EP0911804B1 - Method for the automatic adjustment of the distance between the electrodes of a spark gap in electrohydraulic shock wave generators - Google Patents

Method for the automatic adjustment of the distance between the electrodes of a spark gap in electrohydraulic shock wave generators Download PDF

Info

Publication number
EP0911804B1
EP0911804B1 EP98120079A EP98120079A EP0911804B1 EP 0911804 B1 EP0911804 B1 EP 0911804B1 EP 98120079 A EP98120079 A EP 98120079A EP 98120079 A EP98120079 A EP 98120079A EP 0911804 B1 EP0911804 B1 EP 0911804B1
Authority
EP
European Patent Office
Prior art keywords
discharge
spark gap
voltage
curve
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120079A
Other languages
German (de)
French (fr)
Other versions
EP0911804A3 (en
EP0911804A2 (en
Inventor
Ralph Dipl. Ing. Reitmajer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTS Europe GmbH
Original Assignee
MTS Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTS Europe GmbH filed Critical MTS Europe GmbH
Publication of EP0911804A2 publication Critical patent/EP0911804A2/en
Publication of EP0911804A3 publication Critical patent/EP0911804A3/en
Application granted granted Critical
Publication of EP0911804B1 publication Critical patent/EP0911804B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/06Sound-producing devices using electric discharge

Definitions

  • the invention relates to a method for automatic adjustment and regulation of the electrode gap of a spark gap of an electro-hydraulic shock wave generation system.
  • a method for automatically controlling the distance of electrode tips in an electrohydraulic lithotripter is known from EP 0 349 915.
  • the ignition delay time ie the time from the start of charging or from the beginning of the charged state to the time of discharge of a high-voltage capacitor is measured and compared with a desired value.
  • the disadvantage of the method is that the ignition delay time is only an insufficient indication of how completely the electrical energy is converted into acoustic energy.
  • the height of the charging voltage of the condenser, the unloading is changed.
  • a larger or smaller voltage causes a stronger or weaker sparking and thus changes the pressure of the shock wave and the size of the therapeutically effective focus and thus ultimately the applied shock wave energy.
  • the voltage can not be arbitrarily increased and then reduced again, without replacement of the spark gap would be required.
  • the distance of the electrodes is of crucial importance. The larger the electrode spacing, the greater the required minimum voltage for triggering a spark discharge.
  • the invention has for its object to provide a method for automatic adjustment of the electrode gap to the selected voltage and thereby to be able to perform in the therapeutic use over the entire life of a spark gap arbitrarily frequent discharges with high low voltage. This object is achieved by a method according to claim 1.
  • the principle of the invention is that the controlled variable, i. the voltage value and voltage curve for triggering the spark is measured and due to the determined deviation from its target size, the spark gap electrodes are set to such a value that allows to make optimal use of the stored energy in their conversion to the shock wave.
  • the measured signal of the discharge curve has a typical course. If the distance of the electrode tips is too large, there is no complete discharge over the spark gap and the measured signal deviates from the typical course. If the distance of the electrode tips is too small, the measured signal deviates again from the typical course, since the sparking is facilitated by the small distance.
  • the aim of the invention is to adjust the electrode spacing so that the measured signal of the discharge curve corresponds to the typical course of an optimal discharge. According to the invention, this is achieved by comparing the signal of the measured discharge curve with the desired values of the discharge curve and automatically correcting the distance of the spark gap electrodes according to the determined deviation.
  • the method assumes that the discharge of the high-voltage capacitor is not carried out as usual directly over a spark gap, but via a further capacitor, which in turn discharges by means of self-discharge at maximum charge over the spark gap.
  • the voltage on C2 is determined by two processes. C2 is charged by C1 via L1, but at the same time C2 is discharged through the discharge over the spark gap.
  • the distance of the electrode tips of the underwater spark gap is automatically adjusted as a function of the voltage on C2 and the state of the electrodes. With proper adjustment, this leads to a self-discharge of the high-voltage capacitor C2 at maximum charge via the parallel-connected underwater spark gap.
  • the pitch of the electrode tips is too small, a discharge will occur across the underwater spark gap before the high voltage capacitor C2 has reached its preselected charge. If the distance between the electrode tips is too great, only a partial discharge occurs via the underwater spark gap after the high-voltage capacitor has exceeded its maximum charge and again loses part of the charge because of a leakage current via the resistance of the water, or none occurs Discharge. In both cases, the stored energy is used only imperfectly.
  • the aim of the invention is, regardless of the selected charging voltage to achieve the discharge of the high voltage capacitor at maximum charge.
  • the tolerable discharge voltage Umax means the highest and thus the desired discharge voltage
  • Umin the smallest permitted voltage taking into account the state of charge of the capacitor and the state of discharge by the discharge between the electrodes. If the discharge occurs at U ⁇ Umin, the evaluation circuit differentiates whether it is an insufficient charge or a voltage drop due to discharge. After evaluation, the evaluation circuit signals the actuator to make a correction. This is achieved by adding to the transformed signal the charging voltage of the high-voltage capacitor 50% of the negative reference voltage. See Fig. 1a) .
  • a further embodiment of Anprüche 1 and 2 is that the evaluation of the discharge or charge curve of a high voltage capacitor is combined with the statistical detection of the number and voltage of the individual pulses. The wear of an electrode is then statistically determined by the number and the voltage of the emitted pulses. The result of the statistical evaluation leads to the automatic correction of the electrode.
  • the arrangement for the execution of the said method consists of a semi-ellipsoid (1), an underwater spark gap (2), a motor (3) with gear (4), the electronic evaluation unit (5) and the high voltage capacitor (12), with the inner Head (6) and the outer conductor (9) is connected.
  • Fig. 2 shows the structure of the invention.
  • the underwater spark gap (2) which consists of an inner movable conductor (6) with electrode tip (7), an insulator (8) and an outer conductor (9) with cage (10) and fixed electrode tip (11), can be in the Insert half ellipsoid.
  • the movable inner conductor is connected via a gear to the motor, which is controlled by control electronics. According to the inner conductor is moved forward or back too small or too large distance of the electrode tips.
  • the advantage of this method is the ability to change the shock wave energy at already used electrodes in the course of a treatment as desired over the entire life, without the spark gap must be replaced or manually adjusted. It extends the life of the spark gap and optimizes the use of an electrohydraulic shock wave device in applications (for example in orthopedics), which are treated partly with very high and partly with very low shock wave energies and pressures. Furthermore, the invention allows the permanent delivery of shock waves with constant shock wave energy. Finally, the invention leads to the optimal utilization of the primary energy, whereby the efficiency is increased.

