EP0913491B1 - Process for producing a workpiece from a chromium alloy and its use - Google Patents

Process for producing a workpiece from a chromium alloy and its use Download PDF

Info

Publication number
EP0913491B1
EP0913491B1 EP98811018A EP98811018A EP0913491B1 EP 0913491 B1 EP0913491 B1 EP 0913491B1 EP 98811018 A EP98811018 A EP 98811018A EP 98811018 A EP98811018 A EP 98811018A EP 0913491 B1 EP0913491 B1 EP 0913491B1
Authority
EP
European Patent Office
Prior art keywords
weight
max
workpiece
produced according
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811018A
Other languages
German (de)
French (fr)
Other versions
EP0913491A1 (en
Inventor
Peter Dr. Ernst
Peter Prof. Dr. Uggowitzer
Hannes Speidel
Markus Prof. Dr. Speidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0913491A1 publication Critical patent/EP0913491A1/en
Application granted granted Critical
Publication of EP0913491B1 publication Critical patent/EP0913491B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the invention is based on a method for producing a workpiece made of a chrome alloy according to the preamble of the first claim.
  • the invention also relates to the use of that produced by the process Workpiece.
  • An alloy is known from EP 0 657 556 A1 with the composition: 32-37 % By weight chrome 28-36 % By weight nickel Max. 2 % By weight manganese Max. 0.5 % By weight silicon Max. 0.1 % By weight aluminum Max. 0.03 % By weight carbon Max. 0.025 % By weight phosphorus Max. 0.01 % By weight sulfur Max. 2 % By weight molybdenum Max. 1 % By weight copper 0.3 - 0.7 % By weight nitrogen Remainder iron and manufacturing-related admixtures and impurities.
  • the alloy described in EP 0 657 556 A1 is manufactured by Krupp VDM sold under the name Nicrofer® 3033 - alloy 33.
  • Krupp VDM, Nicrofer® 3033 - alloy 33, material sheet No. 4142, June 1995 edition describes that workpieces after 15% cold working should be subjected to heat treatment at temperatures from 1080 to 1150 ° C, preferably at 1120 ° C. To achieve optimal Corrosion properties are accelerated with after heat treatment Cool water. After the heat treatment, the workpieces have the low strengths described above.
  • the invention has for its object in a method for manufacturing a workpiece made of a chrome alloy of the type mentioned Material with high strength, toughness, freedom from ferromagnetism and Freedom from susceptibility to stress corrosion cracking, both in water and in to create aqueous halide solutions.
  • the workpiece is cold worked and brought to a yield strength of at least 1000 MPa (R p0.2 ⁇ 1000 MPa) by the cold working.
  • the advantages of the invention can be seen, inter alia, in the fact that degrees of cold deformation (decrease in cross section due to cold deformation) of 20 percent and more, up to over 90 percent, bring about very excellent combinations of mechanical, physical and chemical properties. Yield strengths of 1000 MPa to well over 2000 MPa can still be achieved with good toughness (elongation at break of five to over ten percent). The result is a material of the highest strength that can meet the requirements of modern technology. Another advantage is the special physical and chemical properties that cannot be found with conventional materials of the same strength and corrosion resistance. The special physical properties of the material according to the invention are evident in the absence of ferromagnetism, which is a prerequisite for use as a cap ring material in turbogenerator construction. Due to its high stability of the face-centered cubic crystal lattice, the material according to the invention shows no deformation martensite even after severe cold working and thus remains free of ferromagnetism.
  • the present invention has provided a material which, owing to its excellent combination of mechanical strength and toughness, as well as corrosion resistance and its resistance to stress corrosion cracking and the absence of ferromagnetism, can be used specifically in the following fields of application: energy technology, offshore technology and oil drilling technology, air, and space, civil engineering, general mechanical engineering, chemical and petrochemical industry.
  • the drawing shows the yield strength R p02 , the tensile strength R m and the elongation at break A 5 depending on the degree of cold deformation.
  • the particularly preferred alloy ranges had the following composition: 32-37 % By weight chrome 28-36 % By weight nickel Max. 2 % By weight manganese Max. 0.5 % By weight silicon Max. 0.1 % By weight aluminum Max. 0.03 % By weight carbon Max. 0.025 % By weight phosphorus Max. 0.01 % By weight sulfur 0.5 - 2 % By weight molybdenum 0.3 - 1 % By weight copper 0.3 - 0.7 % By weight nitrogen Remainder iron and manufacturing-related admixtures and impurities.
  • the properties of the invention cold worked alloys are summarized in Table 1. Two comparison alloys are included in the table. It is about the alloys most used today worldwide for the alloy according to the invention Use as material for highly stressed generator rotor cap rings.
  • the cold-formed alloy according to the invention is obviously distinguished by an unusually good combination of strength, ductility and toughness.
  • the decisive superiority of the cold-formed chrome-based alloy is evident in the corrosion properties and resistance to stress corrosion cracking. It is known that the corrosion resistance of austenitic steels increases in proportion to the chromium, molybdenum and nitrogen content, corresponding to the empirical active sum% Cr + 3.3% Mo + 20% N. An effective total value of approximately 45 is achieved with the alloy according to the invention.
  • the corrosion resistance is therefore at a level which is significantly higher than that of the steels used today for generator rotor cap rings with 18% Cr, 18% Mn, 0.6N or 18% Mn, 5% Cr, 0.55% C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Technisches GebietTechnical field

