for example 10a, extends into the magnetic part 6 and a second end of which, for example 10b, projects beyond this magnetic part .
  • the plunger core 7 is then placed on this second end 10b of the guide sleeve 10 and is therefore mounted to be displaceable by sliding around this end of the guide sleeve.
  • the elastic means 11 for biasing this plunger core in the closed position of the outlet of the valve body are also disposed in the recess thereof, in the extension of the guide sleeve between the second end of that -ci and a corresponding abutment surface, for example 7a, of the plunger core.
  • these elastic means may comprise a spring, for example a helical spring disposed in the plunger core, in the extension of the guide sleeve, one of the ends of this helical spring 11 being in abutment on the end corresponding to the guide sleeve, while the other end of the latter is in abutment on the abutment surface 7a of the plunger core.
  • a spring for example a helical spring disposed in the plunger core, in the extension of the guide sleeve, one of the ends of this helical spring 11 being in abutment on the end corresponding to the guide sleeve, while the other end of the latter is in abutment on the abutment surface 7a of the plunger core.
  • the plunger core 7 is caused to move from the closed position of the means for closing the outlet of this valve body, such as as illustrated in this figure, towards its open position by axial displacement of this core plunger on the corresponding end of the guide means and more particularly of the guide sleeve.
  • This structure has a number of advantages, particularly in terms of its simplicity of construction and operation.
  • the guide means no longer form an obstacle to the magnetic flux lines of the electromagnet coil, as was the case in the prior art, which makes it possible to improve the magnetic efficiency. that of the whole.
  • a fuel injector (not shown) can be connected by means of, for example, a line 12 to the solenoid valve, upstream of the shut-off means, by means of any connection means generally designated. by reference 13 in the figure.
  • the magnetic part 6 and the plunger core 7 have contact surfaces respectively 6a, 7b facing each other, adapted to come into abutment against one another, when the opening of the outlet of the valve body following the excitation of the electromagnet coil 5 by the control means 5a.
  • One or both of these contact surfaces advantageously have protruding and recessed portions which make it possible to reduce the area of these bearing surfaces. one against the other, when the plunger core is in the open position of the outlet of the valve body.
  • the corresponding surface 6a of the magnetic part 6 in fact comprises a continuous annular shoulder 6b.
  • This configuration makes it possible to reduce the residual forces between the magnetic part 6 and the plunger core 7, which are relatively large, and this in particular when the valve body is closed, these residual forces limiting the generation of the pressure wave of fuel and the operating frequencies of this valve, by increasing the closing time of the solenoid valve. It can therefore be seen that the configuration described makes it possible to reduce these forces while optimizing the air gap and therefore the energy consumption of this solenoid valve.
  • such a current comprises two phases, one called the call designated by the reference A in this figure, and the other called holding designated by the reference M in this figure.
  • Such a current form makes it possible to create relatively large magnetic forces of attraction of the plunger core 7 during the detachment phase thereof, then to limit these forces to a level sufficient to keep the plunger core 7 against the magnetic part 6 in particular to achieve energy savings.
  • the current I, at the end of the call phase A has a reduced slope compared to that of the start of the latter, which makes it possible to reduce the impact of the plunger core 7 on the magnetic part 6 during the opening of the outlet of the valve body and therefore the risks of degradation of these parts.
  • this current I indeed has two slopes designated by Al and A2 respectively in this figure, for the start and the end of the call phase A thereof. It can be seen that during phase A1, the current has a relatively large slope, while during phase A2, the current has a reduced slope compared to that of the first part of this phase.
  • the current I has a positive slope and increases slightly to compensate for the increase in the hydrodynamic force exerted by the fuel on the plunger, as the speed of the fuel in the valve body increases.
  • the holding current does not remain constant at the necessary value corresponding to the maximum speed of the fuel for a period of opening of the valve, which makes it possible to achieve energy savings.
  • control means having any structure, for example conventional programmable. It is therefore understandable that in the solenoid valve according to the invention, the characteristics which have just been described with regard to the contact surfaces of the magnetic part and of the plunger core and of the excitation current of the applied electromagnet coil to the latter by the control means thereof, make it possible to optimize the operation of this solenoid valve and in particular its response time to opening and closing, its operating frequency, its service life and its ⁇ energy consum tion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