Abstract

The method involves determining the discharge curve of the spark discharge system and comparing it with a nominal curve, and automatically correcting for deviations in the separation of the spark gap electrodes. The correction may involve ensuring that the discharge occurs at maximum charge of a high voltage capacitor (12).

Description

Die Erfindung betrifft eine Methode zur automatischen Justierung und Regulierung des Elektrodenabstandes einer Funkenstrecke eines elektrohydraulischen Stoßwellenerzeugungssystems.The invention relates to a method for automatic adjustment and regulation of the electrode gap of a spark gap of an electro-hydraulic shock wave generation system.

Bekannt ist ein Gerät zur berührungsfreien Zerstörung von Konkrementen (z.B. Nierensteinen) im Körper von Lebewesen (DE-PS23 51 247), bei dem zur Erzeugung von Stoßwellen eine elektrische Unterwasserfunkenentladung eingesetzt wird. Die Entladung erfolgt über eine Funkenstrecke, die im Fokus eines Reflektors angebracht ist. (DE-PS 2 635 635, DE-OS 2 418 631, EP O 124 686).Known is a device for the non-invasive destruction of concrements (such as kidney stones) in the body of living things (DE-PS 23 51 247), in which an electric underwater spark discharge is used to generate shock waves. The discharge takes place via a spark gap, which is mounted in the focus of a reflector. (DE-PS 2 635 635, DE-OS 2 418 631, EP 0 124 686).

Eine Methode, um den Abstand von Elektrodenspitzen in einem elektrohydraulischen Lithotripter automatisch zu regeln, ist aus der Druckschrift EP 0 349 915 bekannt. Zur Regulierung des Abstandes wird die Zündverzugszeit, also die Zeit vom Beginn des Aufladens bzw. vom Beginn des geladenen Zustands bis zum Zeitpunkt der Entladung eines Hochspannungskondensators gemessen und mit einem Sollwert verglichen. Der Nachteil der Methode besteht darin, dass die Zündverzugszeit nur einen ungenügenden Hinweis darauf gibt, wie vollständig die elektrische Energie in akustische Energie umgewandelt wird.A method for automatically controlling the distance of electrode tips in an electrohydraulic lithotripter is known from EP 0 349 915. To regulate the distance, the ignition delay time, ie the time from the start of charging or from the beginning of the charged state to the time of discharge of a high-voltage capacitor is measured and compared with a desired value. The disadvantage of the method is that the ignition delay time is only an insufficient indication of how completely the electrical energy is converted into acoustic energy.

Zur Regulierung der Stoßwellenenergie wird bei diesen Systemen die Höhe der Ladespannung des Kondesators, der Entladen wird verändert. Durch eine größere oder kleinere Spannung erfolgt eine stärkere oder schwächere Funkenbildung und damit verändert sich der Druck der Stoßwelle und die Größe des therapeutisch wirksamen Fokus und damit letztlich die applizierte Stoßwellenenergie. Bei diesen Systemen kann die Spannung nicht beliebig erhöht und anschließend wieder reduziert werden, ohne daß ein Austausch der Funkenstrecke erforderlich wäre. Denn für den Entladungsvorgang ist der Abstand der Elektroden von entscheidender Bedeutung. Je größer der Elektrodenabstand, desto größer ist die erforderliche Mindestspannung zur Auslösung einer Funkenentladung. Da diese Systeme Funkenstrecken mit fest eingestelltem Elektrodenabstand verwenden und da der Elektrodenabstand sich durch den bekannten Abbrand der Elektroden während des Einsatzes vergrößert, ist die Funkenstrecke mit zunehmendem Gebrauch nur noch bei größerer Spannung funktionsfähig, so daß Stoßwellen mit geringer Gesamtenergie oder niedrigen Drücken erst nach dem Austausch der Funkenstrecke wieder möglich werden. Die Lebensdauer der Funkenstrecken ist deswegen gering. Wird dagegen eine weniger abgenutzte Funkenstrecke, d.h. mit einem geringeren Elektrodenabstand, für eine höhere Spannung verwendet, bleibt ein Großteil der gespeicherten Primärenergie ungenutzt. Ein Teil der Energie bewirkt den Durchschlag der Umgebung und transformiert zur akustischen Energie, der Rest transformiert zur Wärmeenergie und nimmt an der Bildung der Stoßwelle nicht teil.To regulate the shock wave energy in these systems, the height of the charging voltage of the condenser, the unloading is changed. A larger or smaller voltage causes a stronger or weaker sparking and thus changes the pressure of the shock wave and the size of the therapeutically effective focus and thus ultimately the applied shock wave energy. In these systems, the voltage can not be arbitrarily increased and then reduced again, without replacement of the spark gap would be required. Because for the discharge process, the distance of the electrodes is of crucial importance. The larger the electrode spacing, the greater the required minimum voltage for triggering a spark discharge. Since these systems use spark gaps with fixed electrode spacing and since the electrode spacing increases due to the known erosion of the electrodes during use, the spark gap with increasing use is only functional at higher voltage, so that shock waves with low total energy or low pressures only after the Replacement of the spark gap become possible again. The service life of the spark gaps is therefore low. In contrast, if a less worn spark gap, ie with a smaller electrode gap, used for a higher voltage, a large part of the stored primary energy remains unused. A part The energy causes the breakdown of the environment and transforms to the acoustic energy, the rest transformed into heat energy and does not participate in the formation of the shock wave.

