EP0908510A1 - Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs - Google Patents

Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs Download PDF

Info

Publication number
EP0908510A1
EP0908510A1 EP97870151A EP97870151A EP0908510A1 EP 0908510 A1 EP0908510 A1 EP 0908510A1 EP 97870151 A EP97870151 A EP 97870151A EP 97870151 A EP97870151 A EP 97870151A EP 0908510 A1 EP0908510 A1 EP 0908510A1
Authority
EP
European Patent Office
Prior art keywords
fabrics
composition
alkyl
compositions
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97870151A
Other languages
German (de)
English (en)
Inventor
Valerio Del Duca (Nmn)
Stefano Giunti
Sabina Antonioli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP97870151A priority Critical patent/EP0908510A1/fr
Priority to BR9812902-3A priority patent/BR9812902A/pt
Priority to AU10726/99A priority patent/AU1072699A/en
Priority to US09/509,915 priority patent/US6316400B1/en
Priority to PCT/US1998/021240 priority patent/WO1999018179A1/fr
Priority to CA002305323A priority patent/CA2305323A1/fr
Priority to MXPA00003519A priority patent/MXPA00003519A/es
Priority to JP2000514979A priority patent/JP2001519458A/ja
Priority to EP98953321A priority patent/EP1021505A1/fr
Priority to MA25282A priority patent/MA24672A1/fr
Priority to ARP980105025 priority patent/AR013976A1/es
Publication of EP0908510A1 publication Critical patent/EP0908510A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/92Sulfobetaines ; Sulfitobetaines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • C11D3/364Organic compounds containing phosphorus containing nitrogen