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Werkstückes aus einer Chromlegierung nach dem Oberbegriff des ersten Anspruches. Die Erfindung betrifft ebenfalls die Verwendung des nach dem Verfahren hergestellten Werkstückes.The invention is based on a method for producing a workpiece made of a chrome alloy according to the preamble of the first claim. The invention also relates to the use of that produced by the process Workpiece.

Stand der TechnikState of the art

In der Energietechnik, insbesondere für Kappenringe (Englisch: "Retaining Rings") im Turbogeneratorenbau, der Offshore-Technik, in der Luft- und Raumfahrt, in der Architektur, im Allgemeinen Maschinenbau, in der chemischen Industrie und in der Verkehrstechnik werden Werkstoffe verlangt, die neben sehr hoher Festigkeit, Zähigkeit und Freiheit von Ferromagnetismus auch frei sind von Anfälligkeit auf Korrosion und Spannungsrisskorrosion, sowohl in Wasser als auch in wässerigen Halogenidlösungen. Werkstoffe die alle diese Bedingungen genügend erfüllen sind jedoch bis heute unbekannt. Deshalb wird jeweils versucht, Werkstoffe für den jeweiligen Anwendungsbereich so auszuwählen, dass die wichtigsten Eigenschaften zumindest abgedeckt werden um ein Versagen des Werkstoffes zu verhindern. Dabei wird in Kauf genommen, dass bei sich ändernden Betriebsbedingungen durch zu wenig beachtete Nebeneigenschaften der Werkstoff versagen kann.In energy technology, especially for cap rings (English: "Retaining Rings") in turbogenerator construction, offshore technology, in aerospace, in Architecture, in general mechanical engineering, in the chemical industry and in the Traffic engineering requires materials that, in addition to very high strength, toughness and freedom from ferromagnetism are also free from susceptibility to corrosion and stress corrosion cracking, both in water and in water Halide solutions. Materials that meet all of these conditions sufficiently are still unknown to this day. That is why we try to find materials for select the respective area of application so that the most important properties at least be covered to prevent material failure. It is accepted that with changing operating conditions fail due to insufficient attention to the secondary properties of the material can.

Bei Kappenringen im Turbogeneratorenbau werden beispielsweise Stähle mit der Zusammensetzung 18%Cr, 18%Mn, 0.6N bzw. 18%Mn, 5%Cr, 0.55%C verwendet. Diese Werkstoffe weisen zwar die gewünschte hohe Festigkeit, Zähigkeit und Freiheit von Ferromagnetismus auf, ihre Korrosions- und Spannungsrisskorrosionseigenschaften können jedoch bei besonders korrosionsfördernden Betriebs- und Umweltbedingungen zum Problem werden.In the case of cap rings in turbogenerator construction, steels are used with the Composition 18% Cr, 18% Mn, 0.6N or 18% Mn, 5% Cr, 0.55% C used. These materials have the desired high strength, toughness and Freedom from ferromagnetism, their corrosion and stress corrosion cracking properties However, in the case of particularly corrosive and environmental conditions become a problem.

Aus der EP 0 657 556 A1 ist eine Legierung bekannt mit der Zusammensetzung: 32 - 37 Gew.- % Chrom 28 - 36 Gew.- % Nickel max. 2 Gew.- % Mangan max. 0.5 Gew.- % Silizium max. 0.1 Gew.- % Aluminium max. 0.03 Gew.- % Kohlenstoff max. 0.025 Gew.- % Phosphor max. 0.01 Gew.- % Schwefel max. 2 Gew.- % Molybdän max. 1 Gew.- % Kupfer 0.3 - 0.7 Gew.- % Stickstoff    Rest Eisen sowie herstellungsbedingte Beimengungen und Verunreinigungen.An alloy is known from EP 0 657 556 A1 with the composition: 32-37 % By weight chrome 28-36 % By weight nickel Max. 2 % By weight manganese Max. 0.5 % By weight silicon Max. 0.1 % By weight aluminum Max. 0.03 % By weight carbon Max. 0.025 % By weight phosphorus Max. 0.01 % By weight sulfur Max. 2 % By weight molybdenum Max. 1 % By weight copper 0.3 - 0.7 % By weight nitrogen Remainder iron and manufacturing-related admixtures and impurities.

