EP0909263A1 - Ceramic compositions - Google Patents

Ceramic compositions

Info

Publication number
EP0909263A1
EP0909263A1 EP97932897A EP97932897A EP0909263A1 EP 0909263 A1 EP0909263 A1 EP 0909263A1 EP 97932897 A EP97932897 A EP 97932897A EP 97932897 A EP97932897 A EP 97932897A EP 0909263 A1 EP0909263 A1 EP 0909263A1
Authority
EP
European Patent Office
Prior art keywords
weight
oxide
ceramic composition
zirconium
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97932897A
Other languages
German (de)
French (fr)
Inventor
Kassim Juma
Sumihiko Kurita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foseco International Ltd
Koransha Co Ltd
Original Assignee
Foseco International Ltd
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foseco International Ltd, Koransha Co Ltd filed Critical Foseco International Ltd
Publication of EP0909263A1 publication Critical patent/EP0909263A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/6348Melamine-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63484Urea-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Definitions

  • This invention relates to ceramic compositions which are of particular value in the handling and casting of high melting temperature metals such as iron or steel.
  • carbon bonded ceramics also known as black refractories
  • examples of such articles are pouring nozzles for molten metal-containing vessels such as ladles or tundishes, and shrouds which surround the metal stream flowing from one vessel to another.
  • These carbon bonded ceramics are formed from a mixture of graphite, one or more oxides such as alumina, magnesia and zirconia, and a binder such as a phenolic resin or pitch which will decompose to produce a carbon bond.
  • the above carbon bonded ceramic materials suffer from a number of disadvantages. They have poor thermal shock resistance and tend to crack, so that it is necessary to treat articles such as nozzles and shrouds in some way so as to minimise the thermal shock produced when the articles are heated rapidly to elevated temperatures.
  • the materials also have low oxidation resistance as they contain a relatively high proportion of carbon, mainly in the form of graphite.
  • the materials also suffer from additional disadvantages in specific applications.
  • the outer surface of a nozzle is susceptible to attack by slag present on the surface of the molten metal in which the nozzle is immersed (known as slag line attack), and the bore of a nozzle tends to become clogged in use due to the build up of alumina, when casting aluminium killed steel.
  • a carbon bonded ceramic material consisting of a mixture of boron nitride, zirconium diboride and at least one other refractory material, is particularly useful as an alternative to conventional graphite-containing carbon bonded ceramics for the production of articles used for the handling and casting of molten metals such as steel
  • a ceramic composition comprising a mixture of particles of boron nitride, zirconium diboride and at least one other refractory material bonded together by carbon produced by the decomposition of an organic binder
  • the other refractory material may be for example a refractory metal, an oxide, a carbide, a bo ⁇ de or a nitride
  • the refractory metal may be for example boron
  • Suitable refractory oxides include aluminium oxide, zirconium oxide, magnesium oxide, yttrium oxide, calcium oxide, chromium oxide and silicon oxide More than one oxide may be used, and the oxide may be a mixed refractory oxide such as mullite
  • suitable carbides include silicon carbide, boron carbide, aluminium carbide and zirconium carbide More than one carbide may be used
  • bo ⁇ des include titanium diboride and calcium hexabo ⁇ de
  • suitable nitrides include silicon nitride, aluminium nitride, titanium nitride, zirconium nitride and sialon More than one bo ⁇ de and more than one nitride may be used
  • the ceramic composition comprises a mixture of boron nitride, zirconium diboride and zirconium oxide, and the ceramic composition preferably contains 5 - 70 % by weight of boron nitride more preferably 15 - 50 % by weight, 5 - 60 % by weight of zirconium diboride, more preferably 15 - 50 % by weight, and 5 - 80 % by weight of zirconium oxide, more preferably 10 - 60 % by weight
  • the ceramic composition comprises a mixture of boron nitride, zirconium diboride and aluminium oxide, and the ceramic composition preferably contains 5 - 70 % by weight of boron nitride, more preferably 15 - 50 % by weight, 5 - 60 % by weight of zirconium diboride, more preferably 15 - 50 % by weight, and 10 - 70 % by weight of aluminium oxide, more preferably 15 - 60 % by weight
  • the proportion of each of the components of the ceramic composition is expressed as percentage by weight based on the total weight of the ceramic composition, excluding the carbon bond
  • the organic binder which decomposes to produce a carbon bond may be for example a phenol-formaldehyde resin such as a novolac or a resol phenol-formaldehyde resin, a urea-formaldehyde resin a melamine-formaldehyde resin, an epoxy resin, a furane resin or pitch
  • the organic binder is preferably a phenol-formaldehyde resin, and it is preferred that the resin is used in the form of a liquid