Bekannt sind weiterhin Funkenstrecken, die durch die Möglichkeit der Nachführung der Elektroden den Abbrand wieder kompensieren und den oben beschriebenen Mangel ausgleichen. (EP O 349 915, EP C 242 237) Diese Funkenstrecken haben jedoch den Nachteil, daß sie manuell nachgestellt werden müssen, oder nur in eine Richtung nachgestellt werden können (EP C 242 237).Are also known spark gaps that compensate for the possibility of tracking the electrodes burnup again and compensate for the deficiency described above. (EP 0 349 915, EP C 242 237) However, these spark gaps have the disadvantage that they have to be readjusted manually or can only be readjusted in one direction (EP C 242 237).

Der Erfindung liegt die Aufgabe zugrunde, eine Methode zur automatischen Anpassung des Elektrodenabstandes an die gewählte Spannung zu schaffen und hierdurch im therapeutischen Einsatz über die gesamte Lebensdauer einer Funkenstrecke beliebig häufige Entladungen mit hoher der niedriger Spannung durchzuführen zu können. Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.The invention has for its object to provide a method for automatic adjustment of the electrode gap to the selected voltage and thereby to be able to perform in the therapeutic use over the entire life of a spark gap arbitrarily frequent discharges with high low voltage. This object is achieved by a method according to claim 1.

Das Prinzip der Erfindung besteht darin, daß direkt die geregelte Größe, d.h. der Spannungswert und Spannungsverlauf zur Auslösung des Funkens gemessen wird und aufgrund der ermittelten Abweichung von ihrer Soll-Größe werden die Funkenstreckenelektroden auf einen solchen Wert eingestellt, der die Nutzung der gespeicherten Energie bei deren Umwandlung zur Stoßwelle optimal zu gestalten erlaubt.The principle of the invention is that the controlled variable, i. the voltage value and voltage curve for triggering the spark is measured and due to the determined deviation from its target size, the spark gap electrodes are set to such a value that allows to make optimal use of the stored energy in their conversion to the shock wave.

Bei korrekter Justierung des Elektrodenabstandes der Funkenstrecke weist das gemessene Signal der Entladekurve einen typischen Verlauf auf. Ist der Abstand der Elektrodenspitzen zu groß, kommt es zu keiner vollständigen Entladung über die Funkenstrecke und das gemessene Signal weicht vom typischen Verlauf ab. Ist der Abstand der Elektrodenspitzen zu klein, weicht das gemessene Signal wiederum vom typischen Verlauf ab, da der Funkenschlag durch den kleinen Abstand erleichtert wird. Ziel der Erfindung ist es, den Elektrodenabstand so zu justieren, daß das gemessene Signal der Entladekurve dem typischen Verlauf einer optimalen Entladung entspricht. Gemäß der Erfindung wird dies dadurch erreicht, daß das Signal der gemessenen Entladekurve mit den Soll-Werten der Entladekurve verglichen wird und entsprechend der ermittelten Abweichung der Abstand der Funkenstreckenelektroden automatisch korrigiert wird.If the electrode gap of the spark gap is correctly adjusted, the measured signal of the discharge curve has a typical course. If the distance of the electrode tips is too large, there is no complete discharge over the spark gap and the measured signal deviates from the typical course. If the distance of the electrode tips is too small, the measured signal deviates again from the typical course, since the sparking is facilitated by the small distance. The aim of the invention is to adjust the electrode spacing so that the measured signal of the discharge curve corresponds to the typical course of an optimal discharge. According to the invention, this is achieved by comparing the signal of the measured discharge curve with the desired values of the discharge curve and automatically correcting the distance of the spark gap electrodes according to the determined deviation.

Die Methode setzt voraus, daß die Entladung des Hochspannungskondensators nicht wie üblich unmittelbar über eine Funkenstrecke erfolgt, sondern über einen weiteren Kondensator, der sich wiederum mittels Selbstentladung bei maximaler Ladung über die Funkenstrecke entläd. Gemäß Fig. 3 wird die Spannung auf C2 durch zwei Vorgänge bestimmt. C2 wird zum einen durch C1 über L1 aufgeladen, zugleich wird jedoch C2 durch die Ableitung über die Funkenstrecke entladen. Gemäß der Erfindung wird der Abstand der Elektrodenspitzen der Unterwasserfunkenstrecke in Abhängigkeit von der Spannung auf C2 und dem Zustand der Elektroden automatisch justiert. Dies führt bei korrekter Justierung zu einer Selbstentladung des Hochspannungskondensators C2 bei maximaler Ladung über die parallel geschaltete Unterwasserfunkenstrecke. Ist der Abstand der Elektrodenspitzen zu klein, kommt es zu einer Entladung über die Unterwasserfunkenstrecke, bevor der Hochspannungskondensator C2 seine vorgewählte Ladung erreicht hat. Ist der Abstand der Elektrodenspitzen zu groß, kommt es nur zu eine r Teilentladung über die Unterwasserfunkenstrecke, nachdem der Hochspannungskondensator seine maximale Ladung überschritten hat und wegen eines Leckstromes über den Widerstand des Wassers einen Teil der Ladung wieder verloren hat, bzw. es kommt zu keiner Entladung. In beiden Fällen wird die gespeicherte Energie nur unvollkommen genutzt. Ziel der Erfindung ist es, unabhängig von der gewählten Ladespannung die Entladung des Hochspannungskondensators bei maximaler Ladung zu erreichen. Dies wird dadurch erreicht, daß der Spannungsverlauf der Ladekurve des Kondensators C2 gemessen und mit der Soll-Ladekurve verglichen wird und entsprechend der ermittelten Abweichung der Abstand der Funkenstreckenelektroden automatisch korrigiert wird, so daß die Entladung über die Funkenstrecke bei maximaler Ladung des Hochspannungs-kondensators erfolgt. Die Abweichung von der Soll-Ladekurve wird über einen Auswertungskreis ermittelt. Nach der Auswertung signalisiert der Auswertungskreis an das Stellglied die Vornahme einer Korrektur.The method assumes that the discharge of the high-voltage capacitor is not carried out as usual directly over a spark gap, but via a further capacitor, which in turn discharges by means of self-discharge at maximum charge over the spark gap. According to FIG. 3 , the voltage on C2 is determined by two processes. C2 is charged by C1 via L1, but at the same time C2 is discharged through the discharge over the spark gap. According to the invention, the distance of the electrode tips of the underwater spark gap is automatically adjusted as a function of the voltage on C2 and the state of the electrodes. With proper adjustment, this leads to a self-discharge of the high-voltage capacitor C2 at maximum charge via the parallel-connected underwater spark gap. If the pitch of the electrode tips is too small, a discharge will occur across the underwater spark gap before the high voltage capacitor C2 has reached its preselected charge. If the distance between the electrode tips is too great, only a partial discharge occurs via the underwater spark gap after the high-voltage capacitor has exceeded its maximum charge and again loses part of the charge because of a leakage current via the resistance of the water, or none occurs Discharge. In both cases, the stored energy is used only imperfectly. The aim of the invention is, regardless of the selected charging voltage to achieve the discharge of the high voltage capacitor at maximum charge. This is achieved in that the voltage curve of the charging curve of the capacitor C2 is measured and compared with the desired charging curve and automatically corrected according to the determined deviation, the distance of the spark gap electrodes, so that the discharge takes place over the spark gap at maximum charge of the high-voltage capacitor , The deviation from the desired charging curve is determined via a evaluation circuit. After evaluation, the evaluation circuit signals the actuator to make a correction.