Diese in der EP 0 657 556 A1 beschriebenen Legierungen weisen zwar eine gewünschte hohe Beständigkeit gegen allgemeine Korrosion auf, erreichen aber lediglich Streckgrenzen ("Dehngrenzen") von maximal ungefähr 500 MPa und Zugfestigkeiten von ungefähr 850 MPa. Dies genügt den oben gestellten Forderungen an höchste Festigkeiten, die die vorgängig beschriebenen Legierungen erfüllen, jedoch nicht.These alloys described in EP 0 657 556 A1 have a desired one high resistance to general corrosion, but only achieve Yield strengths ("yield strengths") of a maximum of approximately 500 MPa and tensile strengths of approximately 850 MPa. This satisfies the demands made above the highest strengths that the alloys described above meet, However not.

Die in der EP 0 657 556 A1 beschriebenen Legierung wird von der Firma Krupp VDM unter dem Namen Nicrofer® 3033 - alloy 33 vertrieben. Im zugehörigen Werkstoffblatt, Krupp VDM, Nicrofer® 3033 - alloy 33, Werkstoffblatt Nr. 4142, Ausgabe Juni 1995, wird beschrieben, dass Werkstücke nach 15% Kaltverformung einer Wärmebehandlung unterworfen werden sollten, die bei Temperaturen von 1080 bis 1150°C, vorzugsweise bei 1120°C erfolgen soll. Zur Erzielung optimaler Korrosionseigenschaften ist nach der Wärmebehandlung beschleunigt mit Wasser abzukühlen. Nach der Wärmebehandlung weisen die Werkstücke die oben beschriebenen, geringen Festigkeiten auf.The alloy described in EP 0 657 556 A1 is manufactured by Krupp VDM sold under the name Nicrofer® 3033 - alloy 33. In the associated Material sheet, Krupp VDM, Nicrofer® 3033 - alloy 33, material sheet No. 4142, June 1995 edition, describes that workpieces after 15% cold working should be subjected to heat treatment at temperatures from 1080 to 1150 ° C, preferably at 1120 ° C. To achieve optimal Corrosion properties are accelerated with after heat treatment Cool water. After the heat treatment, the workpieces have the low strengths described above.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren zur Herstellung eines Werkstückes aus einer Chromlegierung der eingangs genannten Art einen Werkstoff mit hoher Festigkeit, Zähigkeit, Freiheit von Ferromagnetismus und Freiheit von Anfälligkeit auf Spannungsrisskorrosion, sowohl in Wasser als auch in wässerigen Halogenidlösungen zu schaffen.The invention has for its object in a method for manufacturing a workpiece made of a chrome alloy of the type mentioned Material with high strength, toughness, freedom from ferromagnetism and Freedom from susceptibility to stress corrosion cracking, both in water and in to create aqueous halide solutions.

Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht. Kern der Erfindung ist es also, dass das Werkstück kaltverformt und durch die Kaltverformung auf eine Streckgrenze von mindestens 1000 MPa (Rp0.2 ≥ 1000 MPa) gebracht wird.According to the invention, this is achieved by the features of the first claim. The essence of the invention is therefore that the workpiece is cold worked and brought to a yield strength of at least 1000 MPa (R p0.2 ≥ 1000 MPa) by the cold working.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass Kaltverformungsgrade (Querschnittsabnahme durch Kaltverformung) von 20 Prozent und mehr, bis zu über 90 Prozent, ganz hervorragende Kombinationen von mechanischen, physikalischen und chemischen Eigenschaften bewirken. Es können so Streckgrenzen von 1000 MPa bis deutlich über 2000 MPa bei immer noch guter Zähigkeit (Bruchdehnung von fünf bis über zehn Prozent) erzielt werden. Es entsteht so ein Werkstoff höchster Festigkeit, der die Anforderungen der modernen Techniken zu erfüllen vermag.
Ein weiterer Vorteil sind die besonderen physikalischen und chemischen Eigenschaften, die bei herkömmlichen Werkstoffen gleicher Festigkeit und gleicher Korrosionsbeständigkeit nicht zu finden sind. Die besonderen physikalischen Eigenschaften des erfindungsgemässen Werkstoffs zeigen sich wesentlich in der Abwesenheit von Ferromagnetismus, welche Voraussetzung für die Anwendung als Kappenringwerkstoff im Turbogeneratorenbau ist. Der erfindungsgemässe Werkstoff zeigt durch seine hohe Stabilität des kubisch-flächenzentrierten Kristallgitters auch nach starker Kaltverformung keinen Verformungsmartensit und bleibt somit frei von Ferromagnetismus.
The advantages of the invention can be seen, inter alia, in the fact that degrees of cold deformation (decrease in cross section due to cold deformation) of 20 percent and more, up to over 90 percent, bring about very excellent combinations of mechanical, physical and chemical properties. Yield strengths of 1000 MPa to well over 2000 MPa can still be achieved with good toughness (elongation at break of five to over ten percent). The result is a material of the highest strength that can meet the requirements of modern technology.
Another advantage is the special physical and chemical properties that cannot be found with conventional materials of the same strength and corrosion resistance. The special physical properties of the material according to the invention are evident in the absence of ferromagnetism, which is a prerequisite for use as a cap ring material in turbogenerator construction. Due to its high stability of the face-centered cubic crystal lattice, the material according to the invention shows no deformation martensite even after severe cold working and thus remains free of ferromagnetism.

