EP0911424B1 - Making of self-supporting composite materials - Google Patents

Making of self-supporting composite materials Download PDF

Info

Publication number
EP0911424B1
EP0911424B1 EP98120103A EP98120103A EP0911424B1 EP 0911424 B1 EP0911424 B1 EP 0911424B1 EP 98120103 A EP98120103 A EP 98120103A EP 98120103 A EP98120103 A EP 98120103A EP 0911424 B1 EP0911424 B1 EP 0911424B1
Authority
EP
European Patent Office
Prior art keywords
gas
thermal spraying
spraying
base body
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120103A
Other languages
German (de)
French (fr)
Other versions
EP0911424A1 (en
Inventor
Peter Dipl.-Ing. Heinrich
Heinrich Professor Dr.-Ing. Kreye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0911424A1 publication Critical patent/EP0911424A1/en
Application granted granted Critical
Publication of EP0911424B1 publication Critical patent/EP0911424B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Definitions

  • the invention relates to a method for producing self-supporting Verbundkörpem.
  • Composite bodies are becoming increasingly important in industry.
  • composite bodies made of materials with different properties interesting.
  • the material properties can also Profit to be added.
  • EP 911 425 A1 with the same seniority describes a method for coating of substrate materials by means of thermal spraying, special Temperatures and gases are used.
  • EP 911 426 A1 with the same seniority describes a method of manufacture of self-supporting molded parts by means of thermal spraying.
  • CH 658 045 A5 describes a process for the production of glass molds for Hollow glass products are known in which a special nickel alloy is used Plasma spraying or flame spraying is applied.
  • a thermal spraying method is known from US Pat. No. 3,165,570 in which particles are blown into a mold at high speed as a plasma jet.
  • Thermal spraying for coating knows that as process variants autogenous flame spraying or the high speed flame spraying that Arc spraying, plasma spraying, detonation spraying and that Laser spraying.
  • Thermal spray processes are essentially characterized by the fact that they enable evenly applied coatings.
  • thermal Spray coatings can be applied by varying the Spray materials can be adapted to different requirements.
  • the Spray materials can be in the form of wires, rods or as a powder are processed. With thermal spraying, a thermal Aftertreatment should be provided.
  • the present invention has for its object a method for manufacturing to show self-supporting composite bodies, which is a simple type and Mode of manufacture enables and / or which contributes significantly to the To improve the quality and properties of composite bodies and thus theirs Area of application expanded, whereby a basic body of a material by thermal Spraying is coated, a powdery filler material by means of a Gas is passed onto the surface of the base body to be coated.
  • the task is solved in that the gas jet during thermal Syringes have a pressure of 21 to 50 bar and that the powder Filler material is directed onto the surface of the base body to be coated, without the powder particles of the filler material being melted in the gas jet become.
  • the powdered filler material is applied to the material to be coated Surface of the base body passed without powder particles of the Filler material are melted in the gas jet.
  • the statement that the powder particles of the filler material are not in the gas jet are to be melted in the context of the present invention also means that the particles in the gas jet are essentially not melted. This can be ensured that the temperature of the gas jet below the melting point of the powder particles of the filler material. But even with Temperatures of the gas jet from 100 K to 200 K above the melting point of the Powder particles of the filler material can due to the extremely short residence time Particles in the gas jet melt or even in the range of milliseconds Melting of the powder particles can be prevented.
  • the importance of the higher Gas temperatures or the advantage of heating the gas is that in hotter gases the speed of sound is higher and therefore the Particle speed becomes comparatively greater.
  • the cold gas process has compared to conventional thermal processes Spraying a number of advantages.
  • the thermal action and force action the surface of the substrate material is reduced, which results in unwanted Changes in the material properties of the substrate material prevented or can be reduced at least noticeably.
  • largely Changes in the structure of the substrate material are prevented.
  • the one with the Layers produced using cold gas spray processes have no or at least none pronounced texture, i.e. there is no preferred orientation of the individual grains or Crystals.
  • the substrate is not heated by a flame or a plasma, so that no or only extremely minor changes to the base body and also no Warping of workpieces due to thermal stresses due to thermal Splashing occur.
  • Components such as a ceramic tube can be made with one layer Metals, metal alloys, hard materials, ceramics and / or plastics be coated in order to make the pipe gas-tight and / or vacuum-tight.
  • Another possibility is an electrically and / or magnetically conductive Apply layer.
  • components made of ceramic, Glass, plastic or composite material (e.g. CFRP) over the sprayed-on layer be made conductive.
  • components can be reinforced and thereby get a higher mechanical Resilience.
  • a thin component that consists of an expensive one Material exists and / or has material-specific physical properties, with an inexpensive spray material, for example a metal, a metal alloy and / or a ceramic.
  • an inexpensive spray material for example a metal, a metal alloy and / or a ceramic.
  • Base body can be used as the starting material. This basic body will then by spraying on to the material of the base body different material on the inside and / or the outside on the necessary thickness reinforced. It is also possible that the base body has a smaller one Thickness than the layer sprayed by thermal spraying. On The base body can in particular be sprayed on by a layer or a coating by means of the cold spray process.
  • the gas for thermal spraying can be nitrogen, helium, Argon, neon, krypton, xenon, a gas containing hydrogen carbon-containing gas, especially carbon dioxide, oxygen, an oxygen containing gas, air, hydrogen or mixtures of the aforementioned gases contain.
  • Helium is also suitable for the gas carrying the powdered filler material a nitrogen, argon, neon, krypton, xenon, oxygen, a hydrogen containing Gas, a carbon-containing gas, especially carbon dioxide, hydrogen or Mixtures of the aforementioned gases and mixtures of these gases with helium.
  • the proportion of helium in the total gas can be up to 90% by volume.
  • A is preferred Helium content of 10 to 50 vol .-% observed in the gas mixture.
  • the so produced Layers adhere very well to a wide variety of substrate materials, for example on metal, metal alloys, ceramics including glass, plastics and composite materials.
  • the manufactured with the inventive method Coatings are of high quality and have an extremely low porosity on and have extremely smooth spray surfaces, so that there is usually a Rework is not necessary.
  • the gases used according to the invention have a sufficient density and speed of sound to meet the required high Guarantees speeds of the powder particles for cold gas spraying can.
  • the gas can contain inert and / or reactive gases. With the mentioned gases is the production of very dense and particularly uniform Coatings possible, which are also characterized by their hardness and strength.
  • the layers have extremely low oxide contents.
  • the gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can.
  • the invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.
  • the temperature of the Gas jets selected in the range between 300 and 500 ° C. These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas constituents. As reactive gas or gas components are in particular Hydrogen admixtures, carbon-containing gases or nitrogenous gases mention.
  • a gas jet with a pressure of 21 to 50 bar is used.
  • working with higher gas pressures brings additional advantages because the Energy transfer in the form of kinetic energy is increased.
  • excellent Spray results were achieved, for example, with gas pressures of around 35 bar.
  • the High-pressure gas supply can be provided, for example, by that in Germany Patent application DE 197 16 414.5 described method or the there described gas supply system can be ensured.
  • the powder particles can run at a speed accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably between 1250 and 1600 m / s, since in this case the Energy transfer in the form of kinetic energy is particularly high.
  • the powders used in the process according to the invention preferably have Particle sizes from 1 to 100 ⁇ m.
  • a ceramic tube 1 is shown in FIG. 1 in FIG. Gas-tight around the ceramic tube 1 and to get vacuum-tight, it was - as shown in picture B - by means of thermal Spraying using the cold gas spraying method covered with a layer 2 of metal.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von selbsttragenden Verbundkörpem.The invention relates to a method for producing self-supporting Verbundkörpem.