Eine mögliche Methode zur Ermittlung der Abweichung der Entladekurve von der Soll-Entladekurve wird über einen Auswertungskreis dargestellt, die Gegenstand des Unteranspruches ist. Gemäß Fig. 3 bedeutet bei zugelassener Tolleranz der Entladungsspannung Umax die höchste und somit die gewünschte Entladungsspannung, und Umin die kleinste zugelassene Spannung unter Berücksichtigung des Aufladungszustandes des Kondensators sowie des Entladungszustandes durch die Ableitung zwischen den Elektroden. Erfolgt die Entladung bei U<Umin, unterscheidet der Auswertungskreis, ob es sich dabei um eine unzureichende Aufladung oder einen Spannungsrückgang durch Ableitung handelt. Nach der Auswertung signalisiert der Auswertungskreis an das Stellglied die Vornahme einer Korrektur. Dies wird dadurch erreicht, daß zum transformierten Signal der Ladespannung des Hochspannungskondensators 50% der negativen Referenzspannung addiert wird. Siehe Fig 1a). Durch Integration dieser halbsinusförmigen Kurve und anschließender Invertierung erhält man ein Ausgangssignal, dessen steil abfallende Flanke mit einem oberen und einem unteren Referenzwert verglichen wird, siehe Fig 1b). Diese Referenzwerte liegen nahe dem Nulldurchgang des Ausgangssignals. Findet die Entladung des Hochspannungskondensators nahe dem Maximum der Ladekurve statt, liegt das Ausgangssignal zwischen dem oberen und dem unteren Referenzwert, siehe Fig 1c). Kommt es zur Entladung, bevor die maximale Ladung des Hochspannungskondensators erreicht wurde und liegt das Ausgangssignal über dem oberen Referenzwert, so wird dies statistisch erfaßt. Der Elektrodenabstand muß bei mehrmals wiederholtem Auftreten vergrößert werden. Kommt es zur Entladung, nachdem die maximale Ladung des Hochspannungskondensators erreicht wurde bzw. kommt es zu keiner Entladung und liegt das Ausgangssignal unter dem unteren Referenzwert, so wird dies statistisch erfaßt. Der Elektrodenabstand muß bei mehrmals wiederholtem Auftreten verkleinert werden.One possible method for determining the deviation of the discharge curve from the desired discharge curve is represented by an evaluation circuit, which is the subject of the dependent claim. According to FIG. 3 , the tolerable discharge voltage Umax means the highest and thus the desired discharge voltage, and Umin the smallest permitted voltage taking into account the state of charge of the capacitor and the state of discharge by the discharge between the electrodes. If the discharge occurs at U <Umin, the evaluation circuit differentiates whether it is an insufficient charge or a voltage drop due to discharge. After evaluation, the evaluation circuit signals the actuator to make a correction. This is achieved by adding to the transformed signal the charging voltage of the high-voltage capacitor 50% of the negative reference voltage. See Fig. 1a) . By integration of this semi-sinusoidal curve and subsequent inversion, one obtains an output signal whose steeply falling edge is compared with an upper and a lower reference value, see FIG. 1b) . These reference values are close to the zero crossing of the output signal. If the discharge of the high-voltage capacitor takes place near the maximum of the charging curve, the output signal lies between the upper and the lower reference value, see FIG. 1c) . If it comes to the discharge before the maximum charge of the high voltage capacitor has been reached and the output signal is above the upper reference value, this is detected statistically. The electrode spacing must be increased when repeated several times. If it comes to the discharge after the maximum charge of the high voltage capacitor has been reached or there is no discharge and the output signal is below the lower reference value, this is detected statistically. The distance between the electrodes must be reduced when repeated several times.

Eine weitere Ausgestaltung der Anprüche 1 und 2 besteht darin, daß die Auswertung der Entlade- oder Ladekurve eines Hochspannungskondensators mit der statistischen Erfassung der Anzahl und der Spannung der einzelnen Impulsen kombiniert wird. Der Verschleiß einer Elektrode wird dann statistisch über die Anzahl und die Spannung der abgegebenen Impulse ermittelt. Das Ergebnis der statistischen Auswertung führt zur automatischen Korrektur der Elektrode.A further embodiment of Anprüche 1 and 2 is that the evaluation of the discharge or charge curve of a high voltage capacitor is combined with the statistical detection of the number and voltage of the individual pulses. The wear of an electrode is then statistically determined by the number and the voltage of the emitted pulses. The result of the statistical evaluation leads to the automatic correction of the electrode.

