JPS62180037A - Austenitic alloy excellent in stress corrosion cracking resistance - Google Patents
Austenitic alloy excellent in stress corrosion cracking resistanceInfo
- Publication number
- JPS62180037A JPS62180037A JP2149586A JP2149586A JPS62180037A JP S62180037 A JPS62180037 A JP S62180037A JP 2149586 A JP2149586 A JP 2149586A JP 2149586 A JP2149586 A JP 2149586A JP S62180037 A JPS62180037 A JP S62180037A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- corrosion cracking
- stress corrosion
- cracking resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 45
- 239000000956 alloy Substances 0.000 title claims abstract description 45
- 238000005260 corrosion Methods 0.000 title claims abstract description 40
- 230000007797 corrosion Effects 0.000 title claims abstract description 40
- 238000005336 cracking Methods 0.000 title claims abstract description 28
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 4
- 239000013078 crystal Substances 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 229910000963 austenitic stainless steel Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
この発明は、耐応力腐食割れ性に優れ、例えば、冷却水
、海水、薬品等の腐食環境下でかつ応力が付加された状
態で使用される部品、例えばボルトやクランプ等の締め
付は部品の素材として好適に利用される耐応力腐食割れ
性に優れたオーステナイト系合金に関するものである。[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention has excellent stress corrosion cracking resistance, and can be used in corrosive environments such as cooling water, seawater, chemicals, etc., and when stress is not applied. The austenitic alloy, which has excellent stress corrosion cracking resistance, is suitably used as a material for parts that are used under such conditions, such as bolts and clamps.
(従来の技術)
従来、応力腐食割れ性に優れていることが要求される部
品、例えば上記した腐食環境でかつ応力が付加された状
態で使用されるボルト、クランプ等の締め付は部品の素
材としては、5U5316等のオーステナイト系ステン
レス鋼が使用されることが多かった。(Prior art) Conventionally, parts that are required to have excellent stress corrosion cracking resistance, such as bolts and clamps that are used in the above-mentioned corrosive environment and under stress, have been tightened by checking the material of the part. As such, austenitic stainless steel such as 5U5316 is often used.
(発明が解決しようとする問題点)
しかしながら、上記した5US316等のオーステナイ
ト系ステンレス鋼は、耐応力腐食割れ性がいまだ十分で
なく、例えば原子力設備における冷却装置等の締め付は
部材に要求される耐応力腐食割れ特性を十分に満たすこ
とができないという問題点があった。(Problems to be Solved by the Invention) However, austenitic stainless steels such as the above-mentioned 5US316 do not yet have sufficient stress corrosion cracking resistance, and for example, members are required to tighten cooling equipment in nuclear equipment. There was a problem that stress corrosion cracking resistance characteristics could not be fully satisfied.
この発明は、上述した従来の問題点に着目してなされた
もので、これまで多用されてきたオーステナイト系ステ
ンレス鋼よりもさらに耐応力腐食割れ性に優れた金属材
料を提供することを目的とするものである。This invention was made in view of the above-mentioned conventional problems, and aims to provide a metal material that has even better stress corrosion cracking resistance than the austenitic stainless steel that has been widely used up until now. It is something.
[発明の構成]
(問題点を解決するだめの手段)
この発明による耐応力腐食割れ性に優れたオーステナイ
ト系合金は1重量%で、Cr:18〜35%、Ni二2
5〜50%、MO二8%以下、M n : 6%以下、
N:0.5%以下、C:0.03%以下、Si:0.2
%以下、P:0.015%以下、S:0.005%以下
、必要によりCu:3%以下、残部Feおよび不純物よ
りなることを特徴としており、合金組織が多結晶あるい
は単結晶組織であることを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The austenitic alloy according to the present invention having excellent stress corrosion cracking resistance contains 1% by weight, 18 to 35% Cr, and Ni22.
5 to 50%, MO2 8% or less, Mn: 6% or less,
N: 0.5% or less, C: 0.03% or less, Si: 0.2
% or less, P: 0.015% or less, S: 0.005% or less, Cu: 3% or less if necessary, the balance being Fe and impurities, and the alloy structure is a polycrystalline or single crystal structure. It is characterized by
次に、この発明による耐応力腐食割れ性に優れたオース
テナイト系合金の成分範囲(重量%)の限定理由につい
て説明する。Next, the reason for limiting the component range (wt%) of the austenitic alloy having excellent stress corrosion cracking resistance according to the present invention will be explained.