Verbundkörper gewinnen in der Industrie zunehmend an Bedeutung. Insbesondere sind dabei Verbundkörper aus Werkstoffen mit unterschiedlichen Eigenschaften interessant. Gerade bei diesen Verbundkörpem können die Materialeigenschaften mit Gewinn ergänzt werden.Composite bodies are becoming increasingly important in industry. In particular are composite bodies made of materials with different properties Interesting. Especially with these composite bodies, the material properties can also Profit to be added.

Die EP 911 425 A1 mit gleichem Zeitrang beschreibt ein Verfahren zum Beschichten von Substratwerkstoffen mittels thermischen Spritzens, wobei besondere Temperaturen und Gase verwendet werden.EP 911 425 A1 with the same seniority describes a method for coating of substrate materials by means of thermal spraying, special Temperatures and gases are used.

Die EP 911 426 A1 mit gleichem Zeitrang beschreibt ein Verfahren zur Herstellung von selbsttragenden Formteilen mittels thermischem Spritzens.EP 911 426 A1 with the same seniority describes a method of manufacture of self-supporting molded parts by means of thermal spraying.

Aus der CH 658 045 A5 ist ein Verfahren zur Herstellung von Glasformen für Hohlglaserzeugnisse bekannt, bei dem eine spezielle Nickellegierung mittels Plasmaspritzens oder Flammspritzens aufgetragen wird.CH 658 045 A5 describes a process for the production of glass molds for Hollow glass products are known in which a special nickel alloy is used Plasma spraying or flame spraying is applied.

Aus der US 3,165,570 ist ein thermisches Spritzverfahren bekannt, bei dem Partikel mit hoher Geschwindigkeit als Plasma-Jet in eine Form geblasen werden.A thermal spraying method is known from US Pat. No. 3,165,570 in which particles are blown into a mold at high speed as a plasma jet.