  • a powdered phenolic resin can be used but it is necessary to dissolve the resin in a suitable solvent, such as furfural, in order to mix the resin with the other components and produce the ceramic composition
  • the amount of liquid phenolic resin used will usually be of the order 5 - 25%, preferably 10 - 15% by weight, based on the total of the other components, and after production of the ceramic composition, the composition will usually contain 2 - 12% by weight, preferably of the order of 5% by weight, of carbon produced by decomposition of the resin, based on the total weight of the ceramic composition
  • the ceramic compositions of the invention may be produced by first mixing together particles of the boron nitride, the zirconium diboride and the other refractory material , and then adding the liquid resin and mixing until the mixture of the particles and the resin is homogeneous It may be necessary to heat the mixture
  • the ceramic compositions of the invention may be used for other applications, for example in the melting and handling of glass or in the melting, handling and casting of relatively low melting temperature metals such as aluminium and its alloys, the compositions are particularly useful for use in the handling and casting of high melting temperature metals such as iron or steel
  • each of the three components of the ceramic compositions of the invention confers particular properties on the compositions
  • the boron nitride makes the compositions non-wetting in the presence of molten steel or molten slag, and hence when used for example in a composition which is used for a casting nozzle will prevent clogging of the nozzle due to alumina build up
  • the boron nitride makes the compositions resistant to thermal shock, and helps to protect the compositions from oxidation
  • the zirconium diboride confers erosion resistance, gives protection against oxidation at higher temperatures ( up to about 1250° C) than does the boron nitride, and improves the resistance of the compositions to attack by molten slag.
  • both the aluminium oxide and the zirconium oxide improve the resistance of the composition to attack by molten steel
  • Examples of applications for the ceramic compositions of the invention in the handling and casting of steel are lining materials, and nozzles and shrouds, such as those used in continuous casting
  • the zirconium oxide-containing composition described above is particularly suitable for forming that part of a nozzle which in use is at the boundary between the surface of molten steel and molten slag which lies on top of the steel
  • the aluminium oxide-containing composition described above is particularly suitable for forming the inside of a nozzle, since it can readily be co-pressed with an alumina-graphite material which forms the rest of the nozzle, and it prevents build up of alumina and clogging of the nozzle
  • compositions may be used to form the whole nozzle if desired, it is preferred to use them only to form portions of the nozzles as described
  • the remainder of the nozzles can then be formed from a conventional carbon bonded ceramic material such as a carbon bonded alumina and graphite mixture
  • compositions were prepared as in Table 1 below The amount of each of the refractory components is expressed as percentage by weight based on the total, and the amount of liquid resin is expressed as percentage by weight of the total of the refractory components Table 1
  • Ceramic compositions according to the invention were produced by first mixing together particulate boron nitride, particulate zirconium diboride and, if present particulate aluminium oxide, zirconium oxide and silicon carbide in an intensive mixer and then adding a liquid phenol-formaldehyde resin, and mixing until the mixture of the particles and the resin was homogeneous
  • the boron nitride was a refractory grade containing up to 7% by weight of oxygen and had a particle size of less than 10 microns, and the zirconium diboride had a particle size of less than 45 microns
  • the aluminium oxide and zirconium oxide Were both 50/50 w/w of particles of less than 500 microns and particles of less than 53 microns
  • the silicon carbide had a particle size of less than 150 microns
  • the resin was a liquid novolac phenol-formaldehyde resin having a solids content of 60% by weight
  • the mixture of particles and liquid resin was heated to reduce the liquid content of the resin to render the mixture suitable for forming
  • the mixture was then formed into test specimens by cold isostatic pressing of the mixture in a mould After forming the specimens were stripped from the mould, and heated for 1 hour at 200° C heated to cure and cross-link the resin. Finally the test specimens were heated at 900° C to pyrolyse the resin and produce a carbon bond.
  • compositions 1 , 2, 3, and 4 from Example 1 were tested to assess their resistance to molten steel in comparison with a conventional carbon bonded alumina-graphite material, by measuring their corrosion rate when immersed in molten steel at 1650° C