Die Anordnung für die Ausführung der besagten Methode besteht aus einem Halbellipsoid (1), einer Unterwasserfunkenstrecke (2), einem Motor (3) mit Getriebe (4), der elektronischen Auswertungseinheit (5) und dem Hochspannungskondensator (12), der mit dem inneren Leiter (6) und dem äußeren Leiter (9) verbunden ist. Fig 2 zeigt den Aufbau der Erfindung. Die Unterwasserfunkenstrecke (2), welche aus einem inneren beweglichen Leiter (6) mit Elektrodenspitze (7), einem Isolator (8) und einem äußeren Leiter (9) mit Käfig (10) und feststehender Elektrodenspitze (11) besteht, läßt sich in das Halbellipsoid einstecken. Der bewegliche Innenleiter ist über ein Getriebe mit dem Motor verbunden, welcher durch Regelelektronik gesteuert wird. Erfindungsgemäß wird bei zu kleinem oder zu großem Abstand der Elektrodenspitzen der Innenleiter vor oder zurück bewegt.The arrangement for the execution of the said method consists of a semi-ellipsoid (1), an underwater spark gap (2), a motor (3) with gear (4), the electronic evaluation unit (5) and the high voltage capacitor (12), with the inner Head (6) and the outer conductor (9) is connected. Fig. 2 shows the structure of the invention. The underwater spark gap (2), which consists of an inner movable conductor (6) with electrode tip (7), an insulator (8) and an outer conductor (9) with cage (10) and fixed electrode tip (11), can be in the Insert half ellipsoid. The movable inner conductor is connected via a gear to the motor, which is controlled by control electronics. According to the inner conductor is moved forward or back too small or too large distance of the electrode tips.

Der Vorteil dieser Methode liegt in der Möglichkeit, die Stoßwellenenergie bei schon gebrauchten Elektroden im Verlauf einer Behandlung beliebig über die gesamte Lebensdauer verändern zu können, ohne daß die Funkenstrecke ausgetauscht oder manuell nachgestellt werden muß. Sie verlängert die Lebensdauer der Funkenstrecke und optimiert den Einsatz eines elektrohydraulischen Stoßwellengerätes bei Anwendungen (z.B. in der Orthopädie), bei denen teils mit sehr hohen und teils mit sehr niedrigen Stoßwellenenergieen und Drücken therapiert wird. Weiterhin erlaubt die Erfindung die permanente Abgabe von Stoßwellen mit gleichbleibender Stoßwellenenergie. Schließlich führt die Erfindung zur optimalen Ausnutzung der Primärenergie, wodurch der Wirkungsgrad gesteigert wird.The advantage of this method is the ability to change the shock wave energy at already used electrodes in the course of a treatment as desired over the entire life, without the spark gap must be replaced or manually adjusted. It extends the life of the spark gap and optimizes the use of an electrohydraulic shock wave device in applications (for example in orthopedics), which are treated partly with very high and partly with very low shock wave energies and pressures. Furthermore, the invention allows the permanent delivery of shock waves with constant shock wave energy. Finally, the invention leads to the optimal utilization of the primary energy, whereby the efficiency is increased.

Claims (3)

  1. Method for the adjustment of a spark gap between two electrodes of a device for the generation of shockwaves,
    characterized in that
    (i) the discharge curve of the spark gap is determined, or the charge / discharge curve of a capacitor, which is discharged by self-discharge through the spark gap, is measured,
    (ii) the charge / discharge curve is compared with desired values of a typical progress of a charge/discharge curve of an optimal discharge,
    (iii) the separation of the spark gap electrodes is automatically corrected according to the determined deviation.
  2. Method according to claim 1, characterized in that 50% of a negative reference voltage is added to a transformed signal of the measured voltage curve and that by integration of this half-sine curve and subsequent inversion an output signal is generated, having a steep training edge that is compared to reference values and, in case of falling short or exceeding the reference values, the electrode gap is adjusted.
  3. Method according to claim 2, characterized in that the number and the voltage of pulses are determined statistically, that the adjustment factor is calculated from these values, which in turn leads to the automatic correction of the electrode gap by means of an electromechanical or hydraulic drive.
EP98120079A 1997-10-24 1998-10-23 Method for the automatic adjustment of the distance between the electrodes of a spark gap in electrohydraulic shock wave generators Expired - Lifetime EP0911804B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19746972 1997-10-24
DE19746972 1997-10-24

Publications (3)

Publication Number Publication Date
EP0911804A2 EP0911804A2 (en) 1999-04-28
EP0911804A3 EP0911804A3 (en) 2001-09-19
EP0911804B1 true EP0911804B1 (en) 2007-05-09

Family

ID=7846470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120079A Expired - Lifetime EP0911804B1 (en) 1997-10-24 1998-10-23 Method for the automatic adjustment of the distance between the electrodes of a spark gap in electrohydraulic shock wave generators

Country Status (5)