ELECTROVANNE PAR EXEMPLE D'IMPACTPOUR UN SYSTEME D'INJECTION DECARBURANTPAR EFFET DE COUP DE BELIER DANS UN MOTEUR DE VEHICULE
La présente invention concerne une électrovanne par exemple d'impact pour un système d'injection de carburant par effet de coup de bélier dans un moteur de véhicule. 5 Les normes de lutte contre la pollution ainsi que les économies d'énergie imposées aux constructeurs de véhicules, ont conduit ceux-ci à développer différents systèmes d'injection de carburant dans les moteurs.
Parmi les différentes solutions développées,
10 l'injection de carburant directe dans une chambre de combustion du moteur présente un certain nombre d'avantages, no amment pour les moteurs à deux temps, dans lesquels la séparation du comburant et du carburant permet de réaliser la phase de balayage sans perte de ce dernier,
15 contrairement aux solutions d'alimentation par carburateur par exemple.
Cet avantage conduit à des gains considérables en émissions polluantes et en consommation de carburant. Toutefois, ceci nécessite des systèmes d'injec-
20 tion performants capables de délivrer des quantités variabxis de carburant à des fréquences souvent élevées et ce, avec des caractéristiques d' atomisation du carburant suffisantes pour assurer le démarrage et le déroulement de la combustion dans le moteur.
25 C'est ainsi par exemple que dans le cadre des systèmes d'injection dits à réserve de carburant et injecteur électromagnétique, on constate une tendance générale à augmenter la pression dans la réserve de carburant, en amont de l' injecteur.
30 Or, l'énergie nécessaire pour une telle augmentation de pression doit être fournie par le moteur lui- même ou par une source d'énergie annexe et embarquée à bord du véhicule si l'application concerne un véhicule.
Ce surplus d'énergie nécessaire est naturelle-
35 ment un inconvénient, notamment dans le cadre des moteurs de petites cylindrées dans lesquels ni le moteur, ni son environnement, ne permettent une consommation énergétique importante.
Par ailleurs, l'utilisation de systèmes d'injec- tion synchronisés au moteur, par exemple par arbre à came, conduit à des variations importantes de l'allure de la pression dans le système d'injection en fonction du régime avec une influence négative sur la formation du mélange et la combustion dans le moteur. C'est pour ces différentes raisons que des systèmes d'injection de carburant basés sur un effet dit de coup de bélier ont été développés dans l'état de la technique.
Ce type de systèmes étant bien connu dans l'état de la technique, on ne le décrira pas plus en détail par la suite.
On notera simplement qu'une électrovanne dite d'impact est raccordée à l' injecteur de carburant dans le moteur, pour créer par ouverture et fermeture successives de celle-ci, des ondes de pression de carburant au niveau de l' injecteur.
Ceci permet alors d'injecter directement du carburant dans la chambre de combustion du moteur.
D'une manière générale, les électrovannes et notamment les électrovannes d'impact pour de tels systèmes, .comportent un corps de vanne tubulaire présentant à ses extrémités, une entrée et une sortie de carburant et dans lequel est disposée une bobine d'électro-aimant associée à une pièce magnétique tubulaire et un noyau plongeur tubulaire.
Cette pièce magnétique et ce noyau plongeur sent disposés l'un dans le prolongement de l'autre, dans l'évi- de ent de la bobine d'électro-aimant et le noyau plongeur est relié a des moyens d'obturation de la sortie du corps de vanne pour commander l'ouverture et la fermeture de celle-ci en réponse à une commande de l'alimentation de la bobine d'électro-aimant, par déplacement axial du noyau plongeur par rapport à la pièce magnétique, et venue en appui de surfaces de contact en regard de cette pièce magnétique et de ce noyau plongeur.
Par ailleurs, des moyens de guidage des déplacements du noyau plongeur et des moyens élastiques de sollicitation de celui-ci en position de fermeture des moyens d'obturation sont également prévus. Différents modes de réalisation de ces électrovannes ont été décrits dans l'état de la technique.