  • Rods 50 mm in diameter and 300 mm in length were made by isostatic pressing using the method described in Example 1 , and their diameter was accurately measured The rods were then held in jigs, and immersed for one hour in molten steel in an induction furnace At the end of the test the diameter of the rods was remeasured
  • compositions 6, 7, and 8 from Example 1 were tested to assess their resistance to molten slag in comparison with a carbon bonded zirconia graphite material, by measuring their corrosion rate when immersed in molten slag at 1580° C
  • Rods of the same dimensions as those in Example 1 were made using the method described in Example 1 , and their diameter was accurately measured A borosilicate glass was sprinkled on to the surface of molten steel in an induction furnace, and allowed to melt to form a slag The rods were then held in jigs and immersed in the molten steel for one hour At the end of the test the diameter of the rods was remeasured in the area which had been in contact with the molten slag
  • Example 1 All eight compositions from Example 1 were tested to assess their resistance to oxidation, by measuring their oxidation rate at 1200° C at various time intervals Disc shaped specimens 30 mm in diameter and 10 mm high were made by the method described in Example 1. The specimens were weighed and placed in an electric oven for various times, and then removed, cooled and reweighed.
  • Compositions 1 and 3 were tested in comparison with a conventional carbon bonded alumina-graphite material to assess their ability to suppress clogging due to alumina build up when used to form the inside surface of a nozzle though which molten steel is cast.
  • Tubular nozzles having an outside diameter of 50 mm, an inside diameter of 15 mm and a length of 300m were made using the method described in Example 1
  • the nozzles were immersed in aluminium killed steel having an aluminium content of 0 2% by weight After immersion of the nozzles, oxygen was bubbled into the steel and the nozzles were agitated continuously to distribute the oxygen After 30 minutes the tests were concluded and the nozzles were removed The nozzles were then sectioned and inspected to assess the build up of alumina
  • composition 3 showed no clogging, and while composition 1 did show some clogging the material was considerably better than the alumina-graphite material
  • Example 5 Four compositions were prepared as in Table 5 below using the method described in Example 1
  • the boron nitride, zirconium diboride, aluminium oxide and zirconium oxide which were used were the same as those which were used in Example 1
  • the titanium diboride, boron and calcium hexabo ⁇ de were powders of particle size less than 50 microns
  • the magnesium oxide had a particle size of 53 to 500 microns
  • the amount of each component is expressed in the same manner as in Example 1
  • compositions were tested to assess their resistance to molten slag using the method described in Example 3. and they were tested to assess their resistance to oxidation using the method described in Example 4.
  • a mixture was prepared having the following composition by weight -
  • the mixture of the ceramic components was mixed with 6 5 % by weight, based on the total weight of the four ceramic components, of a liquid novolac phenol-formaldehyde resin having a solids content of 60 % by weight as described in Example 1
  • a slag containing 7 % by weight of fluoride was melted on top of molten steel held at 1650 °C in a 250 kg capacity high frequency induction heating furnace
  • the rods were then held in jigs, and tested by immersing them in the molten steel for two hours to assess their resistance to thermal shock, the degree of penetration of molten steel and slag, and the rate of corrosion at the slag/metal interface Similar rods made from a carbon bonded zirco ⁇ ia-graphite material were tested in a similar manner Both types of rod had adequate thermal shock resistance and resistance to penetration, but the rods made from the composition according to the invention was superior in terms of its rate of corrosion at the slag/metal interface
  • the carbon bonded zirconia-graphite rods had a corrosion rate of 3 05 mm per hour at the slag line whereas the rods made form the composition according to the invention had a corrosion rate of only 0 95 mm per hour
  • a mixture was prepared having the following composition by weight -
  • the mixture of the ceramic components was mixed with 7 5 % by weight, based on the total weight of the three ceramic components, of a liquid novalac phenol-formaldehyde resin having a solids content of 60 % by weight as described in Example 1
  • the rods were then held in jigs and immersed in aluminium killed steel containing 0 05 to 0 1 % by weight aluminium in a 250 kg capacity high frequency induction heating furnace
  • aluminium killed steel containing 0 05 to 0 1 % by weight aluminium in a 250 kg capacity high frequency induction heating furnace
  • the surface of the molten steel was covered with a layer of rice husks, and in order to prevent excessive oxidation of the steel during the test argon gas was also used to protect the surface of the steel
  • the temperature of the molten steel was 1570 to