Cr:18〜35%
CrはFe−Cr−Ni系合金においてCr2O3より
なる保護皮膜を形成して常温における耐食性を改善し、
かつまた強度を向上させるのに有効な元素であるので、
このような効果を得るために18%以上とした。しかし
、多量の添加はα相およびα相を析出させることとなり
、単結晶化を困難にするとともに、熱間加工性を害する
ので35%以下とした。Cr: 18-35% Cr forms a protective film made of Cr2O3 in Fe-Cr-Ni alloys to improve corrosion resistance at room temperature.
It is also an effective element for improving strength.
In order to obtain such an effect, the content was set to 18% or more. However, addition of a large amount causes the precipitation of α phase and α phase, which makes single crystallization difficult and impairs hot workability, so the content was set at 35% or less.
Ni:25〜50%
NiはFe−Cr−Ni系の合金においてCr等との関
係で当該合金の組織をオーステナイト相とするのに必要
な元素であり、合金の組織をオーステナイト相すること
によって耐食性、特に応力腐食割れ性を改善し、さらに
強度をも高める。そして、このような効果を得るための
Niの下限は25%である。しかし、多く添加しても合
金の組織をオーステナイト相とするには不必要であり、
かえってNの固溶強化を期待しがたくなるとともに合金
自体が高価なものとなるので、その上限を50%とした
。Ni: 25-50% Ni is an element necessary to make the structure of the alloy into an austenite phase in relation to Cr etc. in Fe-Cr-Ni alloys, and by making the structure of the alloy into an austenite phase, it improves corrosion resistance. , especially improves stress corrosion cracking resistance and also increases strength. The lower limit of Ni to obtain such an effect is 25%. However, even if a large amount is added, it is unnecessary to make the alloy structure into an austenite phase.
On the contrary, it becomes difficult to expect solid solution strengthening of N and the alloy itself becomes expensive, so the upper limit was set at 50%.
M o : 8%以下
Moは応力腐食割れの起点となる孔食を抑制し、応力腐
食割れ性を改善するとともに強度を高めるのに有効な元
素であるので、より望ましくは0.5%以上とするのが
良い。そして、このMOは状態図的にはCrと同じ作用
をもち、多く添加しすぎるとδフェライトの生成が起っ
て単結晶化しにくくするので、その上限を8%とした。Mo: 8% or less Mo is an effective element for suppressing pitting corrosion, which is the starting point of stress corrosion cracking, improving stress corrosion cracking resistance and increasing strength, so it is more preferably 0.5% or more. It's good to do that. This MO has the same effect as Cr in terms of phase diagram, and if too much is added, δ ferrite is generated and it becomes difficult to form a single crystal, so the upper limit of MO is set at 8%.
Mn:6%以下
Mnは脱酸および脱硫剤として有効であると共に合金中
のNの固溶度を増大させてNの固溶による基地の強化が
期待できるので、より望ましくは1%以上添加するのが
良い。しかし、多量の添加は合金の耐食性を害すること
となるためその上限を6%とした。Mn: 6% or less Mn is effective as a deoxidizing and desulfurizing agent, increases the solid solubility of N in the alloy, and can be expected to strengthen the base by solid solution of N, so it is more desirable to add 1% or more. It's good. However, since adding a large amount will impair the corrosion resistance of the alloy, the upper limit was set at 6%.
N:0.5%以下
Nは合金中に固溶して当該合金の強度を向上させるのに
有効であるとともに、耐食性を向上させるのにも有効で
あり、このような効果を得るためにより望ましくは0.
05%以上添加するのがよい。そして、この場合のNの
固溶量は合金中のMn量に依存するため、および合金の
健全性を確保するためにその上限を0.5%とした。N: 0.5% or less N is effective in improving the strength of the alloy by solid solution in the alloy, and is also effective in improving the corrosion resistance, and is more desirable in order to obtain such effects. is 0.
It is preferable to add 0.5% or more. Since the solid solution amount of N in this case depends on the amount of Mn in the alloy, and to ensure the integrity of the alloy, the upper limit was set to 0.5%.
C:0.03%以下
Cはこの含有量が少ないほど合金の耐食性が向上し、反
対に多くなると耐食性が低下すると共に単結晶化も困難
となるので0.03%以下とした。C: 0.03% or less The lower the C content, the better the corrosion resistance of the alloy, and conversely, if the C content is too high, the corrosion resistance decreases and it becomes difficult to form single crystals, so the C content was set to 0.03% or less.