Toutefois, dans le cadre des moteurs de petites cylindrées fonctionnant à des régimes élevés, l'injection directe nécessite des électrovannes présentant des perfor- mances extrêmement élevées.
Les critères de développement de ces électrovannes sont en effet :
1 ) le temps de réponse à 1 ' ouverture et à la fermeture, 2 ) la fréquence de fonctionnement,
3) la durée de vie, et
4) la consommation énergétique.
Or, les électrovannβ3 connues dans l'état de la technique, ne permettent pas de répondre à ces différents critères de manière satisfaisante.
Le but de 1 ' invention est donc de résoudre ces probl'èmes .
A cet effet, l'invention a pour objet une électrovanne par exemple d'impact pour un système d'injec- tion de carburant par effet de coup de bélier dans un moteur de véhicule, du type comportant un corps de vanne tubulaire présentant à ses extrémités, une entrée et une sortie de carburant, et dans lequel est disposée une bobine d'électro-aimant raccordée à des moyens d'ali- mentation de celle-ci et associée à une pièce magnétique tubulaire et à un noyau plongeur tubulaire, disposés dans le prolongement l'un de l'autre dans l'évidement de la bobine d'électro-aimant, et présentant des surfaces de contact en regard, le noyau plongeur étant relié à des moyens d'obturation de la sortie du corps de vanne pour, en réponse à l'excitation ou non de la bobine d'électro- aimant sous le contrôle des moyens d ' alimentation de celle-ci, ouvrir ou fermer la sortie du corps de vanne, par déplacement axial du noyau plongeur par rapport à la pièce magnétique et venue en appui des surfaces de contact de ceux-ci en position d'ouverture de la sortie du corps de vanne, et des moyens de sollicitation élastique du noyau plongeur en position de fermeture de la sortie du corps de vanne, caractérisée en ce que les moyens de commande de l'alimentation de la bobine d'électro-aimant sont adaptés pour appliquer à celle-ci un courant présentant une phase d'appel et une phase de maintien, le courant en fin de phase d'appel présentant une pente réduite par rapport à celle du début de celle-ci, pour réduire l'impact du noyau plongeur sur la pièce magnétique lors de 1 ' ouverture de la sortie du corps de vanne et donc les risques de dégradation de ces pièces.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
- la Fig.l représente une vue en coupe illustrant la structure générale d'un exemple de réalisation d'une électrovanne d'impact selon l'invention; et - la Fig.2 illustre la forme d'un courant d'alimentation délivré par des moyens de commande à une bobine d'électro-aimant entrant dans la constitution de cette électrovanne.
On reconnaît en effet sur cette figure 1 , une électrovanne désignée par la référence générale 1, qui peut servir d'électrovanne d'impact pour un système d'injection de carburant par effet de coup de bélier dans un moteur thermique de véhicule.
Ce type de systèmes d'injection de carburant par effet de coup de bélier étant bien connu dans l'état de la technique, on ne le décrira pas en détail.
L' électrovanne selon l'invention comporte de manière classique, un corps de vanne tubulaire désigné par la référence générale 2 présentant à ses extrémités, une entrée et une sortie de carburant, respectivement 3 et 4.
Dans ce corps de vanne est disposée une bobine d'électro-aimant désignée par la référence générale 5, cette bobine d'électro-aimant étant associée à une pièce magnétique tubulaire désignée par la référence générale 6 et à un noyau plongeur tubulaire désigné par la référence générale 7.
Par ailleurs, cette bobine d'électro-aimant est reliée à des moyens de commande de son alimentation désignés par la référence 5a sur cette figure 1. La pièce magnétique 6 et le noyau plongeur 7 sont disposés 1 ' un dans le prolongement de 1 ' autre , dans l'évidement de la bobine d'électro-aimant entre l'entrée et la sortie de carburant et le noyau plongeur 7 est relié à des moyens 8 d'obturation de la sortie 4 du corps de vanne 2, pour commander l'ouverture et la fermeture de celle-ci en réponse à une commande de 1 ' limentation de la bobine d'électro-aimant 5, par déplacement axial du noyau plongeur 7 par rapport à la pièce magnétique.