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Ceramic compositions which are of particular value in the handling or casting of steel, for example as lining materials or for producing nozzles or shrouds used in continuous casting, comprise a mixture of particles of boron nitride, zirconium diboride and at least one other refractory material, bonded together by carbon produced by the decomposition of an organic binder such as a resin or pitch. The other refractory material may be for example a refractory metal, an oxide, a carbide, a boride or a nitride. Zirconium oxide containing compositions comprising 5-70 % by weight boron nitride, 5-60 % by weight zirconium diboride and 5-80 % by weight of zirconium oxide are particularly suitable for forming at least that part of a nozzle which in use is at the slag line in a molten steel vessel. Aluminium oxide containing compositions comprising 5-70 % by weight boron nitride, 15-50 % by weight zirconium diboride and 10-70 % by weight aluminium oxide are particularly suitable for forming the inside of nozzles as they resist alumina build up and prevent clogging of the nozzles.

Description

CERAMIC COMPOSITIONS
This invention relates to ceramic compositions which are of particular value in the handling and casting of high melting temperature metals such as iron or steel.
It is common practice to make articles, which are used in the handling and casting of molten metals such as steel, from carbon bonded ceramics (also known as black refractories). Examples of such articles are pouring nozzles for molten metal-containing vessels such as ladles or tundishes, and shrouds which surround the metal stream flowing from one vessel to another. These carbon bonded ceramics are formed from a mixture of graphite, one or more oxides such as alumina, magnesia and zirconia, and a binder such as a phenolic resin or pitch which will decompose to produce a carbon bond.
The above carbon bonded ceramic materials suffer from a number of disadvantages. They have poor thermal shock resistance and tend to crack, so that it is necessary to treat articles such as nozzles and shrouds in some way so as to minimise the thermal shock produced when the articles are heated rapidly to elevated temperatures. The materials also have low oxidation resistance as they contain a relatively high proportion of carbon, mainly in the form of graphite. The materials also suffer from additional disadvantages in specific applications. For example, the outer surface of a nozzle is susceptible to attack by slag present on the surface of the molten metal in which the nozzle is immersed (known as slag line attack), and the bore of a nozzle tends to become clogged in use due to the build up of alumina, when casting aluminium killed steel.
It has now been found that a carbon bonded ceramic material consisting of a mixture of boron nitride, zirconium diboride and at least one other refractory material, is particularly useful as an alternative to conventional graphite-containing carbon bonded ceramics for the production of articles used for the handling and casting of molten metals such as steel
According to a first feature of the invention there is provided a ceramic composition comprising a mixture of particles of boron nitride, zirconium diboride and at least one other refractory material bonded together by carbon produced by the decomposition of an organic binder
The other refractory material may be for example a refractory metal, an oxide, a carbide, a boπde or a nitride
The refractory metal may be for example boron
Examples of suitable refractory oxides include aluminium oxide, zirconium oxide, magnesium oxide, yttrium oxide, calcium oxide, chromium oxide and silicon oxide More than one oxide may be used, and the oxide may be a mixed refractory oxide such as mullite
Examples of suitable carbides include silicon carbide, boron carbide, aluminium carbide and zirconium carbide More than one carbide may be used
Examples of suitable boπdes include titanium diboride and calcium hexaboπde, and examples of suitable nitrides include silicon nitride, aluminium nitride, titanium nitride, zirconium nitride and sialon More than one boπde and more than one nitride may be used
According to one preferred embodiment of the invention the ceramic composition comprises a mixture of boron nitride, zirconium diboride and zirconium oxide, and the ceramic composition preferably contains 5 - 70 % by weight of boron nitride more preferably 15 - 50 % by weight, 5 - 60 % by weight of zirconium diboride, more preferably 15 - 50 % by weight, and 5 - 80 % by weight of zirconium oxide, more preferably 10 - 60 % by weight
According to another preferred embodiment of the invention the ceramic composition comprises a mixture of boron nitride, zirconium diboride and aluminium oxide, and the ceramic composition preferably contains 5 - 70 % by weight of boron nitride, more preferably 15 - 50 % by weight, 5 - 60 % by weight of zirconium diboride, more preferably 15 - 50 % by weight, and 10 - 70 % by weight of aluminium oxide, more preferably 15 - 60 % by weight
In the above preferred embodiments the proportion of each of the components of the ceramic composition is expressed as percentage by weight based on the total weight of the ceramic composition, excluding the carbon bond
The organic binder which decomposes to produce a carbon bond may be for example a phenol-formaldehyde resin such as a novolac or a resol phenol-formaldehyde resin, a urea-formaldehyde resin a melamine-formaldehyde resin, an epoxy resin, a furane resin or pitch