Aus der DE 195 20 885 C1 ist ein Verfahren zum Hochdruck-Hochgeschwindigkeitsflammspritzen bekannt, bei dem metallische Schichten erzeugt werden, die auch lasttragend sein können.DE 195 20 885 C1 describes a method for high-pressure, high-speed flame spraying known in which generated metallic layers that can also be load-bearing.

Das thermische Spritzen zum Beschichten kennt als Verfahrensvarianten das autogene Flammspritzen oder das Hochgeschwindigkeits-Flammspritzen, das Lichtbogenspritzen, das Plasmaspritzen, das Detonationsspritzen und das Laserspritzen. Thermal spraying for coating knows that as process variants autogenous flame spraying or the high speed flame spraying that Arc spraying, plasma spraying, detonation spraying and that Laser spraying.

Thermische Spritzverfahren werden in allgemeiner Form beispielsweise in

  • Übersicht und Einführung in das "Thermische Spritzen", Peter Heinrich, Linde-Berichte aus Technik und Wissenschaft, 52/1982, Seiten 29 bis 37,
oder
  • Thermisches Spritzen - Fakten und Stand der Technik, Peter Heinrich, Jahrbuch Oberflächentechnik 1992, Band 48, 1991, Seiten 304 bis 327, Metall-Verlag GmbH,
beschrieben.Thermal spray processes are in general form, for example in
  • Overview and introduction to "thermal spraying", Peter Heinrich, Linde reports from technology and science, 52/1982, pages 29 to 37,
or
  • Thermal spraying - facts and state of the art , Peter Heinrich, Jahrbuch Oberflächentechnik 1992, volume 48, 1991, pages 304 to 327, Metall-Verlag GmbH,
described.

Thermische Spritzverfahren zeichnen sich im Wesentlichen dadurch aus, dass sie gleichmäßig aufgetragene Beschichtungen ermöglichen. Durch thermische Spritzverfahren aufgetragene Beschichtungen können durch Variation der Spritzmaterialien an unterschiedliche Anforderungen angepasst werden. Die Spritzmaterialien können dabei in Form von Drähten, Stäben oder als Pulver verarbeitet werden. Beim thermischen Spritzen kann zusätzlich eine thermische Nachbehandlung vorgesehen sein.Thermal spray processes are essentially characterized by the fact that they enable evenly applied coatings. By thermal Spray coatings can be applied by varying the Spray materials can be adapted to different requirements. The Spray materials can be in the form of wires, rods or as a powder are processed. With thermal spraying, a thermal Aftertreatment should be provided.

In jüngerer Zeit wurde darüber hinaus ein weiteres thermisches Spritzverfahren entwickelt, welches auch als Kaltgasspritzen bezeichnet wird. Es handelt sich dabei um eine Art Weiterentwicklung des Hochgeschwindigkeits-Flammspritzens mit Pulver. Dieses Verfahren ist beispielsweise in der europäischen Patentschrift EP 0 484 533 B1 oder der WO 95/07768 beschrieben. Beim Kaltgasspritzen kommt ein Zusatzwerkstoff in Pulverform zum Einsatz. Die Pulverpartikel werden beim Kaltgasspritzen jedoch nicht im Gasstrahl geschmolzen. Vielmehr liegt die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes (EP 0 484 533 B1) oder aber nur in geringem Maße oberhalb der Schmelztemperatur des Pulvers. Im Kaltgasspritzverfahren wird also ein im Vergleich zu den herkömmlichen Spritzverfahren "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet. Gleichwohl wird das Gas aber ebenso wie in den herkömmlichen Verfahren erwärmt, aber lediglich auf Temperaturen unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes oder auf Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes. More recently, another thermal spraying method has also been used developed, which is also known as cold gas spraying. These are a kind of further development of high-speed flame spraying with powder. This method is described, for example, in European patent EP 0 484 533 B1 or WO 95/07768. Cold gas spraying comes into play Additional material in powder form for use. The powder particles are at Cold gas spraying, however, was not melted in the gas jet. Rather, the temperature is of the gas jet below the melting point of the powder particles Filler material (EP 0 484 533 B1) or only slightly above the Melting temperature of the powder. In the cold gas spraying process, one is compared to the conventional "cold" or a comparatively colder gas spray process used. Nevertheless, the gas is just as in the conventional Process heated, but only to temperatures below the melting point the powder particles of the filler or at temperatures of the gas jet 100 K up to 200 K above the melting point of the powder particles of the Additional material.