Definitions

  • the present invention relates to the bleaching of fabrics.
  • Peroxygen bleach-containing compositions have been described in laundry applications as laundry detergents, laundry additives or even laundry pretreaters.
  • peroxygen bleach-containing compositions comprising surfactants like zwitterionic betaine surfactants in laundry applications to boost the removal of encrustated stains/soils which are otherwise particularly difficult to remove, such as grease, coffee, tea, grass, mud/clay-containing soils and the like.
  • compositions may damage fabrics and/or colors, resulting in loss of tensile strength and/or color change/decoloration, especially when used in laundry pretreatment application, e.g., when applied directly (neat) onto the fabrics, and left to act onto said fabrics for prolonged periods of time before rinsing the fabrics, or washing and then rinsing the fabrics.
  • a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant. Indeed, it is by combining these ingredients that a liquid bleaching composition is provided which exhibits a great flexibility in the soils it may clean while being safe to the fabrics bleached therewith as well as to colors. Indeed using such salts free zwitterionic betaine surfactants instead of conventional zwitterionic betaine surfactants provides improved color and fabric safety.
  • the present compositions also provide effective stain removal performance on various stains including greasy stains and effective bleaching performance.
  • these salts free zwitterionic betaine surfactants are used in combination with ethoxylated nonionic surfactants. It has been found that the addition of such an ethoxylated nonionic surfactant in the compositions of the present invention further boosts the removal of various types of stains including greasy stains like mayonnaise, vegetal oil, sebum, make-up, and more surprisingly boost the bleaching performance.
  • compositions of the present invention provide excellent stain removal performance on a broad range of stains and soils and excellent bleachable performance when used in any laundry application, e.g., as a laundry detergent or a laundry additive, and especially when used as a laundry pretreater, or even in other household applications like in hard surface cleaning applications.
  • compositions herein are physically and chemically stable upon prolonged periods of storage.
  • compositions according to the present invention are able to perform in a variety of conditions, i.e., in hard and soft water as well as when used neat or diluted.
  • the present invention encompasses a liquid bleaching composition comprising a peroxygen bleach and a salt free zwitterionic betaine surfactant.
  • the present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing the loss of tensile strength in said fabrics.
  • the present invention also encompasses the use of a salt free zwitterionic betaine surfactant, in a liquid peroxygen bleach-containing composition, for the bleaching of fabrics, for reducing color damage to said fabrics.
  • the present invention further encompasses processes of bleaching fabrics starting from a liquid composition as defined herein.
  • the processes of bleaching fabrics include the steps of contacting said fabrics with the liquid composition herein neat or diluted, and subsequently rinsing said fabrics.
  • the composition is applied neat on the fabrics, and the fabrics are subsequently washed in a normal wash cycle.
  • the liquid cleaning composition is a liquid cleaning composition
  • compositions according to the present invention are liquid compositions as opposed to a solid or a gas.
  • liquid includes “pasty” compositions.
  • the liquid compositions herein are preferably aqueous compositions.
  • the liquid compositions according to the present invention preferably have a pH up to 7, more preferably from 1 to 6, and even more preferably from 1.5 to 5.5. Formulating the compositions according to the present invention in the acidic pH range contributes to the chemical stability of the compositions and to the stain removal performance of the compositions.
  • the pH of the compositions may be adjusted by any acidifying agents known to those skilled in the art. Examples of acidifying agents are organic acids such as citric acid and inorganic acids such as sulphuric acid.
  • compositions according to the present invention comprise a peroxygen bleach or a mixture thereof. Indeed, the presence of peroxygen bleach contributes to the excellent bleaching benefits of said compositions.
  • Suitable peroxygen bleaches to be used herein are hydrogen peroxide, water soluble sources thereof, or mixtures thereof.
  • a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
  • Suitable water-soluble sources of hydrogen peroxide for use herein include percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodecandioic acid (DPDA), magnesium perphtalic acid, perlauric acid, perbenzoic and alkylperbenzoic acids, hydroperoxides, aliphatic and aromatic diacyl peroxides, and mixtures thereof.
  • Preferred peroxygen bleaches herein are hydrogen peroxide, hydroperoxide and/or diacyl peroxide. Hydrogen peroxide is the most preferred peroxygen bleach herein.
  • Suitable hydroperoxides for use herein are tert-butyl hydroperoxide, cumyl hydroperoxide, 2,4,4-trimethylpentyl-2-hydroperoxide, di-isopropylbenzene-monohydroperoxide, tert-amyl hydroperoxide and 2,5-dimethyl-hexane-2,5-dihydroperoxide.
  • Such hydroperoxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • Suitable aliphatic diacyl peroxides for use herein are dilauroyl peroxide, didecanoyl peroxide, dimyristoyl peroxide, or mixtures thereof.
  • Suitable aromatic diacyl peroxide for use herein is for example benzoyl peroxide.
  • Such diacyl peroxides have the advantage to be particularly safe to fabrics and color while delivering excellent bleaching performance when used in any laundry application.
  • compositions herein comprise from 0.01% to 20% by weight of the total composition of said peroxygen bleach or mixtures thereof, preferably from 1% to 15% and more preferably from 2% to 10%.
  • compositions according to the present invention comprise a salt free zwitterionic betaine surfactant or a mixture thereof.
  • compositions of the present invention comprise from 0.001% to 20% by weight of the total composition of a salt free zwitterionic betaine surfactant or a mixture thereof, preferably from 0.01% to 10% by weight, more preferably from 0.5% to 8% and most preferably from 1% to 5%.
  • salt free zwitterionic betaine surfactants it is meant herein that the zwitterionic betaine surfactant (raw material) herein contains less than 5% by weight of salts, preferably less than 3%, more preferably less than 2%, even more preferably less than 1% and most preferably from 0.01% to 0.5%.