Die besonderen chemischen Eigenschaften des erfindungsgemäss stark kaltverformten Werkstoffes zeigen sich im Widerstand gegen Spannungsrisskorrosion in Wasser und wässrigen Halogenidlösungen. Andere kaltverformte, nicht ferromagnetische korrosionsbeständige Werkstoffe, bis in die Klasse der "Superaustenite" hinauf, insbesondere aber alle bisher in der Technik üblichen Stähle für Kappenringe zeigen sich im hochfesten, kaltverformten Zustand stets anfällig auf Spannungsrisskorrosion, zumindest in warmen, wässrigen Chloridlösungen. Mit dem erfindungsgemässen hohen Kaltverformungsgrad von 20 Prozent und mehr, angewandt auf die genannte Chromlegierung, ist hier nun erstmals ein Werkstoff geschaffen worden, der selbst bei höchster Festigkeit, Korrosionsbeständigkeit sowie zugleich Abwesenheit von Ferromagnetismus völlig beständig gegen Spannungsrisskorrosion in wässrigen Halogenidlösungen ist.
Die vorliegende Erfindung hat mit dem genannten Verfahren einen Werkstoff bereitgestellt, der aufgrund seiner hervorragenden Kombination von mechanischer Festigkeit und Zähigkeit sowie Korrosionsbeständigkeit und seines Widerstandes gegen Spannungsrisskorrosion sowie Abwesenheit von Ferromagnetismus spezifisch in folgenden Anwendungsgebieten eingesetzt werden kann: Energietechnik, Offshoretechnik und Ölbohrtechnik, Luft-, und Raumfahrt, Hoch- und Tiefbau, Allgemeiner Maschinenbau, Chemische und Petrochemische Industrie.
The special chemical properties of the material which is strongly cold-formed according to the invention are evident in the resistance to stress corrosion cracking in water and aqueous halide solutions. Other cold-formed, non-ferromagnetic, corrosion-resistant materials up to the class of "superaustenite", but especially all the hitherto conventional steel for cap rings are always susceptible to stress corrosion cracking in the high-strength, cold-formed state, at least in warm, aqueous chloride solutions. With the high degree of cold deformation according to the invention of 20 percent and more, applied to the above-mentioned chromium alloy, a material has now been created for the first time that is completely resistant to stress corrosion cracking in aqueous halide solutions, even with the highest strength, corrosion resistance and absence of ferromagnetism.
With the method mentioned, the present invention has provided a material which, owing to its excellent combination of mechanical strength and toughness, as well as corrosion resistance and its resistance to stress corrosion cracking and the absence of ferromagnetism, can be used specifically in the following fields of application: energy technology, offshore technology and oil drilling technology, air, and space, civil engineering, general mechanical engineering, chemical and petrochemical industry.

Weitere vorteilhafte Ausgestaltungen und Verwendungen der Erfindung ergeben sich aus den Unteransprüchen.Further advantageous configurations and uses of the invention result itself from the subclaims.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist die Streckgrenze Rp02, die Zugfestigkeit Rm und die Bruchdehnung A5 abhängig vom Kaltverformungsgrad dargestellt. The drawing shows the yield strength R p02 , the tensile strength R m and the elongation at break A 5 depending on the degree of cold deformation.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Werkstücke aus Chrombasis-Legierungen der nachfolgenden Zusammensetzung wurden kaltverformt. 32 - 37 Gew.- % Chrom 28 - 36 Gew.- % Nickel max. 2 Gew.- % Mangan max. 0.5 Gew.- % Silizium max. 0.1 Gew.- % Aluminium max. 0.03 Gew.- % Kohlenstoff max. 0.025 Gew.- % Phosphor max. 0.01 Gew.- % Schwefel max. 2 Gew.- % Molybdän max. 1 G Gew.- % Kupfer 0.3 - 0.7 Gew.- % Stickstoff    Rest Eisen sowie herstellungsbedingte Beimengungen und Verunreinigungen.Workpieces made of chrome-based alloys with the following composition were cold worked. 32-37 % By weight chrome 28-36 % By weight nickel Max. 2 % By weight manganese Max. 0.5 % By weight silicon Max. 0.1 % By weight aluminum Max. 0.03 % By weight carbon Max. 0.025 % By weight phosphorus Max. 0.01 % By weight sulfur Max. 2 % By weight molybdenum Max. 1 G % By weight copper 0.3 - 0.7 % By weight nitrogen Remainder iron and manufacturing-related admixtures and impurities.