Country Link
US (1) US6217531B1 (en)
EP (1) EP0911804B1 (en)
AT (1) ATE362163T1 (en)
CZ (1) CZ297145B6 (en)
DE (1) DE59814001D1 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037790A1 (en) * 2000-08-03 2002-02-14 Philips Corp Intellectual Pty Shockwave source
US20060100549A1 (en) * 2004-10-22 2006-05-11 Reiner Schultheiss Pressure pulse/shock wave apparatus for generating waves having nearly plane or divergent characteristics
US8257282B2 (en) * 2004-02-19 2012-09-04 General Patent, Llc Pressure pulse/shock wave apparatus for generating waves having plane, nearly plane, convergent off target or divergent characteristics
DE10311659B4 (en) 2003-03-14 2006-12-21 Sws Shock Wave Systems Ag Apparatus and method for optimized electrohydraulic pressure pulse generation
US7507213B2 (en) * 2004-03-16 2009-03-24 General Patent Llc Pressure pulse/shock wave therapy methods for organs
US20060036168A1 (en) * 2004-07-22 2006-02-16 Shen-Min Liang Electrohydraulic shock wave-generating system with automatic gap adjustment
CN1314370C (en) * 2004-08-27 2007-05-09 梁胜明 Electrode vibration wave generating system with automatically regulated interval
US7497836B2 (en) * 2004-10-22 2009-03-03 General Patent Llc Germicidal method for treating or preventing sinusitis
US7578796B2 (en) * 2004-10-22 2009-08-25 General Patent Llc Method of shockwave treating fish and shellfish
US7601127B2 (en) * 2004-10-22 2009-10-13 General Patent, Llc Therapeutic stimulation of genital tissue or reproductive organ of an infertility or impotence diagnosed patient
US7537572B2 (en) * 2004-10-22 2009-05-26 General Patent, Llc Treatment or pre-treatment for radiation/chemical exposure
US7544171B2 (en) * 2004-10-22 2009-06-09 General Patent Llc Methods for promoting nerve regeneration and neuronal growth and elongation
US7600343B2 (en) * 2004-10-22 2009-10-13 General Patent, Llc Method of stimulating plant growth
US7497835B2 (en) * 2004-10-22 2009-03-03 General Patent Llc Method of treatment for and prevention of periodontal disease
US7497834B2 (en) * 2004-10-22 2009-03-03 General Patent Llc Germicidal method for eradicating or preventing the formation of biofilms
EP1727125A1 (en) 2004-11-26 2006-11-29 HealthTronics Inc. Method and device for regulating a shock wave generator
US7988648B2 (en) * 2005-03-04 2011-08-02 General Patent, Llc Pancreas regeneration treatment for diabetics using extracorporeal acoustic shock waves
US8162859B2 (en) * 2005-06-09 2012-04-24 General Patent , LLC Shock wave treatment device and method of use
US7775995B2 (en) * 2006-01-31 2010-08-17 Tissue Regeneration Technologies LLC Device for the generation of shock waves utilizing a thyristor
US7896822B2 (en) * 2006-11-30 2011-03-01 Scoseria Jose P Multiple lithotripter electrode
DE102007018841B4 (en) * 2007-04-20 2017-07-20 MTS Medical UG (haftungsbeschränkt) Device for generating shock waves, method for determining the state of consumption of the electrodes in a device for generating shock waves and method for generating shock waves by means of an underwater spark discharge
EP2068304A1 (en) * 2007-12-05 2009-06-10 General Electric Company Probe system, ultrasound system and method of generating ultrasound
US7735460B2 (en) * 2008-02-01 2010-06-15 Leonard Bloom Method and apparatus for operating standard gasoline-driven engines with a readily-available non-volatile fuel, thereby obviating the use of gasoline
CN102057422B (en) * 2008-04-14 2013-09-25 阿夫纳·斯佩科特 Automatic adjustable voltage to stabilize pressure for shockwave medical therapy device
US20100036294A1 (en) 2008-05-07 2010-02-11 Robert Mantell Radially-Firing Electrohydraulic Lithotripsy Probe
AU2009257368B2 (en) 2008-06-13 2014-09-11 Djt, Llc Shockwave balloon catheter system
US10702293B2 (en) 2008-06-13 2020-07-07 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
US9072534B2 (en) 2008-06-13 2015-07-07 Shockwave Medical, Inc. Non-cavitation shockwave balloon catheter system
US20110168144A1 (en) * 2008-08-22 2011-07-14 Leonard Bloom Method and apparatus for operating standard gasoline-driven engines with a readily-available non-volatile fuel, thereby obviating the use of gasoline
US9180280B2 (en) * 2008-11-04 2015-11-10 Shockwave Medical, Inc. Drug delivery shockwave balloon catheter system
US9044618B2 (en) 2008-11-05 2015-06-02 Shockwave Medical, Inc. Shockwave valvuloplasty catheter system
DK3117784T3 (en) * 2009-07-08 2019-04-08 Sanuwave Inc USE OF INTRACORPORAL PRESSURE SHOCK WAVES IN MEDICINE
GB2471899A (en) * 2009-07-17 2011-01-19 Dynamic Dinosaurs Bv An electrode assembly for an electrical discharge acoustic source.
EP2525727A4 (en) 2010-01-19 2017-05-03 The Board of Regents of The University of Texas System Apparatuses and systems for generating high-frequency shockwaves, and methods of use
US8667824B2 (en) 2010-11-05 2014-03-11 Ford Global Technologies, Llc Electrode assembly for electro-hydraulic forming process
AR087170A1 (en) 2011-07-15 2014-02-26 Univ Texas APPARATUS FOR GENERATING THERAPEUTIC SHOCK WAVES AND ITS APPLICATIONS
US8574247B2 (en) 2011-11-08 2013-11-05 Shockwave Medical, Inc. Shock wave valvuloplasty device with moveable shock wave generator
US9198825B2 (en) * 2012-06-22 2015-12-01 Sanuwave, Inc. Increase electrode life in devices used for extracorporeal shockwave therapy (ESWT)
US9642673B2 (en) 2012-06-27 2017-05-09 Shockwave Medical, Inc. Shock wave balloon catheter with multiple shock wave sources
JP6164705B2 (en) 2012-08-06 2017-07-19 ショックウェーブ メディカル, インコーポレイテッド Shock wave catheter
AU2013300176B2 (en) 2012-08-06 2017-08-17 Shockwave Medical, Inc. Low profile electrodes for an angioplasty shock wave catheter
US9138249B2 (en) 2012-08-17 2015-09-22 Shockwave Medical, Inc. Shock wave catheter system with arc preconditioning
US9522012B2 (en) 2012-09-13 2016-12-20 Shockwave Medical, Inc. Shockwave catheter system with energy control
US9333000B2 (en) 2012-09-13 2016-05-10 Shockwave Medical, Inc. Shockwave catheter system with energy control
CN103198825B (en) * 2013-02-21 2015-10-28 西北工业大学 The sparking electrode of underwater plasma sound source
EP2967603B1 (en) 2013-03-11 2018-11-28 Northgate Technologies Inc. Unfocused electrohydraulic lithotripter
CN103236257B (en) * 2013-04-03 2015-10-14 西北工业大学 High-power impact-resistant discharge electrode
US9730715B2 (en) 2014-05-08 2017-08-15 Shockwave Medical, Inc. Shock wave guide wire
CA2890401C (en) 2015-01-21 2015-11-03 Vln Advanced Technologies Inc. Electrodischarge apparatus for generating low-frequency powerful pulsed and cavitating waterjets
WO2017087195A1 (en) 2015-11-18 2017-05-26 Shockwave Medical, Inc. Shock wave electrodes
US10828230B2 (en) * 2015-12-17 2020-11-10 Cellvitalis Holding Gmbh Apparatus for generating shock waves
CN105375243B (en) * 2015-12-25 2018-06-01 中国科学院电子学研究所 Transverse excitation atmosphere CO2Laser main electrode regulating device
CN105845123B (en) * 2016-03-21 2019-04-19 西北工业大学 A kind of discharge electrode head of the strong sound source of high-power underwater plasma
US11458069B2 (en) 2016-04-18 2022-10-04 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods to treat medical conditions using reflexology zones
US11389372B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods
US11389373B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods to prevent or treat opioid addiction
US11389371B2 (en) 2018-05-21 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Acoustic shock wave therapeutic methods
US11389370B2 (en) 2016-04-18 2022-07-19 Softwave Tissue Regeneration Technologies, Llc Treatments for blood sugar levels and muscle tissue optimization using extracorporeal acoustic shock waves
US10226265B2 (en) 2016-04-25 2019-03-12 Shockwave Medical, Inc. Shock wave device with polarity switching
TWI742110B (en) 2016-07-21 2021-10-11 美商席利通公司 Rapid pulse electrohydraulic (eh) shockwave generator apparatus with improved electrode lifetime and method of producing compressed acoustic wave using same
CA3038330A1 (en) 2016-10-06 2018-04-12 Shockwave Medical, Inc. Aortic leaflet repair using shock wave applicators
US10357264B2 (en) 2016-12-06 2019-07-23 Shockwave Medical, Inc. Shock wave balloon catheter with insertable electrodes
MX2019008552A (en) * 2017-01-17 2019-12-19 Soliton Inc Rapid pulse electrohydraulic (eh) shockwave generator apparatus with improved acoustic wavefronts.
BR112019017264A2 (en) 2017-02-19 2020-04-14 Soliton Inc selective laser-induced optical rupture in biological medium
US10441300B2 (en) 2017-04-19 2019-10-15 Shockwave Medical, Inc. Drug delivery shock wave balloon catheter system
US11020135B1 (en) 2017-04-25 2021-06-01 Shockwave Medical, Inc. Shock wave device for treating vascular plaques
US10966737B2 (en) 2017-06-19 2021-04-06 Shockwave Medical, Inc. Device and method for generating forward directed shock waves
US10709462B2 (en) 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
RU2683153C1 (en) * 2017-11-24 2019-03-26 Антон Юрьевич Цуканов Method of acoustic shock-wave action on human biotissues
WO2019245746A1 (en) 2018-06-21 2019-12-26 Shockwave Medical, Inc. System for treating occlusions in body lumens
EP4034006A1 (en) 2019-09-24 2022-08-03 Shockwave Medical, Inc. System for treating thrombus in body lumens
CN114812874B (en) * 2022-05-10 2022-11-29 广州航海学院 Micro-nano force source device, control method, micro-nano force measuring equipment and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656744A1 (en) * 1990-01-04 1991-07-05 Technomed Int Sa ELECTRIC DISCHARGE DEVICE FORMING SPLITTER OR "SPARK GAP" WITH REDUCED INDUCTANCE AND SHOCK WAVE GENERATING APPARATUS INCLUDING APPLICATION.