  • salts is in meant herein any material having as base unit, a couple made of positive ion (or positive molecular ion) and negative ion (or negative molecular ion) containing one or more halogen atoms.
  • Such salts include sodium chloride, potassium chloride, sodium bromide and the like.
  • Such salts free zwitterionic betaine surfactants are obtainable by conventional manufacturing processes like inverse osmosis or fractionated precipitation.
  • inverse osmosis is based on the principle of contacting the zwitterionic betaine surfactant raw material (commercially available ) with a polar solvent (it is to be understood that such a solvent is free of salts) separated by a semi-permeable membrane for example acetate-cellulose.
  • An adequate pressure is applied on the system to allow the salts to migrate from the surfactant raw material to the polar solvent phase. This way the zwitterionic betaine surfactant raw material is purified, i.e. the salts is subtracted from the raw material.
  • Suitable salt free zwitterionic betaine surfactants for use herein contain both a cationic hydrophilic group, i.e., a quaternary ammonium group, and anionic hydrophilic group on the same molecule at a relatively wide range of pH's.
  • the typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups like sulfates, phosphonates, and the like can be used.
  • R 1 -N + (R 2 )(R 3 )R 4 X - wherein R 1 is a hydrophobic group; R 2 is hydrogen, C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group; R 3 is C 1 -C 6 alkyl, hydroxy alkyl or other substituted C 1 -C 6 alkyl group which can also be joined to R 2 to form ring structures with the N, or a C 1 -C 6 sulfonate group; R 4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is a carboxylate or sulfonate group.
  • R 1 are aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chains that can contain linking groups such as amido groups, ester groups. More preferred R 1 is an alkyl group containing from 1 to 24 carbon atoms, preferably from 8 to 18, and more preferably from 10 to 16. These simple alkyl groups are preferred for cost and stability reasons.
  • the hydrophobic group R 1 can also be an amido radical of the formula R a -C(O)-NH-(C(R b ) 2 ) m , wherein R a is an aliphatic or aromatic, saturated or unsaturated, substituted or unsubstituted hydrocarbon chain, preferably an alkyl group containing from 8 up to 20 carbon atoms, preferably up to 18, more preferably up to 16, R b is selected from the group consisting of hydrogen and hydroxy groups, and m is from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R b ) 2 ) moiety.
  • Preferred R 2 is hydrogen, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 3 is C1-C4 sulfonate group, or a C 1 -C 3 alkyl and more preferably methyl.
  • Preferred R 4 is (CH2) n wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is from 1 to 3.
  • alkyldimethyl betaines examples include coconut-dimethyl betaine, lauryl dimethyl betaine, decyl dimethyl betaine, 2-(N-decyl-N, N-dimethyl-ammonia)acetate, 2-(N-coco N, N-dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine.
  • amidobetaines include cocoamidoethylbetaine, cocoamidopropyl betaine or C10-C14 fatty acylamidopropylene(hydropropylene)sulfobetaine.
  • All these zwitterionic betaine surfactants contains less than 5% of salts.
  • salt free zwitterionic betaine surfactants reduce color damage (i.e., color change and/or decoloration) when used instead of conventional zwitterionic betaine surfactants in a liquid peroxygen bleach-containing composition to bleach fabrics.
  • the tensile strength in a fabric may be measured by stretching said fabric until it breaks.
  • the force needed to break the fabric is the "Ultimate Tensile Stress” and may be measured with a stress-strain INSTRON® machine available from INSTRON.
  • the loss of tensile strength is the difference between the tensile strength of a fabric taken as a reference, e.g. a fabric which has not been bleached, and the tensile strength of the same fabric after having been bleached with a composition of the present invention.
  • a tensile strength loss of zero means that no fabric damage is observed.
  • the colour safety can be evaluated visually by comparing side by side fabrics pretreated with a composition of the present invention and the reference composition. Differences and graduations in colour can be visually assessed and ranked according to Panel Score Units (PSU) using any suitable scale. PSU data can be handled statistically using conventional techniques. Alternatively, various types of optical apparatus and procedures can be used to assess the improvement in colour safety afforded by the present invention. For example when evaluating colour safety on fabrics measurements with Hunterlab colour Quest 45/0 apparatus can be used.
  • liquid compositions herein are clear and transparent compositions.
  • the appearance of a composition can be evaluated via turbidimetric analysis.
  • the transparency of a composition can be evaluated by measuring its absorbency via a spectrophotometer at 800 nm wave length.
  • liquid compositions of the present invention are physically and chemically stable upon prolonged periods of storage.
  • Chemical stability of the compositions herein may be evaluated by measuring the concentration of available oxygen (often abbreviated to AvO2) at given storage time after having manufactured the compositions.
  • concentration of available oxygen can be measured by chemical titration methods known in the art, such as the iodometric method, thiosulphatimetric method, the permanganometric method and the cerimetric method. Said methods and the criteria for the choice of the appropriate method are described for example in "Hydrogen Peroxide", W. C. Schumb, C. N. Satterfield and R. L. Wentworth, Reinhold Publishing Corporation, New York, 1955 and "Organic Peroxides", Daniel Swern, Editor Wiley Int. Science, 1970.
  • compositions herein may further comprise a variety of other optional ingredients such as cheating agents, builders, other surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, radical scavengers, catalysts, dye transfer agents, solvents, brighteners, perfumes, pigments and dyes.
  • cheating agents such as cheating agents, builders, other surfactants, stabilisers, bleach activators, soil suspenders, soil suspending polyamine polymers, polymeric soil release agents, radical scavengers, catalysts, dye transfer agents, solvents, brighteners, perfumes, pigments and dyes.
  • compositions of the present invention may further comprise other surfactants than the ones mentioned hereinbefore including nonionic surfactants, anionic surfactants, cationic surfactants and/or amphoteric surfactants.
  • compositions according to the present invention may comprise from 0.01% to 30% by weight of the total composition of another surfactant on top of the salt free zwitterionic betaine surfactant, preferably from 0.1% to 25 % and more preferably from 0.5% to 20%.