Die besonders bevorzugten Legierungsbereiche wiesen folgende Zusammensetzung auf: 32 - 37 Gew.- % Chrom 28 - 36 Gew.- % Nickel max. 2 Gew.- % Mangan max. 0.5 Gew.- % Silizium max. 0.1 Gew.- % Aluminium max. 0.03 Gew.- % Kohlenstoff max. 0.025 Gew.- % Phosphor max. 0.01 Gew.- % Schwefel 0.5 - 2 Gew.- % Molybdän 0.3 - 1 Gew.- % Kupfer 0.3 - 0.7 Gew.- % Stickstoff    Rest Eisen sowie herstellungsbedingte Beimengungen und Verunreinigungen.The particularly preferred alloy ranges had the following composition: 32-37 % By weight chrome 28-36 % By weight nickel Max. 2 % By weight manganese Max. 0.5 % By weight silicon Max. 0.1 % By weight aluminum Max. 0.03 % By weight carbon Max. 0.025 % By weight phosphorus Max. 0.01 % By weight sulfur 0.5 - 2 % By weight molybdenum 0.3 - 1 % By weight copper 0.3 - 0.7 % By weight nitrogen Remainder iron and manufacturing-related admixtures and impurities.

Diese Werkstücke wurden dabei verschiedenen Kaltverformungsgraden unterworfen und die so erhaltenen Werkstücke untersucht. In der einzigen Figur ist die Streckgrenze Rp02, die Zugfestigkeit Rm und die Bruchdehnung A5 dem Kaltverformungsgrad gegenübergestellt. Wie aus der Figur ersichtlich ist, konnten bei Kaltverformungsgraden über 25% Streckgrenzen von über 1000 MPa erreicht werden. Die kaltverformten Werkstücke wurden verschiedenen Korrosions- und Spannungsrisskorrosionversuchen unterworfen, wobei mindestens die gleich guten Werte wie bei unverformten Werkstücken erzielt wurden.These workpieces were subjected to various degrees of cold deformation and the workpieces thus obtained were examined. In the single figure, the yield point R p02 , the tensile strength R m and the elongation at break A 5 are compared to the degree of cold deformation. As can be seen from the figure, it was possible to achieve yield strengths of over 1000 MPa at degrees of cold deformation above 25%. The cold-formed workpieces were subjected to various corrosion and stress corrosion tests, with at least the same good values being achieved as for undeformed workpieces.

Ausführungsbeispiel 1:Example 1:

Eine Chrombasis-Legierung der folgenden chemischen Zusammensetzung 32.9 Gew.-% Chrom 30.9 Gew.-% Nickel 0.64 Gew.-% Mangan 0.31 Gew.-% Silizium 0.01 Gew.-% Kohlenstoff 0.01 Gew.-% Phosphor 1.67 Gew.-% Molybdän 0.58 Gew.-% Kupfer 0.39 Gew.-% Stickstoff sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, wies als Walzblech mit den Abmessungen 150 mm x 500 mm im lösungsgeglühten und abgeschreckten Zustand die folgenden Eigenschaften auf: Streckgrenze Rp02= 466 MPa, Zugfestigkeit Rm = 848 MPa, Bruchdehnung A5 = 65 %, magn. Permeabilität µr < 1.004, kritische Spaltkorrosionstemperatur TCCC = 20°C. Die Legierung wurde im Stangenformat mit 15 mm Durchmesser durch "Rundhämmern" bei Raumtemperatur kaltverformt auf die Durchmesser 11.2 mm, 9.2 mm, 7.2 mm und 5.7 mm, entsprechend einer Kaltverformung von 40%, 59%, 75% und 84%. Auch nach der stärksten Kaltverformung war die Legierung homogen austenitisch, frei von Ausscheidungen, vollkommen unmagnetisch (µr < 1.004) mit den folgenden mechanischen Eigenschaften: Streckgrenze Rp02= 2100 MPa, Zugfestigkeit Rm = 2100 MPa, Bruchdehnung A5 = 10 %. Der Widerstand gegen lokale Korrosion wurde durch die Kaltverformung nicht beeinträchtigt, die kritische Spaltkorrosionstemperatur, TCCC, blieb auf dem gleich hohen Wert von 20°C wie im lösungsgeglühten Zustand.A chrome base alloy with the following chemical composition 32.9 % By weight chrome 30.9 % By weight nickel 0.64 % By weight manganese 0.31 % By weight silicon 0.01 % By weight carbon 0.01 % By weight phosphorus 1.67 % By weight molybdenum 0.58 % By weight copper 0.39 % By weight nitrogen as well as usual manufacturing-related admixtures and impurities and the rest as iron, as rolled sheet with the dimensions 150 mm x 500 mm in the solution-annealed and quenched state had the following properties: yield strength R p02 = 466 MPa, tensile strength R m = 848 MPa, elongation at break A 5 = 65%, magn. Permeability µ r <1.004, critical crevice corrosion temperature T CCC = 20 ° C. The alloy was cold-formed in rod format with 15 mm diameter by "round hammering" at room temperature to the diameters 11.2 mm, 9.2 mm, 7.2 mm and 5.7 mm, corresponding to a cold deformation of 40%, 59%, 75% and 84%. Even after the strongest cold working, the alloy was homogeneously austenitic, free of precipitation, completely non-magnetic (µ r <1.004) with the following mechanical properties: yield strength R p02 = 2100 MPa, tensile strength R m = 2100 MPa, elongation at break A 5 = 10%. The resistance to local corrosion was not affected by the cold deformation, the critical crevice corrosion temperature, T CCC , remained at the same high value of 20 ° C as in the solution-annealed condition.