The organic binder is preferably a phenol-formaldehyde resin, and it is preferred that the resin is used in the form of a liquid A powdered phenolic resin can be used but it is necessary to dissolve the resin in a suitable solvent, such as furfural, in order to mix the resin with the other components and produce the ceramic composition The amount of liquid phenolic resin used will usually be of the order 5 - 25%, preferably 10 - 15% by weight, based on the total of the other components, and after production of the ceramic composition, the composition will usually contain 2 - 12% by weight, preferably of the order of 5% by weight, of carbon produced by decomposition of the resin, based on the total weight of the ceramic composition The ceramic compositions of the invention may be produced by first mixing together particles of the boron nitride, the zirconium diboride and the other refractory material , and then adding the liquid resin and mixing until the mixture of the particles and the resin is homogeneous It may be necessary to heat the mixture to reduce the liquid content of the resin to render the mixture suitable for forming The mixture is then formed to a desired shape, preferably by cold isostatic pressing of the mixture in a suitable mould After forming the shape is heated to cure and cross-link the resin, for example at about 150° - 300° C for about 1 hour, and then heated at about 700° - 1200° C to pyrolyse the resin and produce a carbon bond
Although the ceramic compositions of the invention may be used for other applications, for example in the melting and handling of glass or in the melting, handling and casting of relatively low melting temperature metals such as aluminium and its alloys, the compositions are particularly useful for use in the handling and casting of high melting temperature metals such as iron or steel
When used in the handling and casting of a metal such as steel each of the three components of the ceramic compositions of the invention confers particular properties on the compositions The boron nitride makes the compositions non-wetting in the presence of molten steel or molten slag, and hence when used for example in a composition which is used for a casting nozzle will prevent clogging of the nozzle due to alumina build up In addition the boron nitride makes the compositions resistant to thermal shock, and helps to protect the compositions from oxidation The zirconium diboride confers erosion resistance, gives protection against oxidation at higher temperatures ( up to about 1250° C) than does the boron nitride, and improves the resistance of the compositions to attack by molten slag. In the preferred embodiments both the aluminium oxide and the zirconium oxide improve the resistance of the composition to attack by molten steel In order to increase the oxidation resistance of the compositions at higher temperatures, for example up to about 1400° C, it is desirable to include in the compositions a proportion, for example 5 - 20% by weight based on the weight of the composition, of silicon carbide and/or titanium diboride, as at least part of the third refractory material
Examples of applications for the ceramic compositions of the invention in the handling and casting of steel are lining materials, and nozzles and shrouds, such as those used in continuous casting The zirconium oxide-containing composition described above is particularly suitable for forming that part of a nozzle which in use is at the boundary between the surface of molten steel and molten slag which lies on top of the steel The aluminium oxide-containing composition described above is particularly suitable for forming the inside of a nozzle, since it can readily be co-pressed with an alumina-graphite material which forms the rest of the nozzle, and it prevents build up of alumina and clogging of the nozzle
While these compositions may be used to form the whole nozzle if desired, it is preferred to use them only to form portions of the nozzles as described The remainder of the nozzles can then be formed from a conventional carbon bonded ceramic material such as a carbon bonded alumina and graphite mixture
The following examples will serve to illustrate the invention
Example 1
A series of compositions was prepared as in Table 1 below The amount of each of the refractory components is expressed as percentage by weight based on the total, and the amount of liquid resin is expressed as percentage by weight of the total of the refractory components Table 1
Ceramic compositions according to the invention were produced by first mixing together particulate boron nitride, particulate zirconium diboride and, if present particulate aluminium oxide, zirconium oxide and silicon carbide in an intensive mixer and then adding a liquid phenol-formaldehyde resin, and mixing until the mixture of the particles and the resin was homogeneous
The boron nitride was a refractory grade containing up to 7% by weight of oxygen and had a particle size of less than 10 microns, and the zirconium diboride had a particle size of less than 45 microns The aluminium oxide and zirconium oxide Were both 50/50 w/w of particles of less than 500 microns and particles of less than 53 microns The silicon carbide had a particle size of less than 150 microns
The resin was a liquid novolac phenol-formaldehyde resin having a solids content of 60% by weight
The mixture of particles and liquid resin was heated to reduce the liquid content of the resin to render the mixture suitable for forming The mixture was then formed into test specimens by cold isostatic pressing of the mixture in a mould After forming the specimens were stripped from the mould, and heated for 1 hour at 200° C heated to cure and cross-link the resin. Finally the test specimens were heated at 900° C to pyrolyse the resin and produce a carbon bond.
Example 2
Compositions 1 , 2, 3, and 4 from Example 1 were tested to assess their resistance to molten steel in comparison with a conventional carbon bonded alumina-graphite material, by measuring their corrosion rate when immersed in molten steel at 1650° C
Rods 50 mm in diameter and 300 mm in length were made by isostatic pressing using the method described in Example 1 , and their diameter was accurately measured The rods were then held in jigs, and immersed for one hour in molten steel in an induction furnace At the end of the test the diameter of the rods was remeasured
The results obtained are tabulated in Table 2 below
Table 2
Example 3
Compositions 6, 7, and 8 from Example 1 were tested to assess their resistance to molten slag in comparison with a carbon bonded zirconia graphite material, by measuring their corrosion rate when immersed in molten slag at 1580° C