Les moyens d'obturation peuvent présenter différentes formes appropriées connues dans l'état de la technique.
On notera également que la sortie 4 de ce corps de vanne peut être associée à un embout 9 présentant par exemple un évide ent évasé, soit par palier comme cela est représenté, soit de manière continue. Par ailleurs, des moyens 10 de guidage des déplacements du noyau plongeur 7 et des moyens élastiques
11 de sollicitation de ce noyau plongeur en position de fermeture des moyens d'obturation 8, sont également prévus.
Les moyens de guidage 10 des déplacements du noyau plongeur comprennent par exemple un manchon de guidage tubulaire dont une première extrémité par exemple 10a s'étend dans la pièce magnétique 6 et dont une seconde extrémité par exemple 10b fait saillie au-delà de cette pièce magnétique. Le noyau plongeur 7 est alors disposé sur cette seconde extrémité 10b du manchon de guidage 10 et est donc monté déplaçable à coulissement autour de cette extrémité du manchon de guidage. Par ailleurs, les moyens élastiques 11 de sollicitation de ce noyau plongeur en position de fermeture de la sortie du corps de vanne, sont également disposés dans l'évidement de celui-ci, dans le prolongement du manchon de guidage entre la seconde extrémité de celui-ci et une surface de butée correspondante, par exemple 7a, du noyau plongeur.
On conçoit en effet par exemple que ces moyens élastiques peuvent comporter un ressort par exemple hélicoïdal disposé dans le noyau plongeur, dans le prolon- gement du manchon de guidage, l'une des extrémités de ce ressort hélicoïdal 11 étant en appui sur l'extrémité correspondante du manchon de guidage, tandis que l'autre extrémité de celui-ci est en appui sur la surface de butée 7a du noyau plongeur. On conçoit alors que lors de la commande de l'alimentation de la bobine d'électro-aimant 5, on provoque le déplacement du noyau plongeur 7 de la position de fermeture des moyens d'obturation de la sortie de ce corps de vanne, telle qu'illustrée sur cette figure, vers sa position d'ouverture par déplacement axial de ce noyau plongeur sur 1 ' extrémité correspondante des moyens de guidage et plus particulièrement du manchon de guidage.
Cette structure présente un certain nombre d'avantages, notamment au niveau de sa simplicité de construction et de fonctionnement.
En effet, les moyens de guidage ne forment plus un obstacle aux lignes de flux magnétique de la bobine d'électro-aimant, comme c'était le cas dans l'état de la technique, ce qui permet d'améliorer le rendement magnéti- que de l'ensemble.
Par ailleurs, l'optimisation de la disposition des moyens de guidage et des moyens élastiques de sollicitation du noyau plongeur permet également de réduire l'encombrement de 1 ' électrovanne et de limiter au maximum les risques de blocage du noyau plongeur, tout en permettant à celui-ci de fonctionner à des cadences très élevées comme celles rencontrées dans l'une des applications mentionnées précédemment, c'est-à-dire les systèmes d'injection de carburant dans les moteurs de véhicule. A cet effet, un injecteur de carburant (non représenté ) peut être raccordé par 1 ' intermédiaire par exemple d'une conduite 12 à l' électrovanne, en amont des moyens d'obturation, grâce à des moyens de raccordement quelconques désignés de façon générale par la référence 13 sur la figure.
Dans cette structure d' électrovanne, la pièce magnétique 6 et le noyau plongeur 7 comportent des surfaces de contact respectivement 6a, 7b en regard, adaptées pour venir en appui l'une contre l'autre, lors de 1 'ouver- ture de la sortie du corps de vanne consécutivement à l'excitation de la bobine d'électro-aimant 5 par les moyens de commande 5a.
L'une ou ces deux surfaces de contact comportent avantageusement des parties en saillie et en creux qui permettent de réduire l'aire de ces surfaces en appui l'une contre l'autre, lorsque le noyau plongeur est an position d'ouverture de la sortie du corps de vanne.
Dans l'exemple de réalisation représenté sur cette figure 1, la surface correspondante 6a de la pièce magnétique 6 comporte en effet un épaulement annulaire continu 6b.