Ausführungsbeispiel 2:Example 2:

Eine lösungsgeglühte Walzplatte der gleichen chemischen Zusammensetzung wie in Beispiel 1 wurde, ausgehend vom lösungsgeglühten Zustand, durch Kaltwalzen verformt. Der Umformgrad betrug 25% und 35%. Die Eigenschaften der erfindungsgemäss kaltverformten Legierung sind in der Tabelle 1 zusammengefasst. Zwei Vergleichslegierungen sind mit in die Tabelle aufgenommen. Es handelt sich dabei um die heute weltweit am meisten verwendeten Legierungen für den erfindungsgemässen Einsatz als Werkstoff für hochbeanspruchte Generatorrotor-Kappenringe.A solution annealed plate with the same chemical composition as in Example 1, starting from the solution-annealed condition, was carried out by cold rolling deformed. The degree of deformation was 25% and 35%. The properties of the invention cold worked alloys are summarized in Table 1. Two comparison alloys are included in the table. It is about the alloys most used today worldwide for the alloy according to the invention Use as material for highly stressed generator rotor cap rings.

Offensichtlich zeichnet sich die erfindungsgemäss kaltverformte Legierung aus durch eine ungewöhnlich gute Kombination von Festigkeit, Duktilität und Zähigkeit. Die entscheidende Überlegenheit der kaltverformten Chrombasis-Legierung offenbart sich aber bei den Korrosionseigenschaften und dem Widerstand gegen Spannungsrisskorrosion. Es ist bekannt, dass der Korrosionswiderstand austenitischer Stähle proportional zum Chrom-, Molybdän- und Stickstoffgehalt steigt, entsprechend der empirischen Wirksumme %Cr+3.3%Mo+20%N. Mit der erfindungsgemässen Legierung wird ein Wirksummenwert von etwa 45 erzielt. Der Korrosionswiderstand liegt damit auf einem Niveau, das deutlich höher liegt als das der heute für Generatorrotor-Kappenringe eingesetzte Stähle mit 18%Cr, 18%Mn, 0.6N bzw. 18%Mn, 5%Cr, 0.55%C. Dies zeigt sich experimentell in der kritischen Spaltkorrosionstemperatur, die für die erfindungsgemäss kaltverformte Legierung bei 20°C liegt, während sie für die Legierungen mit 18%Cr, 18%Mn, 0.6%N bzw. 18%Mn, 5%Cr, 0.55%C unter -3°C liegt. Legierung Kaltverformungsgrad [%] Streckgrenze Rp0.2[MPa] Zugfestigkeit Rm [MPa] Bruchdehnung A5[%] Kerbschlagarbeit AV[J] Gemäss 0 466 848 65 >300 Beispiel 2 25 1015 1140 25 218 35 1110 1210 22 170 18Cr,18Mn 0 500 850 65 270 0.6N 25 1040 1160 26 185 35 1170 1250 22 150 18Mn,5Cr 0 460 850 65 200 0.55C 25 850 1150 35 85 35 1050 1220 28 60 The cold-formed alloy according to the invention is obviously distinguished by an unusually good combination of strength, ductility and toughness. However, the decisive superiority of the cold-formed chrome-based alloy is evident in the corrosion properties and resistance to stress corrosion cracking. It is known that the corrosion resistance of austenitic steels increases in proportion to the chromium, molybdenum and nitrogen content, corresponding to the empirical active sum% Cr + 3.3% Mo + 20% N. An effective total value of approximately 45 is achieved with the alloy according to the invention. The corrosion resistance is therefore at a level which is significantly higher than that of the steels used today for generator rotor cap rings with 18% Cr, 18% Mn, 0.6N or 18% Mn, 5% Cr, 0.55% C. This is shown experimentally in the critical crevice corrosion temperature, which is 20 ° C. for the cold-formed alloy according to the invention, while for the alloys with 18% Cr, 18% Mn, 0.6% N or 18% Mn, 5% Cr, 0.55% C is below -3 ° C. alloy Degree of cold deformation [%] Yield strength R p0.2 [MPa] Tensile strength R m [MPa] Elongation at break A 5 [%] Impact energy A V [J] According to 0 466 848 65 > 300 Example 2 25th 1015 1140 25th 218 35 1110 1210 22 170 18Cr, 18Mn 0 500 850 65 270 0.6N 25th 1040 1160 26 185 35 1170 1250 22 150 18Mn, 5Cr 0 460 850 65 200 0.55C 25th 850 1150 35 85 35 1050 1220 28 60