Rods of the same dimensions as those in Example 1 were made using the method described in Example 1 , and their diameter was accurately measured A borosilicate glass was sprinkled on to the surface of molten steel in an induction furnace, and allowed to melt to form a slag The rods were then held in jigs and immersed in the molten steel for one hour At the end of the test the diameter of the rods was remeasured in the area which had been in contact with the molten slag
The results obtained are shown in Table 3 below
Table 3
Example 4
All eight compositions from Example 1 were tested to assess their resistance to oxidation, by measuring their oxidation rate at 1200° C at various time intervals Disc shaped specimens 30 mm in diameter and 10 mm high were made by the method described in Example 1. The specimens were weighed and placed in an electric oven for various times, and then removed, cooled and reweighed.
The results, which are expressed as weight change of the specimens in mg/cm2/hour, are shown in Table 4 below.
Table 4
As the results in Table 4 show, the rate of oxidation decreases substantially with time, reaching virtually zero after 130 hours. This can be explained by the phenomenon of passive oxidation which is inherent in the compositions.
Example 5
Compositions 1 and 3 were tested in comparison with a conventional carbon bonded alumina-graphite material to assess their ability to suppress clogging due to alumina build up when used to form the inside surface of a nozzle though which molten steel is cast. Tubular nozzles having an outside diameter of 50 mm, an inside diameter of 15 mm and a length of 300m were made using the method described in Example 1 The nozzles were immersed in aluminium killed steel having an aluminium content of 0 2% by weight After immersion of the nozzles, oxygen was bubbled into the steel and the nozzles were agitated continuously to distribute the oxygen After 30 minutes the tests were concluded and the nozzles were removed The nozzles were then sectioned and inspected to assess the build up of alumina
The alumina-graphite material became badly clogged Composition 3 showed no clogging, and while composition 1 did show some clogging the material was considerably better than the alumina-graphite material
Example 6
Four compositions were prepared as in Table 5 below using the method described in Example 1 The boron nitride, zirconium diboride, aluminium oxide and zirconium oxide which were used were the same as those which were used in Example 1 The titanium diboride, boron and calcium hexaboπde were powders of particle size less than 50 microns The magnesium oxide had a particle size of 53 to 500 microns The amount of each component is expressed in the same manner as in Example 1
Table 5
The compositions were tested to assess their resistance to molten slag using the method described in Example 3. and they were tested to assess their resistance to oxidation using the method described in Example 4.
The results obtained are shown in Table 6 below. The results of the oxidation resistance tests are expressed as weight change of the specimens in mg/cm2/hour.
Table 6
Example 7
A mixture was prepared having the following composition by weight -
Boron nitride 20 % Zirconium diboride 20 %
Zirconium dioxide 55 %
Silicon carbide 5 %
Each of the four components was as described in Example 1
The mixture of the ceramic components was mixed with 6 5 % by weight, based on the total weight of the four ceramic components, of a liquid novolac phenol-formaldehyde resin having a solids content of 60 % by weight as described in Example 1
Ceramic test specimens in the form of rods 4 cm in diameter and 30 cm in length were then produced using the procedure described in Example 1 , and the diameter of the rods was accurately measured
A slag containing 7 % by weight of fluoride was melted on top of molten steel held at 1650 °C in a 250 kg capacity high frequency induction heating furnace
The rods were then held in jigs, and tested by immersing them in the molten steel for two hours to assess their resistance to thermal shock, the degree of penetration of molten steel and slag, and the rate of corrosion at the slag/metal interface Similar rods made from a carbon bonded zircoπia-graphite material were tested in a similar manner Both types of rod had adequate thermal shock resistance and resistance to penetration, but the rods made from the composition according to the invention was superior in terms of its rate of corrosion at the slag/metal interface The carbon bonded zirconia-graphite rods had a corrosion rate of 3 05 mm per hour at the slag line whereas the rods made form the composition according to the invention had a corrosion rate of only 0 95 mm per hour
Example 8
A mixture was prepared having the following composition by weight -
Boron nitride 25 % Zirconium diboride 20 %
Aluminium oxide 55 %
Each of the three components was as described in Example 1
The mixture of the ceramic components was mixed with 7 5 % by weight, based on the total weight of the three ceramic components, of a liquid novalac phenol-formaldehyde resin having a solids content of 60 % by weight as described in Example 1
Ceramic test specimens in the form of rods 4 cm in diameter and 30 cm in length were then produced using the procedure described in Example 1
The rods were then held in jigs and immersed in aluminium killed steel containing 0 05 to 0 1 % by weight aluminium in a 250 kg capacity high frequency induction heating furnace The surface of the molten steel was covered with a layer of rice husks, and in order to prevent excessive oxidation of the steel during the test argon gas was also used to protect the surface of the steel The temperature of the molten steel was 1570 to
1580 °C and the immersion time was 2 hours Similar rods made from a carbon bonded alumina-graphite material were tested in a similar manner At the end of the test the rods made from the composition according to the invention had appreciably less build up of alumina on their surface than did the rods made from the carbon-bonded alumina-graphite material.