Cette configuration permet de réduire les forces résiduelles entre la pièce magnétique 6 et le noyau plongeur 7, qui sont relativement importantes, et ce notamment au moment de la fermeture du corps de vanne, ces forces résiduelles limitant la génération de l'onde de pression de carburant et les fréquences de fonctionnement de cette vanne, par augmentation du temps de fermeture de 1 ' électrovanne. On conçoit alors que la configuration décrite permet de réduire ces forces tout en optimisant l'entrefer et par conséquent, la consommation énergétique de cette électrovanne.
Il va de soi bien entendu que différentes formes de ces parties en saillie et en creux de ces surfaces de contact peuvent être envisagées.
Par ailleurs, on a représenté sur la figure 2, la forme du courant moyen I appliqué par les moyens de commande 5a dans la bobine d'électro-aimant 5 lors de son excitation.
De façon classique, un tel courant comporte deux phases, l'une dite d'appel désignée par la référence A sur cette figure, et l'autre dite de maintien désignée par la référence M sur cette figure. Une telle forme de courant permet en effet de créer des forces magnétiques d'attraction relativement importantes du noyau plongeur 7 lors de la phase de décollement de celui-ci, puis de limiter ces forces à un niveau suffisant pour maintenir le noyau plongeur 7 contre la pièce magnétique 6 notamment pour réaliser des économies d'énergie.
Dans 1 ' électrovanne selon l'invention, le courant I, à la fin de la phase d'appel A présente une pente réduite par rapport à celle du début de celle-ci, ce qui permet de réduire 1 ' impact du noyau plongeur 7 sur la pièce magnétique 6 lors de l'ouverture de la sortie du corps de vanne et donc les risques de dégradation de ces pièces. Dans l'exemple de réalisation représenté sur cette figure 2, ce courant I présente en effet deux pentes désignées par Al et A2 respectivement sur cette figure, pour le début et la fin de la phase d'appel A de celui-ci. On constate en effet que durant la phase Al, le courant présente une pente relativement importante, tandis que durant la phase A2, le courant présente une pente réduite par rapport à celle de la première partie de cette phase.
Bien entendu, d'autres formes de courant à pente réduite peuvent être envisagées et celui-ci peut par exemple présenter une pente décroissant progressivement et de manière continue vers la fin de cette phase d ' appel .
Durant la phase de maintien M, le courant I présente une pente positive et croît légèrement pour compenser l'augmentation de la force hydrodynamique exercée par le carburant sur le noyau plongeur, au fur et à mesure que la vitesse du carburant dans le corps de vanne augmente.
En effet, lors de l'ouverture de la sortie du corps de vanne, la vitesse du carburant augmente dans celui-ci et la force hydrodynamique exercée par ce carburant sur le noyau plongeur traversé par le carburant, augmente donc en conséquence.
Il convient alors d'augmenter progressivement le courant de maintien pour maintenir les moyens d'obturation en position d'ouverture du corps de vanne Jusqu'à une valeur correspondant à la vitesse maximale du carburant.
Ainsi, le courant de maintien ne reste pas constant à la valeur nécessaire correspondant à la vitesse maximale du carburant pour une période d'ouverture de la vanne, ce qui permet de réaliser une économie d'énergie.
Cette forme de courant est obtenue par des moyens de commande présentant n'importe quelle structure par exemple programmable classique. On conçoit donc que dans 1 ' électrovanne selon l'invention, les caractéristiques qui viennent d'être décrites à propos des surfaces de contact de la pièce magnétique et du noyau plongeur et du courant d'excitation de la bobine d'électro-aimant appliqué à celle-ci par les moyens de commande de celle-ci, permettent d'optimiser le fonctionnement de cette électrovanne et en particulier son temps de réponse à l'ouverture et à la fermeture, sa fréquence de fonctionnement, sa durée de vie et sa consom¬ mation en énergie.