Besonders hervorzuheben ist jedoch der Widerstand gegen Spannungsrisskorrosion der erfindungsgemäss kaltverformten Legierung. Dazu wurden bruchmechanische Tests mit vorermüdeten DCB-Proben in Wasser und 22%iger NaCI-Lösung durchgeführt. Nach einer Prüfdauer von 2000 h hat sich kein Risswachstum gezeigt. Damit kann als mögliche Obergrenze für ein Risswachstum ein Wert von < 10-11 m/s angegeben werden. Die Vergleichswerkstoffe zweigen demgegenüber ein Risswachstum von ca. 10-9 m/s (18%Cr, 18%Mn, 0.6%N) bzw. 10-8 m/s (18%Mn, 5%Cr, 0.55%C).Of particular note, however, is the resistance to stress corrosion cracking of the cold-formed alloy according to the invention. For this purpose, mechanical fracture tests were carried out with pre-tired DCB samples in water and 22% NaCI solution. After a test period of 2000 h, no crack growth was shown. A value of <10 -11 m / s can thus be given as a possible upper limit for crack growth. The comparison materials, on the other hand, branch a crack growth of approx. 10 -9 m / s (18% Cr, 18% Mn, 0.6% N) or 10 -8 m / s (18% Mn, 5% Cr, 0.55% C).

Selbstverständlich ist die Erfindung nicht auf die gezeigten und beschriebenen Ausführungsbeispiele beschränkt.Of course, the invention is not limited to that shown and described Embodiments limited.

Claims (10)

  1. Process for producing a workpiece from a chromium alloy, consisting of: 32-37 % by weight chromium, 28-36 % by weight nickel, max. 2 % by weight manganese, max. 0.5 % by weight silicon, max. 0.1 % by weight aluminium, max. 0.03 % by weight carbon, max. 0.025 % by weight phosphorus, max. 0.01 % by weight sulphur, max. 2 % by weight molybdenum, max. 1 % by weight copper, 0.3-0.7 % by weight nitrogen,
    remainder iron and production-related admixtures and impurities, characterized in that the workpiece is cold worked and, by means of the cold working, is brought to a yield strength of at least 1000 MPa (Rp0.2 ≥ 1000 MPa).
  2. Process for producing a workpiece from a chromium alloy, consisting of: 32-37 % by weight chromium, 28-36 % by weight nickel, max. 2 % by weight manganese, max. 0.5 % by weight silicon, max. 0.1 % by weight aluminium, max. 0.03 % by weight carbon, max. 0.025 % by weight phosphorus, max. 0.01 % by weight sulphur, 0.5-2 % by weight molybdenum, 0.3-1 % by weight copper, 0.3-0.7 % by weight nitrogen,
    remainder iron and production-related admixtures and impurities, characterized in that the workpiece is cold worked and, by means of the cold working, is brought to a yield strength of at least 1000 MPa (Rp0.2 ≥ 1000 MPa).
  3. Process for producing a workpiece according to Claim 1 or 2, characterized in that the degree of cold deformation is at least 20%.
  4. Use of the workpiece produced according to one of Claims 1 to 3 for generator/rotor retaining rings.
  5. Use of the workpiece produced according to one of Claims 1 to 3 in offshore and oil drilling engineering for valves, pipelines, connecting elements and drill stems.
  6. Use of the workpiece produced according to one of Claims 1 to 3 in aeronautical and aerospatial engineering for load-bearing components and for connecting elements, in particular screws, bolts and rivets.
  7. Use of the workpiece produced according to one of Claims 1 to 3 in the building and construction industry for connecting elements, such as nails, rivets, screws, dowels, and for stay cables, rock bolts, attachment elements on facades, facade ties, tunnels, bridges, roofs, including roof suspensions for swimming pools, and for tensioning cables, turnbuckles, anchor plates, hinges, crash barrier anchorages, load-bearing structures, reinforcements and for supporting elements in steel construction.
  8. Use of the workpiece produced according to one of Claims 1 to 3 in general mechanical engineering and in the chemical and petrochemical industry where stress corrosion cracking media are applied to high-strength components which are under mechanical stresses.
  9. Use of the workpiece produced according to one of Claims 1 to 3 for components in transport engineering on water and on land, in amphibious vehicles, in load-bearing and guide systems which have to simultaneously withstand mechanical loads and aggressive environments.
  10. Use of the workpiece produced according to one of Claims 1 to 3 in sport and leisure equipment, including shipbuilding and diving equipment.
EP98811018A 1997-10-31 1998-10-13 Process for producing a workpiece from a chromium alloy and its use Expired - Lifetime EP0913491B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748205A DE19748205A1 (en) 1997-10-31 1997-10-31 Process for producing a workpiece from a chrome alloy and its use
DE19748205 1997-10-31

Publications (2)

Publication Number Publication Date
EP0913491A1 EP0913491A1 (en) 1999-05-06
EP0913491B1 true EP0913491B1 (en) 2001-11-28

Family

ID=7847257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811018A Expired - Lifetime EP0913491B1 (en) 1997-10-31 1998-10-13 Process for producing a workpiece from a chromium alloy and its use

Country Status (6)