Ein ähnliches Verfahren ist aus A.O. Tokarev: "Structure of Aluminium Powder Coatings Prepared by Cold Gasdynamics Spraying" in Metal Science and Heat Treatment, Bd. 38, Nm. 3-4, 1996, bekannt. Dort wird Stahl durch Kaltgasspritzen mit einer Aluminiumschicht versehen. Die Partikelgeschwindigkeiten liegen dabei zwischen 400 und 450 m/sec.A similar process is known from A.O. Tokarev: "Structure of Aluminum Powder Coatings Prepared by Cold Gas Dynamics Spraying "in Metal Science and Heat Treatment, vol. 38, Nm. 3-4, 1996. There, steel is sprayed with by cold gas provided with an aluminum layer. The particle speeds are there between 400 and 450 m / sec.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von selbsttragenden Verbundkörpem aufzuzeigen, welches eine einfache Art und Weise der Herstellung ermöglicht und/oder welches wesentlich dazu beiträgt, die Qualität und die Eigenschaften von Verbundkörpem zu verbessern und damit ihren Einsatzbereich erweitert, wobei ein Grundkörper eines Werkstoffes durch thermisches Spritzen beschichtet wird, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Grundkörpers geleitet wird.The present invention has for its object a method for manufacturing to show self-supporting composite bodies, which is a simple type and Mode of manufacture enables and / or which contributes significantly to the To improve the quality and properties of composite bodies and thus theirs Area of application expanded, whereby a basic body of a material by thermal Spraying is coated, a powdery filler material by means of a Gas is passed onto the surface of the base body to be coated.

Die gestellte Aufgabe wird dadurch gelöst, dass der Gasstrahl beim thermischen Spritzen einen Druck von 21 bis 50 bar aufweist und dass der pulverförmige Zusatzwerkstoff auf die zu beschichtende Oberfläche des Grundkörpers geleitet wird, ohne dass die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden.The task is solved in that the gas jet during thermal Syringes have a pressure of 21 to 50 bar and that the powder Filler material is directed onto the surface of the base body to be coated, without the powder particles of the filler material being melted in the gas jet become.

Erfindungsgemäß wird der pulverförmige Zusatzwerkstoff auf die zu beschichtende Oberfläche des Grundkörpers geleitet, ohne dass Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden.According to the invention, the powdered filler material is applied to the material to be coated Surface of the base body passed without powder particles of the Filler material are melted in the gas jet.

Die Angabe, dass die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht geschmolzen werden, soll im Rahmen der vorliegenden Erfindung auch bedeuten, dass die Partikel im Gasstrahl im Wesentlichen nicht angeschmolzen werden. Dies kann dadurch sichergestellt werden, daß die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes liegt. Aber selbst bei Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes kann aufgrund der extrem kurzen Verweilzeit der Partikel im Gasstrahl im Bereich von Millisekunden ein Schmelzen oder auch ein Anschmelzen der Pulverpartikel verhindert werden. Die Bedeutung der höheren Gastemperaturen bzw. der Vorteil der Erwärmung des Gases liegt darin, dass in heißeren Gasen die Schallgeschwindigkeit höher ist und dadurch auch die Partikelgeschwindigkeit vergleichsweise größer wird.The statement that the powder particles of the filler material are not in the gas jet are to be melted in the context of the present invention also means that the particles in the gas jet are essentially not melted. This can be ensured that the temperature of the gas jet below the melting point of the powder particles of the filler material. But even with Temperatures of the gas jet from 100 K to 200 K above the melting point of the Powder particles of the filler material can due to the extremely short residence time Particles in the gas jet melt or even in the range of milliseconds Melting of the powder particles can be prevented. The importance of the higher Gas temperatures or the advantage of heating the gas is that in hotter gases the speed of sound is higher and therefore the Particle speed becomes comparatively greater.

Das Kaltgasverfahren besitzt gegenüber herkömmlichen Verfahren des thermischen Spritzens eine Reihe von Vorteilen. Die thermische Einwirkung und Kraftwirkung auf die Oberfläche des Substratwerkstoffes ist verringert, wodurch ungewollte Veränderungen der Materialeigenschaften des Substratwerkstoffes verhindert oder zumindest merklich verringert werden können. Ebenso können weitgehend Änderungen in der Struktur des Substratwerkstoffs unterbunden werden. Die mit dem Kaltgasspritzverfahren erzeugten Schichten besitzen keine oder zumindest keine ausgeprägte Textur, d.h. es gibt keine Vorzugsorientierung der einzelnen Körner oder Kristalle. Das Substrat wird ferner nicht durch eine Flamme oder ein Plasma erwärmt, so daß keine oder nur extrem geringe Veränderungen am Grundkörper und auch kein Verzug von Werkstücken durch Wärmespannungen infolge des thermischen Spritzens auftreten.The cold gas process has compared to conventional thermal processes Spraying a number of advantages. The thermal action and force action the surface of the substrate material is reduced, which results in unwanted Changes in the material properties of the substrate material prevented or can be reduced at least noticeably. Likewise, largely Changes in the structure of the substrate material are prevented. The one with the Layers produced using cold gas spray processes have no or at least none pronounced texture, i.e. there is no preferred orientation of the individual grains or Crystals. Furthermore, the substrate is not heated by a flame or a plasma, so that no or only extremely minor changes to the base body and also no Warping of workpieces due to thermal stresses due to thermal Splashing occur.