  • Particularly preferred surfactants herein are nonionic surfactants like alkoxylated nonionic surfactants.
  • Suitable ethoxylated nonionic surfactants herein are ethoxylated nonionic surfactants according to the formula RO-(C 2 H 4 O) n H, wherein R is a C 6 to C 22 alkyl chain or a C 6 to C 28 alkyl benzene chain, and wherein n is from 0 to 20, preferably from 1 to 15 and, more preferably from 2 to 15 and most preferably from 2 to 12.
  • the preferred R chains for use herein are the C 8 to C 22 alkyl chains.
  • Propoxylated nonionic surfactants and ethoxy/propoxylated ones may also be used herein instead of the ethoxylated nonionic surfactants as defined herein above or together with said surfactants
  • Preferred ethoxylated nonionic surfactants are according to the formula above and have an HLB (hydrophilic-lipophilic balance) below 16, preferably below 15, and more preferably below 14. Those ethoxylated nonionic surfactants have been found to provide good grease cutting properties.
  • Dobanol R 91-2.5 or Lutensol R TO3, or Lutensol R AO3, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or mixtures thereof.
  • Dobanol R surfactants are commercially available from SHELL.
  • Lutensol R surfactants are commercially available from BASF and these Tergitol R surfactants are commercially available from UNION CARBIDE.
  • Suitable chemical processes for preparing the ethoxylated nonionic surfactants for use herein include condensation of corresponding alcohols with alkylene oxide, in the desired proportions. Such processes are well-known to the man skilled in the art and have been extensively described in the art.
  • compositions herein may desirably comprise one of those ethoxylated nonionic surfactants or a mixture of those ethoxylated nonionic surfactants having different HLBs (hydrophilic-lipophilic balance).
  • the compositions herein comprise an ethoxylated nonionic surfactant according to the above formula and having an HLB up to 10 (i.e., a so called hydrophobic ethoxylated nonionic surfactant), preferably below 10, more preferably below 9, and an ethoxylated nonionic surfactant according to the above formula and having an HLB above 10 to 16 (i.e., a so called hydrophilic ethoxylated nonionic surfactant), preferably from 11 to 14.
  • compositions of the present invention typically comprise from 0.01% to 15% by weight of the total composition of said hydrophobic ethoxylated nonionic surfactant, preferably from 0.5% to 10% and from 0.01% to 15% by weight of said hydrophilic ethoxylated nonionic surfactant, preferably from 0.5% to 10%.
  • Such mixtures of ethoxylated nonionic surfactants with different HLBs may be desired as they allow optimum grease cleaning removal performance on a broader range of greasy soils having different hydrophobic/hydrophilic characters.
  • the ethoxylated nonionic surfactants herein have the ability to further boost the stain removal performance delivered by the salt free betaine zwitterionic surfactants herein on greasy stains, while providing improved bleaching performance to the liquid peroxygen bleach-containing compositions of the present invention comprising them.
  • optimum stain removal performance and bleaching performance are obtained when the ethoxylated nonionic surfactant and the salt free zwitterionic betaine surfactant are present in the compositions of the present invention comprising a peroxygen bleach (pH up to 7), at weight ratio of the ethoxylated nonionic surfactant to the salt free zwitterionic betaine surfactant of from 0.01 to 20, preferably from 0.1 to 15, more preferably from 0.5 to 5 and most preferably from 0.8 to 3.
  • a peroxygen bleach pH up to 7
  • compositions herein at low total level of surfactants.
  • the compositions herein comprise from 0.01% to 35% by weight of the total composition of ethoxylated nonionic surfactant and salt free zwitterionic betaine surfactant, preferably from 0.1% to 15%, more preferably from 0.5% to 10%, even more preferably below 10% and most preferably from 1% to 8%.
  • ethoxylated nonionic surfactant on top of the salt free zwitterionic betaine surfactant, in a liquid aqueous composition comprising a peroxygen bleach (pH up to 7), boosts the bleaching performance and the removal of various types of stains including greasy stains (e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up), as compared to the bleaching and stain removal performance delivered by the same composition based only on one of these surfactants (i.e., ethoxylated nonionic surfactant or zwitterionic betaine surfactant) at equal total level of surfactants.
  • greasy stains e.g., lipstick, olive oil, mayonnaise, vegetal oil, sebum, make-up
  • the stain removal performance may be evaluated by the following test methods on various type of stains.
  • a suitable test method for evaluating the stain removal performance on a soiled fabric for example under pretreatment condition is the following: A composition according to the present invention is applied neat to a fabric preferably to the soiled portion of the fabric, left to act from 1 to 10 minutes, and said pretreated fabric is then washed according to common washing conditions, at a temperature of from 30° to 70°C for from 10 to 100 minutes. The stain removal is then evaluated by comparing side by side the soiled fabric pretreated with the composition of the present invention with those pretreated with the reference, e.g., the same composition but comprising only an alkoxylated nonionic surfactant or only a salt free zwitterionic betaine surfactant as the sole surfactant.
  • a visual grading may be used to assign difference in panel units (psu) in a range from 0 to 4.
  • the bleaching performance may be evaluated as for the stain removal performance but the stains used are bleachable stains like coffee, tea and the like.
  • Suitable nonionic surfactants to be used herein include polyhydroxy fatty acid amide surfactants, or mixtures thereof, according to the formula: R 2 - C(O) - N(R 1 ) - Z, wherein R 1 is H, or C 1 -C 4 alkyl, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5 -C 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is C 1 -C 4 alkyl, more preferably C 1 or C 2 alkyl and most preferably methyl
  • R 2 is a straight chain C 7 -C 19 alkyl or alkenyl, preferably a straight chain C 9 -C 18 alkyl or alkenyl, more preferably a straight chain C 11 -C 18 alkyl or alkenyl, and most preferably a straight chain C 11 -C 14 alkyl or alkenyl, or mixtures thereof.
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose and xylose.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilised as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH 2 OH)-(CHOH) n-1 -CH 2 OH, -CH 2 -(CHOH) 2 -(CHOR')(CHOH)-CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly CH 2 -(CHOH) 4 -CH 2 OH.
  • R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