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2635635C3 (en) 1976-08-07 1979-05-31 Dornier System Gmbh, 7990 Friedrichshafen Spark gap for generating shock waves for the contact-free destruction of calculus in the bodies of living beings
DE3146628C2 (en) 1981-11-25 1991-03-28 Dornier System Gmbh, 7990 Friedrichshafen Trigger device for shock waves for therapeutic purposes
DE3316837C2 (en) 1983-05-07 1986-06-26 Dornier System Gmbh, 7990 Friedrichshafen Device for generating shock waves by means of a spark gap for the contact-free crushing of concrements in the bodies of living beings
DE3543881C1 (en) 1985-12-12 1987-03-26 Dornier Medizintechnik Underwater electrode for non-contact lithotripsy
FR2598074B2 (en) 1986-01-31 1989-10-13 Technomed Int Sa DEVICE FOR ADVANCING AN ELECTRODE-HOLDING ELEMENT COMPRISING A PISTON-CONTROLLED WHEEL, AND ITS USE IN A PULSE GENERATING APPARATUS FOR THE DESTRUCTION OF TARGETS SUCH AS FABRICS, CONCRETIONS, ESPECIALLY RENAL LITHIASES, BILIARIES
DE3622352C1 (en) 1986-07-03 1987-12-03 Dornier System Gmbh Spark gap with electrode tips of different geometries
EP0254104B1 (en) * 1986-07-16 1990-10-03 Siemens Aktiengesellschaft Shock-wave generator for producing an acoustic shock-wave pulse
FR2612345A1 (en) * 1987-03-09 1988-09-16 Technomed Int Sa METHOD AND DEVICE FOR DETECTING AND CORRECTING THE POSITION OF ELECTRODES ESPECIALLY USED IN IMPACT WAVE GENERATING APPARATUSES USING A FOCAL POINT FIXED PROBE FINGER PARTICULARLY CONSISTING OF A CABLE ROD
DE3713884A1 (en) * 1987-04-25 1988-11-03 Dornier System Gmbh CONNECTING A METAL SLEEVE TO A PLASTIC SLEEVE IN ITS HOLE
DE3804993C1 (en) 1988-02-18 1989-08-10 Dornier Medizintechnik Gmbh, 8034 Germering, De
CS270064B1 (en) * 1988-07-01 1990-06-13 Pavel Ing Csc Sunka Method of surge generator's spark gap's points regulation for non-invasive lithotrity and device for realization of this method
EP0359863B1 (en) * 1988-09-23 1994-05-04 Siemens Aktiengesellschaft High voltage generator and method for producing a high-voltage pulse with a large current for driving a shock-wave generator
DD290320A7 (en) * 1989-04-27 1991-05-29 Technische Universitaet "Otto Von Guericke",De METHOD FOR REGULATING THE STRIKES OF THE WORKING ELECTRODE SYSTEM OF ELECTRO-HYDRAULIC MATERIAL PROCESSING SYSTEMS
US5047685A (en) 1989-09-11 1991-09-10 Christopher Nowacki Electrode structure for lithotripter
DE3932577C1 (en) 1989-09-29 1990-11-22 Dornier Medizintechnik Gmbh, 8000 Muenchen, De
US4934353A (en) 1989-10-02 1990-06-19 Christopher Nowacki Lithotripter having rotatable valve for removal of electrode structure
DE3937904C2 (en) 1989-11-15 1994-05-11 Dornier Medizintechnik Improvement of the ignition behavior on an underwater spark gap
DE4016054A1 (en) * 1990-05-18 1991-11-21 Dornier Medizintechnik SPARK RANGE FOR LITHOTRIPSY
FR2663531A1 (en) * 1990-06-20 1991-12-27 Technomed Int Sa METHOD FOR CONTROLLING THE EFFICIENCY OF PRESSURE WAVES EMITTED BY A PRESSURE WAVE GENERATOR, METHODS OF ADJUSTING THE SAME, AS WELL AS A APPARATUS FOR CONTROLLING THE EFFICIENCY OF PRESSURE WAVES, FOR ITS IMPLEMENTATION WORK.
FR2664762A1 (en) * 1990-07-16 1992-01-17 Technomed Int Sa HIGH IMPEDANCE SELF DISCHARGE CIRCUIT AND USE IN PRESSURE WAVE GENERATION APPARATUS.
ES2097848T3 (en) 1992-09-28 1997-04-16 Hmt Ag APPARATUS FOR THE GENERATION OF SHOCK WAVES FOR THE CONTACTLESS DESTRUCTION OF CONCRETIONS IN BODIES OF ORGANISMS.
US5420473A (en) 1993-10-12 1995-05-30 Thomas; Howard C. Spark gap electrode assembly for lithotripters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656744A1 (en) * 1990-01-04 1991-07-05 Technomed Int Sa ELECTRIC DISCHARGE DEVICE FORMING SPLITTER OR "SPARK GAP" WITH REDUCED INDUCTANCE AND SHOCK WAVE GENERATING APPARATUS INCLUDING APPLICATION.