Es hat sich gezeigt, daß die zahlreichen verfahrenstechnischen Möglichkeiten des thermischen Spritzens nach dem Kaltgasverfahren für die Herstellung von Verbundkörpem genutzt werden können. Durch die Möglichkeiten der Verwendung unterschiedliche Pulvermaterialien und Pulvermischungen eröffnet sich eine breite Palette für die Zusammensetzung von Verbundkörpern. Es lassen sich Verbundkörper für die unterschiedlichsten Anforderungen auf einfache Art und Weise herstellen.It has been shown that the numerous procedural possibilities of Thermal spraying using the cold gas process for the production of Composite bodies can be used. By the possibilities of use different powder materials and powder mixtures opens up a wide range Pallet for the composition of composite bodies. There can be composite bodies for a wide variety of requirements in a simple way.

So können Bauteile wie beispielsweise ein Keramikrohr mit einer Schicht aus Metallen, Metallegierungen, Hartstoffen, Keramiken und/oder Kunststoffen beschichtet werden, um das Rohr gasdicht und/oder vakuumdicht zu bekommen.Components such as a ceramic tube can be made with one layer Metals, metal alloys, hard materials, ceramics and / or plastics be coated in order to make the pipe gas-tight and / or vacuum-tight.

Eine andere Möglichkeit besteht darin, eine elektrisch und/oder magnetisch leitfähige Schicht aufzutragen. Auf diese Weise können beispielsweise Bauteile aus Keramik, Glas, Kunststoff oder Verbundwerkstoff (z.B. CFK) über die aufgespritzte Schicht leitfähig gemacht werden. Another possibility is an electrically and / or magnetically conductive Apply layer. In this way, components made of ceramic, Glass, plastic or composite material (e.g. CFRP) over the sprayed-on layer be made conductive.

Ferner können Bauteile verstärkt werden und erhalten dadurch eine höhere mechanische Belastbarkeit. Beispielsweise kann ein dünnes Bauteil, das aus einem teuren Werkstoff besteht und/oder materialspezifische physikalische Eigenschaften aufweist, mit einem kostengünstigen Spritzmaterial, beispielsweise einem Metall, einer Metalllegierung und/oder einer Keramik, beschichtet werden. Dabei können relativ dünne Grundkörper als Ausgangsmaterial verwendet werden. Dieser Grundkörper wird anschließend durch Aufspritzen von zum Werkstoff des Grundkörpers unterschiedlichem Material auf der Innen- und/oder der Außenseite auf die notwendige Dicke verstärkt. Es ist auch möglich, daß der Grundkörper eine geringere Dicke aufweist als die durch thermisches Spritzen aufgespritzte Schicht. Ein Grundkörper kann insbesondere durch Aufspritzen einer Schicht oder eines Überzugs mittels des Kaltspritzverfahrens verstärkt werden.Furthermore, components can be reinforced and thereby get a higher mechanical Resilience. For example, a thin component that consists of an expensive one Material exists and / or has material-specific physical properties, with an inexpensive spray material, for example a metal, a metal alloy and / or a ceramic. It can be relatively thin Base body can be used as the starting material. This basic body will then by spraying on to the material of the base body different material on the inside and / or the outside on the necessary thickness reinforced. It is also possible that the base body has a smaller one Thickness than the layer sprayed by thermal spraying. On The base body can in particular be sprayed on by a layer or a coating by means of the cold spray process.

Erfindungsgemäß kann das Gas für das thermische Spritzen Stickstoff, Helium, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Sauerstoff, ein Sauerstoff enthaltendes Gas, Luft, Wasserstoff oder Mischungen der vorgenannten Gase enthalten. Neben den aus der EP 0 484 533 B1 bekannten Gasen Luft und/oder Helium eignen sich auch für das den pulverförmigen Zusatzwerkstoff tragende Gas ein Stickstoff, Argon, Neon, Krypton, Xenon, Sauerstoff, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Wasserstoff oder Mischungen der vorgenannten Gase und Mischungen dieser Gase mit Helium. Der Anteil des Helium am Gesamtgas kann bis zu 90 Vol.-% betragen. Bevorzugt wird ein Heliumanteil von 10 bis 50 Vol.-% im Gasgemisch eingehalten.According to the invention, the gas for thermal spraying can be nitrogen, helium, Argon, neon, krypton, xenon, a gas containing hydrogen carbon-containing gas, especially carbon dioxide, oxygen, an oxygen containing gas, air, hydrogen or mixtures of the aforementioned gases contain. In addition to the gases air and / or known from EP 0 484 533 B1 Helium is also suitable for the gas carrying the powdered filler material a nitrogen, argon, neon, krypton, xenon, oxygen, a hydrogen containing Gas, a carbon-containing gas, especially carbon dioxide, hydrogen or Mixtures of the aforementioned gases and mixtures of these gases with helium. The The proportion of helium in the total gas can be up to 90% by volume. A is preferred Helium content of 10 to 50 vol .-% observed in the gas mixture.