  • R 2 - C(O) - N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide and the like.
  • Z can be 1 - deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl and the like.
  • Suitable polyhydroxy fatty acid amide surfactants to be used herein may be commercially available under the trade name HOE® from Hoechst.
  • polyhydroxy fatty acid amide surfactants are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
  • compositions containing polyhydroxy fatty acid amides are disclosed for example in GB patent specification 809,060, published February 18, 1959, by Thomas Hedley & Co., Ltd., US patent 2,965,576, issued December 20, 1960 to E.R. Wilson, US patent 2,703,798, Anthony M. Schwartz, issued March 8, 1955, US patent 1,985,424, issued December 25, 1934 to Piggott and WO92/06070, each of which is incorporated herein by reference.
  • Suitable anionic surfactants to be used in the compositions herein include water-soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethylammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
  • Suitable anionic surfactants for use herein are water-soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
  • R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C
  • Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium and cations derived from alkanolamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like.
  • Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate, C 12 -C 18 E(1.0)M), C 12 -C 18 alkyl polyethoxylate (2.25) sulfate, C 12 -C 18 E(2.25)M), C 12 -C 18 alkyl polyethoxylate (3.0) sulfate C 12 -C 18 E(3.0), and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate C 12 -C 18 E(4.0)M), wherein M is conveniently selected from sodium and potassium.
  • anionic surfactants useful for detersive purposes can also be used herein. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C 9 -C 20 linear alkylbenzenesulfonates, C 8 -C 22 primary or secondary alkanesulfonates, C 8 -C 24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
  • C 9 -C 20 linear alkylbenzenesulfonates C 8 -C 22 primary or secondary alkanesulfonates
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as C 14-16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolysaccharides such as
  • Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tail oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975, to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
  • acyl sarcosinate or mixtures thereof, in its acid and/or salt form preferably long chain acyl sarcosinates having the following formula: wherein M is hydrogen or a cationic moiety and wherein R is an alkyl group of from 11 to 15 carbon atoms, preferably of from 11 to 13 carbon atoms.
  • M are hydrogen and alkali metal salts, especially sodium and potassium.
  • Said acyl sarcosinate surfactants are derived from natural fatty acids and the amino-acid sarcosine (N-methyl glycine). They are suitable to be used as aqueous solution of their salt or in their acidic form as powder. Being derivatives of natural fatty acids, said acyl sarcosinates are rapidly and completely biodegradable and have good skin compatibility.
  • suitable long chain acyl sarcosinates to be used herein include C 12 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 11 carbon atoms) and C 14 acyl sarcosinate (i.e., an acyl sarcosinate according to the above formula wherein M is hydrogen and R is an alkyl group of 13 carbon atoms).
  • C 12 acyl sarcosinate is commercially available, for example, as Hamposyl L-30® supplied by Hampshire.
  • C 14 acyl sarcosinate is commercially available, for example, as Hamposyl M-30® supplied by Hampshire.
  • Suitable amphoteric surfactants to be used herein include amine oxides having the following formula R 1 R 2 R 3 NO wherein each of R1, R2 and R3 is independently a saturated substituted or unsubstituted, linear or branched hydrocarbon chains of from 1 to 30 carbon atoms.
  • Preferred amine oxide surfactants to be used according to the present invention are amine oxides having the following formula R 1 R 2 R 3 NO wherein R1 is an hydrocarbon chain comprising from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains comprising from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups.
  • R1 may be a saturated substituted or unsubstituted linear or branched hydrocarbon chain.
  • Suitable amine oxides for use herein are for instance natural blend C8-C10 amine oxides as well as C12-C16 amine oxides commercially available from Hoechst.
  • the ionic strength of the compositions is higher than 1.10 -4 M, preferably higher than 5.10 -3 M, and more preferably higher than 1.10 -3 M. Indeed, it has been observed that formulating the compositions of the present invention with such high ionic strength further contributes to improved stain removal performance and improved bleaching performance. The higher the ionic strength the better the stain removal and bleaching performance. Indeed, it is speculated that under the preferred pH conditions of the present compositions (acidic to neutral), especially when the pH of the composition is higher than the pka of the salt free zwitterionic betaine surfactant present therein, said surfactant is in a dipolar form and its packing is strongly influenced by the ionic strength.
  • the ionic strength of a composition may be increased by the addition of various ingredients like chelating agents or mixtures thereof.
  • compositions of the present invention may comprise a chelating agent as a preferred optional ingredient.
  • Suitable chelating agents may be any of those known to those skilled in the art such as the ones selected from the group comprising phosphonate cheating agents, amino carboxylate chelating agents, other carboxylate chelating agents, polyfunctionally-substituted aromatic chelating agents, ethylenediamine N,N'- disuccinic acids, or mixtures thereof.
  • a chelating agent may be desired in the compositions of the present invention as it allows to increase the ionic strength of the compositions herein and thus their stain removal and bleaching performance on various surfaces.
  • the presence of chelating agents may also contribute to the benefits of the present compositions, i.e., to reduce the tensile strength loss of fabrics and/or color damage, especially in a laundry pretreatment application. Indeed, the chelating agents inactivate the metal ions present on the surface of the fabrics and/or in the cleaning compositions (neat or diluted) that otherwise would contribute to the radical decomposition of the peroxygen bleach.
  • Suitable phosphonate chelating agents to be used herein may include alkali metal ethane 1-hydroxy diphosphonates (HEDP), alkylene poly (alkylene phosphonate), as well as amino phosphonate compounds, including amino aminotri(methylene phosphonic acid) (ATMP), nitrilo trimethylene phosphonates (NTP), ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates (DTPMP).