Si:0.2%以下
Siは脱酸剤として作用することにより合金の清浄度を
高めるが、多すぎると耐食性や熱間加工性を低下させる
と共に、合金の凝固温度範囲を広くして単結晶化しにく
くするため、その上限を0.2%とすることが望ましい
。Si: 0.2% or less Si increases the cleanliness of the alloy by acting as a deoxidizing agent, but if it is too large, it decreases corrosion resistance and hot workability, and widens the solidification temperature range of the alloy, resulting in a single crystal. It is desirable that the upper limit is set to 0.2% in order to make it difficult for the content to deteriorate.
P:0.015%以下
Pは合金の耐食性を低下させると共に単結晶化しにくく
する元素であるので0.015%以下に規制する必要が
ある。P: 0.015% or less P is an element that reduces the corrosion resistance of the alloy and makes it difficult to form a single crystal, so it needs to be regulated to 0.015% or less.
S:0.005%以下
Sは合金の耐食性を害すると共に単結晶化しにくくする
ので0.005%以下に規制する必要がある。S: 0.005% or less S impairs the corrosion resistance of the alloy and makes it difficult to form a single crystal, so it needs to be regulated to 0.005% or less.
Cu:3%以下
Cuは合金の耐食性を向上するのに有効であるが、多く
添加すると合金を単結晶化しにくくするので、添加する
としても3%以下に抑制することが望ましい。Cu: 3% or less Cu is effective in improving the corrosion resistance of the alloy, but if added in a large amount, it becomes difficult to form a single crystal in the alloy, so it is desirable to suppress the addition to 3% or less.
この発明によるオーステナイト系合金は、上記の組成範
囲を有するものであり、多結晶状態であっても従来の5
US316等のステンレス鋼よりも優れた耐応力割れ性
を示すが、単結晶状態とすることによって粒界破壊型の
応力腐食割れの発生を防止することが可能であるため、
耐応力腐食割れ性をさらに向上させることができるよう
になり、腐食環境下において応力が付加された状態で使
用されるボルトやクランプ等の素材として著しく好適な
ものである。そして、このような単結晶の作製は例えば
ブリッジマン法(例えば金属便覧改訂4版 金属学会線
、第122頁。)によって行うことが可能である。The austenitic alloy according to the present invention has the above composition range, and even if it is in a polycrystalline state, it is different from the conventional 5
Although it exhibits better stress cracking resistance than stainless steels such as US316, it is possible to prevent the occurrence of intergranular fracture type stress corrosion cracking by forming it into a single crystal state.
It is now possible to further improve stress corrosion cracking resistance, making it extremely suitable as a material for bolts, clamps, etc. that are used under stress in a corrosive environment. Such a single crystal can be produced by, for example, the Bridgman method (for example, Metal Handbook Revised 4th Edition, Institute of Metals Line, p. 122).
(実施例)
第1表に示す組成の合金(No、 1〜6は本発明合金
、No、 7は5US316相当の比較合金)を高周波
誘導炉で溶製したのち、当該溶製合金の一部はブリッジ
マン法により<100>方位を有する単結晶の凝固塊に
するとともに、他の一部は常法により多結晶の凝固塊に
した。(Example) After melting an alloy having the composition shown in Table 1 (No. 1 to 6 are the invention alloys, No. 7 is a comparative alloy equivalent to 5US316) in a high-frequency induction furnace, a part of the melted alloy was melted. was made into a single-crystal solidified agglomerate having a <100> orientation by the Bridgman method, and the other part was made into a polycrystalline solidified agglomerate by a conventional method.
次いで、単結晶状態の試験片と多結晶状態の試験片につ
いて、各々応力25kgf/mm2゜42%沸1]iJ
MgC文2液中で応力腐食割れ試験を行った。この結果
を同じく第1表に示す。Next, for the test piece in the single crystal state and the test piece in the polycrystal state, a stress of 25 kgf/mm2°42% boiling 1]iJ was applied to each test piece.
A stress corrosion cracking test was conducted in MgC liquid 2 liquid. The results are also shown in Table 1.
第1表に示すように、この発明によるオーステナイト系
合金(No、 1〜6)では、多結晶の場合において
従来のステンレス鋼(No、7 +多結晶)よりも耐応
力腐食割れ特性がかなり優れており、単結晶とした場合
には多結晶の場合に比べて4倍程度も長い寿命を有し、
従来の303316ステンレス鋼との比較では約20倍
前後の著しく長い破断寿命を示すものであることが明ら
かである。As shown in Table 1, the austenitic alloys according to the present invention (No. 1 to 6) have significantly better stress corrosion cracking resistance than conventional stainless steel (No. 7 + polycrystalline) in the case of polycrystalline. When made into a single crystal, it has a lifespan approximately four times longer than that of a polycrystal.