Es hat sich gezeigt, daß durch den Einsatz von unterschiedlichen Gasen zum Beschleunigen und Tragen des pulverförmigen Zusatzwerkstoffes die Flexibilität und Wirksamkeit des Verfahrens wesentlich vergrößert werden kann. Die so hergestellten Schichten haften sehr gut auf den verschiedensten Substratwerkstoffen, beispielsweise auf Metall, Metallegierungen, Keramik einschließlich Glas, Kunststoffe und Verbundwerkstoffe. Die mit dem erfindungsgemäßen Verfahren hergestellten Beschichtungen sind von hoher Güte, weisen eine außerordentlich geringe Porosität auf und besitzen extrem glatte Spritzoberflächen, so daß sich in der Regel eine Nacharbeitung erübrigt. Die erfindungsgemäß eingesetzten Gase besitzen eine ausreichende Dichte und Schallgeschwindigkeit, um die erforderlichen hohen Geschwindigkeiten der Pulverpartikel für das Kaltgasspritzen gewährleisten zu können. Das Gas kann dabei inerte und/oder reaktive Gase enthalten. Mit den genannten Gasen ist die Herstellung von sehr dichten und besonders gleichmäßigen Beschichtungen möglich, welche sich außerdem durch ihre Härte und Festigkeit auszeichnen. Die Schichten weisen extrem geringe Oxidgehalte auf.It has been shown that the use of different gases for Accelerate and carry the powdered filler material the flexibility and Effectiveness of the process can be increased significantly. The so produced Layers adhere very well to a wide variety of substrate materials, for example on metal, metal alloys, ceramics including glass, plastics and composite materials. The manufactured with the inventive method Coatings are of high quality and have an extremely low porosity on and have extremely smooth spray surfaces, so that there is usually a Rework is not necessary. The gases used according to the invention have a sufficient density and speed of sound to meet the required high Guarantees speeds of the powder particles for cold gas spraying can. The gas can contain inert and / or reactive gases. With the mentioned gases is the production of very dense and particularly uniform Coatings possible, which are also characterized by their hardness and strength. The layers have extremely low oxide contents.

Der Gasstrahl kann auf eine Temperatur im Bereich zwischen 30 und 800 °C erwärmt werden, wobei alle bekannten pulverförmigen Spritzmaterialien eingesetzt werden können. Die Erfindung eignet sich insbesondere für Spritzpulver aus Metallen, Metalllegierungen, Hartstoffen, Keramiken und/oder Kunststoffen.The gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can. The invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.

In Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur des Gasstrahles im Bereich zwischen 300 und 500 °C gewählt. Diese Gastemperaturen eignen sich insbesondere für den Einsatz von reaktiven Gasen oder reaktiven Gasbestandteilen. Als reaktive Gas oder Gasbestandteile sind insbesondere Wasserstoffzumischungen, kohlenstoffhaltige Gase oder stickstoffhaltige Gase zu erwähnen.In an embodiment of the method according to the invention, the temperature of the Gas jets selected in the range between 300 and 500 ° C. These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas constituents. As reactive gas or gas components are in particular Hydrogen admixtures, carbon-containing gases or nitrogenous gases mention.

Erfindungsgemäß wird ein Gasstrahl mit einem Druck von 21 bis 50 bar eingesetzt. Vor allem das Arbeiten mit höheren Gasdrücken bringt zusätzliche Vorteile, da die Energieübertragung in Form von kinetischer Energie erhöht wird. Hervorragende Spritzergebnisse wurden beispielsweise mit Gasdrücken von etwa 35 bar erzielt. Die Hochdruckgasversorgung kann beispielsweise durch das in der deutschen Patentanmeldung DE 197 16 414.5 beschriebene Verfahren bzw. die dort beschriebene Gasversorgungsanlage sichergestellt werden.According to the invention, a gas jet with a pressure of 21 to 50 bar is used. Above all, working with higher gas pressures brings additional advantages because the Energy transfer in the form of kinetic energy is increased. excellent Spray results were achieved, for example, with gas pressures of around 35 bar. The High-pressure gas supply can be provided, for example, by that in Germany Patent application DE 197 16 414.5 described method or the there described gas supply system can be ensured.

Im erfindungsgemäßen Verfahren können die Pulverpartikel auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden. Im erfindungsgemäßen Verfahren eignen sich dabei insbesondere Geschwindigkeiten der Pulverpartikel zwischen 1000 und 1600 m/s, besonders bevorzugt zwischen 1250 und 1600 m/s, da in diesem Fall die Energieübertragung in Form von kinetischer Energie besonders hoch ausfällt.In the process according to the invention, the powder particles can run at a speed accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably between 1250 and 1600 m / s, since in this case the Energy transfer in the form of kinetic energy is particularly high.