Claims

1. A ceramic composition characterised in that the composition comprises a mixture of particles of boron nitride, zirconium diboride and at least one other refractory material, bonded together by carbon produced by the decomposition of an organic binder.
2. A ceramic composition according to Claim 1 characterised in that the at least one other refractory material is a refractory metal, an oxide, a carbide, a boride or a nitride.
3. A ceramic composition according to Claim 2 characterised in that the refractory metal is boron.
4. A ceramic composition according to Claim 2 characterised in that the oxide is one or more of aluminium oxide, zirconium oxide, magnesium oxide, yttrium oxide, calcium oxide, chromium oxide and silicon oxide.
5. A ceramic composition according to Claim 2 characterised in that the carbide is one or more of silicon carbide, boron carbide, aluminium carbide and zirconium carbide.
6. A ceramic composition according to Claim 2 characterised in that the boride is titanium diboride and/or calcium hexaboride.
7. A ceramic composition according to Claim 2 characterised in that the nitride is one or more of silicon nitride, aluminium nitride, titanium nitride, zirconium nitride and sialon.
8. A ceramic composition according to Claim 4 characterised in that the composition contains 5 - 70 % by weight of boron nitride, 5 - 60 % by weight of zirconium diboride and 5 - 80 % by weight of zirconium oxide, based on the total weight of the ceramic composition excluding the carbon bond.
9. A ceramic composition according to Claim 8 characterised in that the composition contains 15 - 50 % by weight of boron nitride, 15 - 50 % by weight of zirconium diboride and 10 - 60 % by weight of zirconium oxide.
10. A ceramic composition according to Claim 4 characterised in that the composition contains 5 - 70 % by weight of boron nitride, 5 - 60 % by weight of zirconium diboride and 10 - 70 % by weight of aluminium oxide, based on the total weight of the ceramic composition excluding the carbon bond.
1 1 . A ceramic composition according to Claim 10 characterised in that the composition contains 15 - 50 % by weight of boron nitride, 15 - 50 % by weight of zirconium diboride and 15 - 60 % by weight of aluminium oxide.
12. A ceramic composition according to any one of Claims 1 to 1 1 characterised in that the organic binder is a novalac phenol-formaldehyde resin, a resol phenol-formaldehyde resin, a urea-formaldehyde resin, a melamine-formaldehyde resin, an epoxy resin or pitch.
13. A ceramic composition according to any one of Claims 1 to 12 characterised in that the composition contains 2 - 12 % by weight of carbon produced by decomposition of the organic binder.
14. A ceramic composition according to any one of Claims 1 to 13 characterised in that at least part of the other refractory material is silicon carbide and/or titanium diboride.
15. A ceramic composition according to Claim 14 characterised in that the composition contains 5 - 20 % by weight of silicon carbide and/or titanium diboride.
EP97932897A 1996-07-05 1997-06-24 Ceramic compositions Ceased EP0909263A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9614188 1996-07-05
GBGB9614188.2A GB9614188D0 (en) 1996-07-05 1996-07-05 Ceramic compositions
PCT/GB1997/001706 WO1998001405A1 (en) 1996-07-05 1997-06-24 Ceramic compositions