When compared with conventional 303316 stainless steel, it is clear that it exhibits a significantly longer rupture life of about 20 times.
そして、このような破断寿命の著しく長いこの発明によ
るオーステナイト系合金は、腐食環境の厳しい条件下で
応力が付加された状態となる部品、例えば海洋構造物や
原子力関連設備のボルトやクランプ等の締め付は部品な
どの素材として著しく優れたものである。The austenitic alloy according to the present invention, which has such an extremely long fracture life, can be used to tighten parts that are subject to stress under severe corrosive conditions, such as bolts and clamps for offshore structures and nuclear power-related equipment. The material is extremely excellent as a material for parts, etc.
[発明の効果]
以上説明してきたように、この発明による耐応力腐食割
れ性に優れたオーステナイト系合金は。[Effects of the Invention] As explained above, the austenitic alloy according to the present invention has excellent stress corrosion cracking resistance.
Cr:18〜35%、Ni:25〜50%、MO二8%
以下、M n : 6%以下、N:0.5%以下、C:
0.03%以下、Si:0.2%以下、P:0.015
%以下、S:0.005%以下、必要によりCu:3%
以下、残部Feおよび不純物よりなるものであるから、
耐食性および強度に優れ、とくに耐応力腐食割れ性に優
れており、厳しい腐食環境下で応力が付加された状態で
使用される部品、例えばボルトやクランプ等々の部品の
素材として好適なものであるという著大なる効果がもた
らされる。Cr: 18-35%, Ni: 25-50%, MO2 8%
Below, Mn: 6% or less, N: 0.5% or less, C:
0.03% or less, Si: 0.2% or less, P: 0.015
% or less, S: 0.005% or less, Cu: 3% if necessary
Since the remainder consists of Fe and impurities,
It has excellent corrosion resistance and strength, and is particularly resistant to stress corrosion cracking, making it suitable as a material for parts used under stress in severe corrosive environments, such as bolts and clamps. A great effect is brought about.
Claims (6)
0%、Mo:8%以下、Mn:6%以下、N:0.5%
以下、C:0.03%以下、Si:0.2%以下、P:
0.015%以下、S:0.005%以下、残部Feお
よび不純物よりなることを特徴とする耐応力腐食割れ性
に優れたオーステナイト系合金。(1) In weight%, Cr: 18-35%, Ni: 25-5
0%, Mo: 8% or less, Mn: 6% or less, N: 0.5%
Below, C: 0.03% or less, Si: 0.2% or less, P:
An austenitic alloy with excellent stress corrosion cracking resistance, characterized by comprising 0.015% or less, S: 0.005% or less, and the balance consisting of Fe and impurities.
求の範囲第(1)項記載の耐応力腐食割れ性に優れたオ
ーステナイト系合金。(2) An austenitic alloy with excellent stress corrosion cracking resistance according to claim (1), characterized in that the alloy structure is polycrystalline.
求の範囲第(1)項記載の耐応力腐食割れ性に優れたオ
ーステナイト系合金。(3) An austenitic alloy with excellent stress corrosion cracking resistance as set forth in claim (1), characterized in that the alloy structure is single crystal.
0%、Mo:8%以下、Mn:6%以下、N:0.5%
以下、Cu:3%以下、C:0.03%以下、Si:0
.2%以下、P:0.015%以下、S:0.005%
以下、残部Feおよび不純物よりなることを特徴とする
耐応力腐食割れ性に優れたオーステナイト系合金。(4) In weight%, Cr: 18-35%, Ni: 25-5
0%, Mo: 8% or less, Mn: 6% or less, N: 0.5%
Below, Cu: 3% or less, C: 0.03% or less, Si: 0
.. 2% or less, P: 0.015% or less, S: 0.005%
The following is an austenitic alloy having excellent stress corrosion cracking resistance, characterized in that the remainder consists of Fe and impurities.
求の範囲第(4)項記載の耐応力腐食割れ性に優れたオ
ーステナイト系合金。(5) An austenitic alloy with excellent stress corrosion cracking resistance according to claim (4), characterized in that the alloy structure is polycrystalline.