  • the phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
  • Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonate (DTPMP) and ethane 1-hydroxy diphosphonate (HEDP). Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST®.
  • Polyfunctionally-substituted aromatic chelating agents may also be useful in the compositions herein. See U.S. patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or alkali metal, or alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof.
  • Ethylenediamine N,N'- disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987, to Hartman and Perkins.
  • Ethylenediamine N,N'- disuccinic acids is, for instance, commercially available under the tradename ssEDDS® from Palmer Research Laboratories.
  • Suitable amino carboxylates to be used herein include ethylene diamine tetra acetates, diethylene triamine pentaacetates, diethylene triamine pentaacetate (DTPA),N- hydroxyethylethylenediamine triacetates, nitrilotri-acetates, ethylenediamine tetrapropionates, triethylenetetraaminehexa-acetates, ethanoldiglycines, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms.
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • Particularly suitable amino carboxylates to be used herein are diethylene triamine penta acetic acid, propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Trilon FS® and methyl glycine di-acetic acid (MGDA).
  • PDTA propylene diamine tetracetic acid
  • MGDA methyl glycine di-acetic acid
  • carboxylate chelating agents to be used herein include salicylic acid, aspartic acid, glutamic acid, glycine, malonic acid or mixtures thereof.
  • R 1 , R 2 , R 3 , and R 4 are independently selected from the group consisting of -H, alkyl, alkoxy, aryl, aryloxy, -Cl, -Br, -NO 2 , -C(O)R', and - SO 2 R''; wherein R' is selected from the group consisting of -H, -OH, alkyl, alkoxy, aryl, and aryloxy; R'' is selected from the group consisting of alkyl, alkoxy, aryl, and aryloxy; and R 5 , R 6 , R 7 , and R 8 are independently selected from the group consisting of -H and alkyl.
  • Particularly preferred cheating agents to be used herein are amino aminotri(methylene phosphonic acid), di-ethylene-triamino-pentaacetic acid, diethylene triamine penta methylene phosphonate, 1-hydroxy ethane diphosphonate, ethylenediamine N, N'-disuccinic acid, and mixtures thereof.
  • compositions according to the present invention comprise up to 5% by weight of the total composition of a cheating agent, or mixtures thereof, preferably from 0.01% to 1.5% by weight and more preferably from 0.01% to 0.5%.
  • compositions of the present invention may comprise a radical scavenger or a mixture thereof.
  • Suitable radical scavengers for use herein include the well-known substituted mono and dihydroxy benzenes and their analogs, alkyl and aryl carboxylates and mixtures thereof.
  • Preferred such radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), hydroquinone, di-tert-butyl hydroquinone, mono-tert-butyl hydroquinone, tert-butyl-hydroxy anysole, benzoic acid, toluic acid, catechol, t-butyl catechol, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, n-propyl-gallate or mixtures thereof and highly preferred is di-tert-butyl hydroxy toluene.
  • BHT di-tert-butyl hydroxy toluene
  • hydroquinone di-tert-butyl hydroquinone
  • mono-tert-butyl hydroquinone tert-butyl-hydroxy anysole
  • benzoic acid toluic acid
  • catechol t-butyl catechol
  • radical scavengers like N-propyl-gallate may be commercially available from Nipa Laboratories under the trade name Nipanox S1 ®. Radical scavengers when used, are typically present herein in amounts ranging from up to 10% by weight of the total composition and preferably from 0.001% to 0.5% by weight.
  • radical scavengers may contribute to the benefits of the present compositions, i.e., to reduce tensile strength loss of fabrics and/or color damage when the compositions of the present invention are used in any laundry application, especially in a laundry pretreatment application.
  • compositions according to the present invention may further comprise an antioxidant or mixtures thereof.
  • the compositions herein comprise up to 10% by weight of the total composition of an antioxidant or mixtures thereof, preferably from 0.002% to 5%, more preferably from 0.005% to 2%, and most preferably from 0.01% to 1%.
  • Suitable antioxidants to be used herein include organic acids like citric acid, ascorbic acid, tartaric acid, adipic acid and sorbic acid, or amines like lecithin, or aminoacids like glutamine, methionine and cysteine, or esters like ascorbil palmitate, ascorbil stearate and triethylcitrate, or mixtures thereof.
  • Preferred antioxidants for use herein are citric acid, ascorbic acid, ascorbil palmitate, lecithin or mixtures thereof.
  • the compositions of the present invention may comprise a bleach activator or mixtures thereof.
  • bleach activator it is meant herein a compound which reacts with hydrogen peroxide to form a peracid.
  • the peracid thus formed constitutes the activated bleach.
  • Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides, or anhydrides. Examples of suitable compounds of this type are disclosed in British Patent GB 1 586 769 and GB 2 143 231 and a method for their formation into a prilled form is described in European Published Patent Application EP-A-62 523.
  • Suitable examples of such compounds to be used herein are tetracetyl ethylene diamine (TAED), sodium 3,5,5 trimethyl hexanoyloxybenzene sulphonate, diperoxy dodecanoic acid as described for instance in US 4 818 425 and nonylamide of peroxyadipic acid as described for instance in US 4 259 201 and n-nonanoyloxybenzenesulphonate (NOBS).
  • TAED tetracetyl ethylene diamine
  • NOBS n-nonanoyloxybenzenesulphonate
  • N-acyl caprolactams selected from the group consisting of substituted or unsubstituted benzoyl caprolactam, octanoyl caprolactam, nonanoyl caprolactam, hexanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, formyl caprolactam, acetyl caprolactam, propanoyl caprolactam, butanoyl caprolactam pentanoyl caprolactam or mixtures thereof.
  • a particular family of bleach activators of interest was disclosed in EP 624 154, and particularly preferred in that family is acetyl triethyl citrate (ATC).
  • Acetyl triethyl citrate has the advantage that it is environmental-friendly as it eventually degrades into citric acid and alcohol. Furthermore, acetyl triethyl citrate has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally, it provides good building capacity to the composition.
  • the compositions according to the present invention may comprise from 0.01% to 20% by weight of the total composition of said bleach activator, or mixtures thereof, preferably from 1% to 10%, and more preferably from 3% to 7%