Publications (1)

Publication Number Publication Date
EP0909263A1 true EP0909263A1 (en) 1999-04-21

Family

ID=10796447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97932897A Ceased EP0909263A1 (en) 1996-07-05 1997-06-24 Ceramic compositions

Country Status (12)

Country Link
EP (1) EP0909263A1 (en)
JP (1) JP2001505176A (en)
KR (1) KR20000023576A (en)
AR (1) AR003100A1 (en)
AU (1) AU732774B2 (en)
BR (1) BR9710180A (en)
CA (1) CA2260197A1 (en)
GB (1) GB9614188D0 (en)
TR (1) TR199802768T2 (en)
TW (1) TW436471B (en)
WO (1) WO1998001405A1 (en)
ZA (1) ZA975895B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2030959B1 (en) * 2007-08-28 2010-04-14 ESK Ceramics GmbH & Co.KG Sintered polycrystalline mixed raw materials based on bornitiride and zirconium dioxide, method for their manufacture and their use
CN104211411A (en) * 2014-06-19 2014-12-17 江苏泰瑞耐火有限公司 ZrO2-BN ceramic material submerged nozzle and its preparation method
KR102156575B1 (en) * 2020-01-23 2020-09-17 주식회사 화인테크 Machinable ceramic composite material having a low coefficient of thermal expansion and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288171A (en) * 1986-06-06 1987-12-15 旭硝子株式会社 Zrb2 base composite sintered body
JPS63100071A (en) * 1986-10-16 1988-05-02 黒崎窯業株式会社 Manufacture of zrb2-containing refractories
JP2943992B2 (en) * 1990-04-07 1999-08-30 新日本製鐵株式会社 Nozzle for manufacturing quenched metal ribbon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9801405A1 *

Also Published As

Publication number Publication date
AU732774B2 (en) 2001-04-26
KR20000023576A (en) 2000-04-25
JP2001505176A (en) 2001-04-17
AR003100A1 (en) 1998-07-08
TW436471B (en) 2001-05-28
BR9710180A (en) 2000-01-11
ZA975895B (en) 1998-01-30
TR199802768T2 (en) 1999-03-22
GB9614188D0 (en) 1996-09-04
AU3626597A (en) 1998-02-02
CA2260197A1 (en) 1998-01-15
WO1998001405A1 (en) 1998-01-15

Similar Documents

Publication Publication Date Title
EP0309225A2 (en) Prevention of Al2O3 formation in pouring nozzles and the like
PL189510B1 (en) Sleeve constituting a portion of immerses tapping nozzle and composition for making such sleeve
JPH11506393A (en) Molten metal outflow device in casting equipment and method of use
JPS62297264A (en) Carbon-bonded refractories
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
US20010036894A1 (en) Ceramic compositions
AU732774B2 (en) Ceramic compositions
JP5166302B2 (en) Continuous casting nozzle
JPS6348828B2 (en)
JP3312373B2 (en) Long nozzle for continuous casting
US5911900A (en) Continuous casting nozzle for casting molten steel
JPH0617268B2 (en) Refractory for continuous casting
US5975382A (en) Continuous casting nozzle for casting molten steel
MXPA98010883A (en) Ceram compositions
JPH0556306B2 (en)
JP2810111B2 (en) Gas injected refractories
KR100349243B1 (en) digestion nozzle for continous casting
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP2003145265A (en) Immersion nozzle for casting
JP3035858B2 (en) Graphite-containing refractory and method for producing the same
JPS63157746A (en) Submerged nozzle for continuous casting
JPS6152099B2 (en)
JP4020224B2 (en) Molten metal processing parts
JP2001030047A (en) Immersion nozzle having sliding surface
JPH05148006A (en) Carbon-containing refractory

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE DK ES FI FR GB IT LU NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010910

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020328