Claims

REVENDICATIONS
1. Electrovanne par exemple d'impact pour un système d'injection de carburant par effet de coup de bélier dans un moteur de véhicule, du type comportant un corps de vanne tubulaire (2) présentant à ses extrémités, une entrée (3) et une sortie (4) de carburant, et dans lequel est disposée une bobine d'électro-aimant (5) raccordée à des moyens d'alimentation (5a) de celle-ci et associée à une pièce magnétique tubulaire (6) et à un noyau plongeur tubulaire (7), disposés dans le prolongement l'un de l'autre dans 1 ' évidement de la bobine d'élec¬ tro-aimant, et présentant des surfaces de contact (6a, 7b) en regard, le noyau plongeur (7) étant relié à des moyens d'obturation (8) de la sortie du corps de vanne (2) pour, en réponse à l'excitation ou non de la bobine d'électro- aimant sous le contrôle des moyens d'alimentation de celle-ci, ouvrir ou fermer la sortie du corps de vanne, par déplacement axial du noyau plongeur ( 7 ) par rapport à la pièce magnétique (6) et venue en appui des surfaces de contact (6a, 7b) de ceux-ci en position d'ouverture de la sortie du corps de vanne, et des moyens (11) de sollicitation élastique du noyau plongeur en position de fermeture de la sortie du corps de vanne, caractérisée en ce que les moyens (5a) de commande de l'alimentation de la bobine d'électro-aimant (5) sont adaptés pour appliquer à celle- ci u.n courant ( I ) présentant une phase d ' appel ( A) et une phase de maintien (M), le courant en fin de phase d'appel présentant une pente ( A2 ) réduite par rapport à celle ( Al ) du début de celle-ci , pour réduire 1 ' impact du noyau plongeur ( 7 ) sur la pièce magnétique ( 6 ) lors de 1 ' ouverture de la sortie du corps de vanne et donc les risques de dégradation de ces pièces.
2. Electrovanne selon la revendication 1, caractérisée en ce que durant la phase de maintien (M), le courant (I) présente une pente positive pour compenser 1 ' augmentation de la force hydrodynamique exercée par le carburant sur le noyau plongeur (7), au fur et à mesure que sa vitesse augmente dans le corps de vanne.
3. Electrovanne selon la revendication 1 ou 2, caractérisée en ce qu'au moins l'une des surfaces de contact (6a, 7b) de la pièce magnétique (6) et/ou du noyau plongeur (7), comprend des parties en saillie et en creux afin de réduire 1 ' aire de ces surfaces en appui 1 ' une contre l'autre, lorsque le noyau plongeur (7) est en position d'ouverture de la sortie du corps de vanne.
EP97931890A 1996-07-23 1997-07-07 Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule Expired - Lifetime EP0914557B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9609243 1996-07-23
FR9609243A FR2751700B1 (fr) 1996-07-23 1996-07-23 Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule
PCT/FR1997/001224 WO1998003789A1 (fr) 1996-07-23 1997-07-07 Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule

Publications (2)

Publication Number Publication Date
EP0914557A1 true EP0914557A1 (fr) 1999-05-12
EP0914557B1 EP0914557B1 (fr) 2002-03-20

Family

ID=9494369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97931890A Expired - Lifetime EP0914557B1 (fr) 1996-07-23 1997-07-07 Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule

Country Status (7)

Country Link
EP (1) EP0914557B1 (fr)
AT (1) ATE214788T1 (fr)
AU (1) AU3548297A (fr)
DE (1) DE69711186T2 (fr)
ES (1) ES2172802T3 (fr)
FR (1) FR2751700B1 (fr)
WO (1) WO1998003789A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2333132A (en) * 1997-08-02 1999-07-14 Lucas Ind Plc Spill valve control method.
DE102004019152B4 (de) * 2004-04-21 2007-05-31 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung
FR2941781B1 (fr) * 2009-02-05 2011-03-04 Peugeot Citroen Automobiles Sa Procede de diagnostic de l'etat d'une electrovanne