Die im erfindungsgemäßen Verfahren eingesetzten Pulver besitzen bevorzugt Partikelgrößen von 1 bis 100 µm. The powders used in the process according to the invention preferably have Particle sizes from 1 to 100 µm.

Zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Vorrichtungen eingesetzt werden, insbesondere gilt dies für die in der EP 0 484 533 B1 beschriebene Vorrichtung.All suitable devices can be used to carry out the method according to the invention are used, in particular this applies to those in EP 0 484 533 B1 described device.

Besondere Vorteile bringen folgende nach der Erfindung hergestellte Verbundkörper mit sich:

  • aufgrund der Spritzschicht gasdichte und/oder vakuumdichte Verbundkörper,
  • Verbundkörper mit elektrisch und/oder magnetisch leitfähiger Spritzschicht und
  • Verbundkörper, deren Grundkörper durch die Spritzschicht verstärkt ist und die eine gewünschte mechanische Belastbarkeit aufweisen.
The following composite bodies produced according to the invention have particular advantages:
  • due to the spray layer, gas-tight and / or vacuum-tight composite body,
  • Composite body with electrically and / or magnetically conductive spray layer and
  • Composite body, the base body of which is reinforced by the spray layer and which have the desired mechanical strength.

Die Erfindung wird im folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert.The invention is described below with reference to one in the drawing Embodiment explained in more detail.

Hierbei zeigt

Figur 1
ein erfindunsgemäßen Verbundkörper aus Grundkörper und Schicht.
Here shows
Figure 1
a composite body according to the invention of base body and layer.

In Figur 1 ist im Bild A ein Keramikrohr 1 dargestellt. Um das Keramikrohr 1 gasdicht und vakuumdicht zu bekommen, wurde es - wie in Bild B gezeigt - mittels thermischen Spritzens nach dem Kaltgasspritzverfahren mit einer Schicht 2 aus Metall überzogen.A ceramic tube 1 is shown in FIG. 1 in FIG. Gas-tight around the ceramic tube 1 and to get vacuum-tight, it was - as shown in picture B - by means of thermal Spraying using the cold gas spraying method covered with a layer 2 of metal.

Claims (4)

  1. Method for producing self-supporting composite bodies (1, 2) from at least two different materials, in which a base body (1) made from one material is coated (2) by thermal spraying, with a pulverulent additive being passed onto that surface of the base body (1) which is to be coated by means of a gas, characterized in that the gas jet is at a pressure of from 21 to 50 bar during the thermal spraying, and in that the pulverulent additive is passed onto that surface of the base body (1) which is to be coated without the powder particles of the additive being melted in the gas jet.
  2. Method according to Claim 1, characterized in that the gas for the thermal spraying contains nitrogen, helium, argon, neon, krypton, xenon, a hydrogencontaining gas, a carbon-containing gas, in particular carbon dioxide, oxygen, an oxygen-containing gas, air, hydrogen or mixtures of the abovementioned gases.
  3. Method according to either of Claims 1 and 2, characterized in that the temperature of the gas jet during the thermal spraying is in the range between 30 and 800ºC.
  4. Method according to one of Claims 1 to 3, characterized in that the powder particles are accelerated to a velocity of from 300 to 1600 m/s during the thermal spraying.
EP98120103A 1997-10-27 1998-10-23 Making of self-supporting composite materials Expired - Lifetime EP0911424B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19747384 1997-10-27
DE19747384A DE19747384A1 (en) 1997-10-27 1997-10-27 Manufacture of composite bodies

Publications (2)

Publication Number Publication Date
EP0911424A1 EP0911424A1 (en) 1999-04-28
EP0911424B1 true EP0911424B1 (en) 2004-08-18

Family

ID=7846741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120103A Expired - Lifetime EP0911424B1 (en) 1997-10-27 1998-10-23 Making of self-supporting composite materials

Country Status (2)

Country Link
EP (1) EP0911424B1 (en)
DE (2) DE19747384A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747385A1 (en) * 1997-10-27 1999-04-29 Linde Ag Manufacture of molded parts
DE19747386A1 (en) * 1997-10-27 1999-04-29 Linde Ag Process for the thermal coating of substrate materials
DE19959515A1 (en) * 1999-12-09 2001-06-13 Dacs Dvorak Advanced Coating S Process for plastic coating by means of a spraying process, a device therefor and the use of the layer
DE102007017753A1 (en) * 2007-04-16 2008-10-23 Innovaris Gmbh & Co. Kg Production of large components by kinetic cold gas compacting of material particles
DE102008001468B4 (en) 2008-04-30 2013-09-19 Airbus Operations Gmbh A method of coating a fiber composite component for an aerospace vehicle and fiber composite component produced by such a method
DE102009048659B3 (en) * 2009-09-29 2011-04-28 Siemens Aktiengesellschaft transformer core
DE102012020814A1 (en) 2012-10-23 2014-04-24 Linde Aktiengesellschaft Applying welding-rod materials on workpiece, comprise accelerating welding-rod materials into gas jet in powder form, where welding-rod materials in gas jet are not melted and remains in solid state, and striking materials on surface
DE102020127874A1 (en) 2019-11-08 2021-05-12 Additive Space Gmbh Method of making a container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911425A1 (en) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Method for thermally coating surfaces
EP0911426A1 (en) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Production of mouldings