Also Published As

Publication number Publication date
EP0911804A3 (en) 2001-09-19
CZ297145B6 (en) 2006-09-13
CZ342398A3 (en) 1999-05-12
ATE362163T1 (en) 2007-06-15
US6217531B1 (en) 2001-04-17
DE59814001D1 (en) 2007-06-21
EP0911804A2 (en) 1999-04-28

Similar Documents

Publication Publication Date Title
EP0911804B1 (en) Method for the automatic adjustment of the distance between the electrodes of a spark gap in electrohydraulic shock wave generators
EP1517757B1 (en) Switching circuit for an electromagnetic source for the generation of acoustic waves
EP2022534B1 (en) Control device for controlling an irradiation procedure, particle therapy facility and method for irradiating a target volume
EP1933362B1 (en) Arc detection system, plasma power supply and arc detection method
DE2918426C2 (en)
DE102016222365B3 (en) A method, computer program product, computer readable medium and apparatus for generating x-ray pulses in x-ray imaging
EP0240797A1 (en) Shockwave generator with increased efficiency
DE2539541C2 (en) Circuit for an electric projectile fuse
WO2009062542A1 (en) Circuit assembly and method for operating a high pressure discharge lamp
EP0210675B1 (en) Control method for an electrostatic filter
DE102013112039A1 (en) Corona ignition system for an internal combustion engine and method for controlling a corona ignition system
EP2991224B1 (en) High current pulse generator
DE1589299A1 (en) Starter or Ignition circuit for a gas discharge device
DE2819111A1 (en) GAS DISCHARGE ELECTRIC TUBE WITH CROSSED FIELDS AND PROCEDURE FOR SWITCHING SUCH ELECTRICAL TUBE
EP3513574B1 (en) Method and circuit for operating a piezoelectric mems sound transducer and integrated circuitry having such a circuit
EP2521427A1 (en) Method and device for forming flat-top ion pulses from electron beam ion sources
AT517728B1 (en) Method and device for removing mold
EP0152550B1 (en) Method and device for controlling the conducting state of a gto thyristor
EP3436687B1 (en) Method for operating a with a step-up converter provided spark system
EP1858305A1 (en) Switching assembly for a motor vehicle headlamp with a gas discharge lamp
DE102022101193A1 (en) IONIZER AND METHOD OF NEUTRALIZING CHARGES ON SURFACES
DE893988C (en) Arrangement for generating periodic flashes of high intensity
DE2045321B2 (en) Discharge flash unit with adjustable flash voltage
DE3412186C2 (en)
DE873562C (en) Impulse generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 20020322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEDIPOOL TREUHAND- UND BETEILIGUNGSGESELLSCHAFT FU

17Q First examination report despatched

Effective date: 20041014

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTS EUROPE GMBH

17Q First examination report despatched

Effective date: 20041014

RTI1 Title (correction)

Free format text: METHOD FOR THE AUTOMATIC ADJUSTMENT OF THE DISTANCE BETWEEN THE ELECTRODES OF A SPARK GAP IN ELECTROHYDRAULIC SHOCK WAVE GENERATORS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

REF Corresponds to:

Ref document number: 59814001

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070820

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070509

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131219

Year of fee payment: 16

Ref country code: AT

Payment date: 20131010

Year of fee payment: 16

Ref country code: DE

Payment date: 20131016

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131014

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59814001

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 362163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141023

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141023