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD105653A1 (fr) * 1973-07-13 1974-05-05
JPS57163784A (en) * 1981-04-01 1982-10-08 Komatsu Ltd Solenoid valve driving circuit
IT1175561B (it) * 1984-07-12 1987-07-01 Spica Spa Elettroiniettore perfezionato per alimentare combustibile a un motore a c.i.
DE3616356A1 (de) * 1986-05-15 1987-11-19 Vdo Schindling Verfahren und schaltungsanordnung zur ansteuerung eines einspritzventils
DE4106015A1 (de) * 1991-02-26 1992-08-27 Ficht Gmbh Druckstoss-kraftstoffeinspritzung fuer verbrennungsmotoren
IT1251259B (it) * 1991-12-23 1995-05-05 Elasis Sistema Ricerca Fiat Circuito di comando di carichi prevalentemente induttivi, in particolare elettroiniettori.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9803789A1 *

Also Published As

Publication number Publication date
WO1998003789A1 (fr) 1998-01-29
DE69711186T2 (de) 2002-08-14
EP0914557B1 (fr) 2002-03-20
ATE214788T1 (de) 2002-04-15
FR2751700B1 (fr) 1998-10-30
FR2751700A1 (fr) 1998-01-30
DE69711186D1 (de) 2002-04-25
ES2172802T3 (es) 2002-10-01
AU3548297A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
EP0713036B1 (fr) Clapet d'électrovanne et circuit de recyclage de vapeurs d'essence de moteur à combustion interne
FR2593239A1 (fr) Systeme d'injection de carburant pour moteur a combustion interne
FR2738294A1 (fr) Injecteur pour moteur a combustion interne
FR3001786A1 (fr) Vanne de decharge et dispositif associe
FR3001770A1 (fr) Systeme de suralimentation des gaz d'admission et de recirculation des gaz d'echappement d'un moteur et procede de commande associe
EP0692626B1 (fr) Injecteur de carburant "bi-jet" à assistance pneumatique de pulvérisation, pour moteur à combustion interne alimenté par injection
EP0914557B1 (fr) Electrovanne par exemple d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule
FR2817054A1 (fr) Dispositif doseur a reglage optimise
FR2805570A1 (fr) Injecteur de carburant pour un moteur a combustion interne
EP1312864A1 (fr) Dispositif doseur de combustible pour injecteur de turbomachine
FR2490726A1 (fr) Dispositif d'arret pour pompes d'injection de carburant
EP1463887B1 (fr) Systeme de demarrage pour moteur a combustion interne
FR2751701A1 (fr) Electrovanne notamment d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur de vehicule
FR2775737A1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
FR2792371A1 (fr) Valve de commande pour dispositif d'injection, comprenant un piston et des butees pour celui-ci
FR2727158A1 (fr) Vanne de controle de la quantite de gaz d'echappement recyclee dans un moteur a combustion interne
FR2906576A1 (fr) Agencement de refroidissement d'un injecteur comportant un empilement de rondelles.
EP0918925A1 (fr) Vanne pour systeme de recirculation des gaz d'echappement de moteur a combustion interne
FR2718190A1 (fr) Soupape de régulation d'injection de carburant pour une turbomachine.
FR2744766A1 (fr) Electrovanne notamment d'impact pour un systeme d'injection de carburant par effet de coup de belier dans un moteur thermique de vehicule
EP0692624B1 (fr) Injecteur de carburant "bi-jet" à noyaux et entrefers en parallèle, pour moteur à combustion interne alimenté par injection
FR2806146A1 (fr) Dispositif de commande electromagnetique de soupapes, a ressorts pneumatiques
FR2914024A1 (fr) Injecteur de carburant pour moteur a combustion interne
FR2586456A1 (fr) Pompe d'injection de combustible a distributeur rotatif pour l'alimentation de moteurs a combustion interne
FR2797915A1 (fr) Injecteur de carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR IT

AX Request for extension of the european patent

Free format text: SI PAYMENT 19990118

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010522

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR IT

AX Request for extension of the european patent

Free format text: SI PAYMENT 19990118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020320

REF Corresponds to:

Ref document number: 214788

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69711186

Country of ref document: DE

Date of ref document: 20020425

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2172802

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070711

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070717

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070720

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070625

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080707

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080708