Country Link
US (2) US6406572B1 (en)
EP (1) EP0913491B1 (en)
JP (1) JPH11246922A (en)
CN (1) CN1093885C (en)
DE (2) DE19748205A1 (en)
PL (1) PL329400A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408889B (en) 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
RU2514899C1 (en) * 2013-01-30 2014-05-10 Анатолий Матвеевич Адаскин Thermal treatment of heatproof and refractory alloy "х65нвфт"
RU2515145C1 (en) * 2013-05-30 2014-05-10 Анатолий Матвеевич Адаскин Thermal treatment of heatproof and refractory alloy "х65нвфт"
EP3269924A1 (en) 2016-07-14 2018-01-17 Siemens Aktiengesellschaft Rotating shaft and method for producing a rotating shaft
EP3844311A1 (en) * 2018-08-29 2021-07-07 Chemetics Inc. Austenitic stainless alloy with superior corrosion resistance
US20220411906A1 (en) * 2019-10-10 2022-12-29 Nippon Steel Corporation Alloy material and oil-well seamless pipe
CN115323234B (en) * 2022-08-09 2023-08-01 东睦新材料集团股份有限公司 Preparation method of nonmagnetic low-expansion chromium-based alloy material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424083A (en) * 1980-11-21 1984-01-03 Exxon Research And Engineering Co. Carburization resistance of austenitic stainless steel tubes
US4400209A (en) * 1981-06-10 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4400210A (en) * 1981-06-10 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4421571A (en) * 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS6141746A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp High strength and high corrosion resistance heat resisting steel superior in hot workability
US4761190A (en) * 1985-12-11 1988-08-02 Inco Alloys International, Inc. Method of manufacture of a heat resistant alloy useful in heat recuperator applications and product
JPS62180037A (en) 1986-02-03 1987-08-07 Daido Steel Co Ltd Austenitic alloy excellent in stress corrosion cracking resistance
US5378427A (en) * 1991-03-13 1995-01-03 Sumitomo Metal Industries, Ltd. Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
DE4342188C2 (en) * 1993-12-10 1998-06-04 Bayer Ag Austenitic alloys and their uses
JPH08120392A (en) * 1994-10-21 1996-05-14 Sumitomo Metal Ind Ltd Austenitic corrosion resistant alloy for high efficiency rubbish power generating boiler superheater tube

Also Published As

Publication number Publication date
CN1221802A (en) 1999-07-07
EP0913491A1 (en) 1999-05-06
PL329400A1 (en) 1999-05-10
US6616779B2 (en) 2003-09-09
US6406572B1 (en) 2002-06-18
US20020141897A1 (en) 2002-10-03
DE19748205A1 (en) 1999-05-06
JPH11246922A (en) 1999-09-14
DE59802224D1 (en) 2002-01-10
CN1093885C (en) 2002-11-06

Similar Documents

Publication Publication Date Title
DE3221833C3 (en) Alloy, in particular for the production of heavy-duty piping for deep holes or the like
DE3221857C2 (en) Iron alloy with increased resistance to stress corrosion cracking
DE2423193C2 (en) Use of an austenitic stainless steel
DE3223457C2 (en)
DE68928336T3 (en) Process for the production of structural steels with high fire resistance and low yield strength ratio and structural steel produced thereby
DE102010026808B4 (en) Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
DE60124227T2 (en) DUPLEX STAINLESS STEEL
DE1558519A1 (en) Steel with a maximum of 0.08 percent carbon
EP2557185A1 (en) Armature en acier profilée et laminée à chaud pour pièces en béton armé dotées d&#39;une résistance au feu améliorée et son procédé de fabrication
DE4233269A1 (en) HIGH-STRENGTH SPRING STEEL
DE1458470B2 (en) Use of a heat-treated, ductile, high-strength steel alloy with a martensitic or bainitic structure for the production of components for aerospace engineering
DE19607828C2 (en) Process for producing an austenitic Cv-Mn steel
EP0913491B1 (en) Process for producing a workpiece from a chromium alloy and its use
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
DE3113844A1 (en) &#34;FERRITE-FREE, EXHAUST-RETARDABLE STAINLESS STEEL&#34;
EP2732060B1 (en) Hardening steel for lifting, tensioning and / or load securing devices and fasteners, component and method for producing
DE69838879T2 (en) MARTENSITIC STAINLESS STEEL WITH HIGH CORROSION RESISTANCE
DE2755537A1 (en) AUSTENITIC STAINLESS STEEL
DE3407305A1 (en) USE OF A CORROSION-RESISTANT AUSTENITIC ALLOY FOR MECHANICALLY STRESSED, WELDABLE COMPONENTS
DE3344775C1 (en) Tendons for building structures
EP1474538B1 (en) Use of a steel alloy as a material for pipes for producing gas cylinders, or as a material for producing moulded elements in light-gauge steel construction
DE102019103502A1 (en) Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product
WO2022049282A1 (en) Hot-rolled flat steel product and method for producing a hot-rolled flat steel product
DE3935965C1 (en)
DE19902665A1 (en) Low carbon special steel for producing lightweight, high strength and corrosion resistant vehicle body and chassis components contains chromium and nickel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991008

AKX Designation fees paid

Free format text: DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM

REF Corresponds to:

Ref document number: 59802224

Country of ref document: DE

Date of ref document: 20020110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031010

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503