求の範囲第(4)項記載の耐応力腐食割れ性に優れたオ
ーステナイト系合金。(6) An austenitic alloy with excellent stress corrosion cracking resistance according to claim (4), characterized in that the alloy structure is single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149586A JPS62180037A (en) | 1986-02-03 | 1986-02-03 | Austenitic alloy excellent in stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149586A JPS62180037A (en) | 1986-02-03 | 1986-02-03 | Austenitic alloy excellent in stress corrosion cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62180037A true JPS62180037A (en) | 1987-08-07 |
Family
ID=12056548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2149586A Pending JPS62180037A (en) | 1986-02-03 | 1986-02-03 | Austenitic alloy excellent in stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62180037A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02301537A (en) * | 1989-05-16 | 1990-12-13 | Mitsubishi Materials Corp | Precipitation hardening ni-base single crystal alloy having excellent stress corrosion cracking resistance |
JPH03264651A (en) * | 1990-03-14 | 1991-11-25 | Hitachi Ltd | Austenitic steel having excellent stress corrosion cracking resistance and application thereof |
JPH03291333A (en) * | 1990-04-09 | 1991-12-20 | Hitachi Ltd | High strength metallic parts and its manufacture |
JPH0849042A (en) * | 1995-08-07 | 1996-02-20 | Hitachi Ltd | Austenitic steel excellent in stress corrosion cracking resistance and its application |
US6406572B1 (en) | 1997-10-31 | 2002-06-18 | Abb Research Ltd | Process for the production of a workpiece from a chromium alloy, and its use |
WO2011067979A1 (en) | 2009-12-01 | 2011-06-09 | 新日鐵住金ステンレス株式会社 | Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability |
-
1986
- 1986-02-03 JP JP2149586A patent/JPS62180037A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02301537A (en) * | 1989-05-16 | 1990-12-13 | Mitsubishi Materials Corp | Precipitation hardening ni-base single crystal alloy having excellent stress corrosion cracking resistance |
JPH03264651A (en) * | 1990-03-14 | 1991-11-25 | Hitachi Ltd | Austenitic steel having excellent stress corrosion cracking resistance and application thereof |
JPH03291333A (en) * | 1990-04-09 | 1991-12-20 | Hitachi Ltd | High strength metallic parts and its manufacture |
JPH0849042A (en) * | 1995-08-07 | 1996-02-20 | Hitachi Ltd | Austenitic steel excellent in stress corrosion cracking resistance and its application |
US6406572B1 (en) | 1997-10-31 | 2002-06-18 | Abb Research Ltd | Process for the production of a workpiece from a chromium alloy, and its use |
US6616779B2 (en) | 1997-10-31 | 2003-09-09 | Alstom | Workpiece made from a chromium alloy |
WO2011067979A1 (en) | 2009-12-01 | 2011-06-09 | 新日鐵住金ステンレス株式会社 | Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100314232B1 (en) | Ferritic-austenitic stainless steel | |
KR970008165B1 (en) | Duplex stainless steel with high manganese | |
RU2097439C1 (en) | Corrosion-resistant alloy, method of increase of corrosion resistance and product worked by pressure | |
EP0545753A1 (en) | Duplex stainless steel having improved strength and corrosion resistance | |
JP2003535213A (en) | Corrosion resistant austenitic stainless steel | |
JP3355510B2 (en) | Austenitic alloys and their use | |
SE452477B (en) | ALLOY FOR MANUFACTURE OF HOGHALL SOLID FOODS AND PIPES FOR DEEP DRILLS, APPLICATION OF THE ALLOY AND HOGHALLFAST RODS MADE BY THIS ALLOY | |
JPH0244896B2 (en) | ||
KR930005899B1 (en) | Heat-resistant austenitic stainless steel | |
JP2005023353A (en) | Austenitic stainless steel for high temperature water environment | |
JP3209433B2 (en) | Austenitic stainless steel | |
US3168397A (en) | Steel alloy | |
JPS62180037A (en) | Austenitic alloy excellent in stress corrosion cracking resistance | |
JPS61288041A (en) | Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance | |
US5011659A (en) | Castable corrosion resistant alloy | |
US4836985A (en) | Ni-Cr-Fe corrosion resistant alloy | |
RU2117712C1 (en) | Metallic alloy | |
US3837847A (en) | Corrosion resistant ferritic stainless steel | |
JPS61113749A (en) | High corrosion resistance alloy for oil well | |
JP2019173110A (en) | Spheroidal graphite cast iron and manufacturing method therefor | |
US4050928A (en) | Corrosion-resistant matrix-strengthened alloy | |
GB2123437A (en) | Dual phase stainless steel suitable for use in sour wells | |
JPS6199656A (en) | High strength welded steel pipe for line pipe | |
USRE29313E (en) | Pitting corrosion resistant austenite stainless steel | |
US4927602A (en) | Heat and corrosion resistant alloys |