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165570A (en) * 1962-08-22 1965-01-12 Alexander T Deutsch Refractory powder injection, process and apparatus
CH658045A5 (en) * 1982-05-12 1986-10-15 Castolin Sa Process for the production of glass moulds for machines for the production of hollow glass
DE3806177A1 (en) * 1988-02-26 1989-09-07 Siemens Ag Method for applying layers of high-temperature superconducting material to substrates
DE69016433T2 (en) * 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic COATING METHOD AND DEVICE.
EP0667810A1 (en) * 1993-09-15 1995-08-23 Societe Europeenne De Propulsion Method for the production of composite materials or coatings and system for implementing it
DE4413306C1 (en) * 1994-04-16 1995-10-19 Daimler Benz Aerospace Ag Reinforcing a construction component
DE4427262C1 (en) * 1994-07-30 1995-03-23 Mtu Muenchen Gmbh Process and apparatus for flame spraying
DE19520885C2 (en) * 1995-06-08 1999-05-20 Daimler Benz Ag Process for the thermal spraying of layers of metal alloys or metals and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911425A1 (en) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Method for thermally coating surfaces
EP0911426A1 (en) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Production of mouldings

Also Published As

Publication number Publication date
EP0911424A1 (en) 1999-04-28
DE19747384A1 (en) 1999-04-29
DE59811831D1 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
EP0911426B1 (en) Production of mouldings
EP0911425B1 (en) Method for thermally coating surfaces
DE69535062T2 (en) PRODUCT MANUFACTURE BY METAL SEPARATION
DE2632739C3 (en) Process for the thermal spraying of a self-adhesive nickel-aluminum or nickel-titanium coating on a metal substrate
DE102009026655B3 (en) Method of making a metal matrix composite, metal matrix composite and its use
EP1083013A2 (en) Preparation of foamable metal bodies and metal foams
DE3242543C2 (en) Layer material with a functional layer made of a metallic suspension alloy applied to a metallic carrier layer and a method for its production
EP0733129A1 (en) Process for producing and adhesive bond between copper layers and ceramics
DE19501659C1 (en) Method for producing component made of metal foam
EP0911424B1 (en) Making of self-supporting composite materials
DE3844290C1 (en)
CN110997195A (en) Method of forming forged structures using cold spray
EP0924315B1 (en) Production of hot gas for thermal spraying
EP0911423B1 (en) Method for joining workpieces
WO2018024763A1 (en) Iron-based alloy for the production of thermally applied wear protection layers
EP0263469B1 (en) Method for thermally coating surfaces
DE19943409A1 (en) Composite of a composite membrane
EP3141632A1 (en) Process of connecting workpieces and connection parts manufactured by this process
DE102012020814A1 (en) Applying welding-rod materials on workpiece, comprise accelerating welding-rod materials into gas jet in powder form, where welding-rod materials in gas jet are not melted and remains in solid state, and striking materials on surface
DE10246454A1 (en) Making coated foamed components used in e.g. automobile or building industries, employs surface treatment, coating and profiling by thermal foaming
WO2010017799A1 (en) Lightweight armour
DE1299969B (en) Manufacture of electrodes for spark erosion
DE10052405A1 (en) Production of a composite structure comprises thermally spraying a covering layer onto the surface of a cellular material made from metal foam
DE10052404A1 (en) Production of a composite structure comprises thermally spraying a covering layer onto the surface of a cellular material made from metal foam
DE4237980A1 (en) Prodn. of multilayered nitrated or nitride coating by reactive plasma spraying - in which successive layers are sprayed onto base layer with step increases of partial pressure of nitrogen in the plasma jet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990914

AKX Designation fees paid

Free format text: CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE TECHNISCHE GASE GMBH

17Q First examination report despatched

Effective date: 20001017

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GAS AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

RTI1 Title (correction)

Free format text: MAKING OF SELF-SUPPORTING COMPOSITE MATERIALS

RTI1 Title (correction)

Free format text: MAKING OF SELF-SUPPORTING COMPOSITE MATERIALS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040818

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59811831

Country of ref document: DE

Date of ref document: 20040923

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040818

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050519

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161018

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59811831

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501