  • the liquid composition of the present invention is applied neat onto at least a portion of a soiled fabric, optionally left to act onto said fabric, typically for a period of time of a few seconds to several hours, before the fabric is rinsed, or washed then rinsed.
  • the neat compositions can optionally be left to act onto said fabrics for a period of time ranging from 10 seconds to 1 hour, preferably 1 minute to 15 minutes, more preferably 1 minute to 5 minutes before the fabrics are rinsed, or washed then rinsed, provided that the composition is not left to dry onto said fabrics.
  • stains it may be appropriate to further rub or brush said fabrics by means of a sponge or a brush, or by rubbing two pieces of fabrics against each other.
  • washing it is to be understood herein that the fabrics are contacted with a conventional detergent composition comprising at least one surface active agent in an aqueous bath, this washing may occur by means of a washing machine or simply by hands.
  • liquid compositions are applied directly onto the fabrics to be pretreated without undergoing any dilution, i.e. the liquid compositions herein are applied onto the fabrics as described herein.
  • the liquid aqueous compositions herein should preferably not be left to dry onto the fabrics. It has been found that water evaporation contributes to increase the concentration of free radicals onto the surface of the fabrics and, consequently, the rate of chain reaction. It is also speculated that an auto-oxidation reaction occurs upon evaporation of water when the liquid compositions are left to dry onto the fabrics. Said reaction of auto-oxidation generates peroxy-radicals which may contribute to the degradation of cellulose.
  • compositions herein may also be used in a "soaking mode” where a composition, as defined herein, is first diluted in an aqueous bath and the fabrics are immersed and soaked in the bath, before they are rinsed, or in a "through the wash mode", where a composition, as defined herein, is added on top of a wash liquor formed by dissolution or dispersion of a typical laundry detergent. It is also essential in both cases, that the fabrics be rinsed after they have been contacted with said composition, before said composition has completely dried off.
  • the process comprises the steps of diluting said liquid composition in its neat form in an aqueous bath so as to form a diluted composition.
  • the dilution level of the liquid composition in an aqueous bath is typically up to 1:85, preferably up to 1:50 and more preferably about 1:25 (composition:water).
  • the fabrics are then contacted with the aqueous bath comprising the liquid composition, and the fabrics are finally rinsed, or washed then rinsed.
  • the fabrics are immersed in the aqueous bath comprising the liquid composition, and also preferably, the fabrics are left to soak therein for a period of time ranging from 1 minute to 48 hours, preferably from 1 hour to 24 hours.
  • the liquid composition is used as a so-called laundry additive.
  • the aqueous bath is formed by dissolving or dispersing a conventional laundry detergent in water.
  • the liquid composition in its neat form is contacted with the aqueous bath, and the fabrics are then contacted with the aqueous bath containing the liquid composition. Finally, the fabrics are rinsed.
  • compositions herein can be packaged in a variety of containers including conventional bottles, bottles equipped with roll-on, sponge, brusher or sprayers.
  • compositions were made by mixing the listed ingredients in the listed proportions (weight % unless otherwise specified).
  • Compositions I II III IV V VI VII VIII Dobanol® 91-10 - - - 1.6 - - 1.6 - Dobanol® 45-7 - 2.0 1.6 - 2.6 1.6 - 2.0
  • DTPMP is diethylene triamine penta methylene phosphonate.
  • BHT is di-tert-butyl hydroxy toluene Salt-free
  • Betaine* is Lauryl di-methyl betaine containing 0.3% by weight of sodium chloride. This betaine is obtainable by purification from commercially available Lauryl di-methyl betaine GENAGEN LAB® (Hoechst) (which contains 7.5% of sodium chloride).
  • Compositions I to VIII when used to bleach soiled coloured fabrics exhibit excellent overall stain removal performance especially on greasy stains like lipstick, make-up, olive oil, mayonnaise, sebum and the like, and excellent bleaching performance while being safe to both the fabrics and colors.
  • any of the compositions I to VIII is applied neat on the stained portion of a fabric and left to act thereon for 5 minutes. Then the fabric is washed with a conventional detergent and rinsed.
  • any of the compositions I to VIII is contacted with an aqueous bath formed by dissolution of a conventional detergent in water. Fabrics are then contacted with the aqueous bath comprising the liquid detergent, and the fabrics are rinsed. They can also be used in a soaking mode, where 100 ml of the liquid compositions are diluted in 10 litres of water. The fabrics are then contacted with this aqueous bath containing the composition, and left to soak therein for a period of time of 24 hours. The fabrics are eventually rinsed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP97870151A 1997-10-08 1997-10-08 Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs Withdrawn EP0908510A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP97870151A EP0908510A1 (fr) 1997-10-08 1997-10-08 Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs
BR9812902-3A BR9812902A (pt) 1997-10-08 1998-10-07 Composições alvejantes lìquidas com segurança aperfeiçoada para tecidos e cores
AU10726/99A AU1072699A (en) 1997-10-08 1998-10-07 Liquid bleaching compositions with improved safety to fabrics and colors
US09/509,915 US6316400B1 (en) 1997-10-08 1998-10-07 Liquid bleaching composition with improved safety to fabrics and colors
PCT/US1998/021240 WO1999018179A1 (fr) 1997-10-08 1998-10-07 Compositions liquides de blanchiment avec protection amelioree des tissus et des couleurs
CA002305323A CA2305323A1 (fr) 1997-10-08 1998-10-07 Compositions liquides de blanchiment avec protection amelioree des tissus et des couleurs
MXPA00003519A MXPA00003519A (es) 1997-10-08 1998-10-07 Composiciones de blanqueo liquidas con proteccion mejorada a las telas y los colores.
JP2000514979A JP2001519458A (ja) 1997-10-08 1998-10-07 織物と色彩への安全性が改良された液状漂白剤組成物
EP98953321A EP1021505A1 (fr) 1997-10-08 1998-10-07 Compositions liquides de blanchiment avec protection amelioree des tissus et des couleurs
MA25282A MA24672A1 (fr) 1997-10-08 1998-10-08 Compositions liquides de blanchiment a securite amelioree pour les etoffes et tissu colores
ARP980105025 AR013976A1 (es) 1997-10-08 1998-10-08 Composiciones de blanqueo, liquidas con mejorada seguridad para los generos y los colores, proceso de blanqueo, proceso de pretratamiento y uso deun surfactante zwitterionico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97870151A EP0908510A1 (fr) 1997-10-08 1997-10-08 Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs

Publications (1)

Publication Number Publication Date
EP0908510A1 true EP0908510A1 (fr) 1999-04-14

Family

ID=8231048

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97870151A Withdrawn EP0908510A1 (fr) 1997-10-08 1997-10-08 Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs
EP98953321A Withdrawn EP1021505A1 (fr) 1997-10-08 1998-10-07 Compositions liquides de blanchiment avec protection amelioree des tissus et des couleurs

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98953321A Withdrawn EP1021505A1 (fr) 1997-10-08 1998-10-07 Compositions liquides de blanchiment avec protection amelioree des tissus et des couleurs

Country Status (9)

Country Link
EP (2) EP0908510A1 (fr)
JP (1) JP2001519458A (fr)
AR (1) AR013976A1 (fr)
AU (1) AU1072699A (fr)
BR (1) BR9812902A (fr)
CA (1) CA2305323A1 (fr)
MA (1) MA24672A1 (fr)
MX (1) MXPA00003519A (fr)
WO (1) WO1999018179A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060073B2 (en) 2013-05-23 2018-08-28 Washing Systems, Llc Method of laundering industrial garments
JP6448939B2 (ja) * 2014-07-25 2019-01-09 竹本油脂株式会社 ベタイン型界面活性剤の精製処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398253A (en) * 1972-08-11 1975-06-18 Flow Pharma Inc Stable aqueous solutions containing active oxygen
US4490536A (en) * 1983-07-11 1984-12-25 Mona Industries, Inc. Salt free phosphobetaines
JPH08120295A (ja) * 1994-10-26 1996-05-14 Kao Corp 液体漂白剤組成物
WO1997012856A1 (fr) * 1995-09-29 1997-04-10 Henkel Kommanditgesellschaft Auf Aktien Procede de production de tensio-actifs betainiques a faible teneur en sel
WO1997031093A1 (fr) * 1996-02-23 1997-08-28 The Procter & Gamble Company Compositions desinfectantes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398253A (en) * 1972-08-11 1975-06-18 Flow Pharma Inc Stable aqueous solutions containing active oxygen
US4490536A (en) * 1983-07-11 1984-12-25 Mona Industries, Inc. Salt free phosphobetaines
JPH08120295A (ja) * 1994-10-26 1996-05-14 Kao Corp 液体漂白剤組成物
WO1997012856A1 (fr) * 1995-09-29 1997-04-10 Henkel Kommanditgesellschaft Auf Aktien Procede de production de tensio-actifs betainiques a faible teneur en sel
WO1997031093A1 (fr) * 1996-02-23 1997-08-28 The Procter & Gamble Company Compositions desinfectantes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9629, Derwent World Patents Index; Class D25, AN 96-283767, XP002057701 *

Also Published As

Publication number Publication date
EP1021505A1 (fr) 2000-07-26
AU1072699A (en) 1999-04-27
MA24672A1 (fr) 1999-07-01
CA2305323A1 (fr) 1999-04-15
MXPA00003519A (es) 2005-09-08
WO1999018179A1 (fr) 1999-04-15
BR9812902A (pt) 2000-08-08
AR013976A1 (es) 2001-01-31
JP2001519458A (ja) 2001-10-23

Similar Documents

Publication Publication Date Title
US6482786B1 (en) Liquid bleaching compositions comprising hydrogen peroxide, betaine, and ethoxylated nonionic surfactant
EP0908511B1 (fr) Compositions de nettoyage à usage multiples ayant un contrôle de mousse efficace
US6448214B1 (en) Liquid aqueous bleaching compositions
EP0856577B1 (fr) Compositions de nettoyage aqueuses liquides
EP0908512A2 (fr) Compositions de blanchiment aqueuses liquides
EP0751210A1 (fr) Compositions de blanchiment
US6528471B1 (en) Process of treating fabrics with a laundry additive
US6495501B1 (en) Laundry bleaching compositions
US6316400B1 (en) Liquid bleaching composition with improved safety to fabrics and colors
US6235699B1 (en) Liquid aqueous cleaning compositions
US6569826B1 (en) Radical scavenger
EP0908510A1 (fr) Compositions de blanchiment avec sécurité ameliorée pour les tissus et les couleurs
EP0916721B1 (fr) Composition de blanchiment pour le linge
US6586382B1 (en) Process of bleaching fabrics
EP1022327B1 (fr) Procédé pour le traitement de textiles en utilisant un additif pour la lessive
WO2000023554A1 (fr) Procede de blanchiment de tissus
EP1001008A1 (fr) Compositions de blanchiment liquides et aqueuses contenant un tensioactif anionique sulfoné
EP1222243B1 (fr) Composition de nettoyage
US6566320B1 (en) Bleaching composition containing chromotropic compound
AU6251998A (en) Liquid aqueous cleaning compositions
MXPA99007179A (en) Liquid aqueous cleaning compositions
MXPA00011753A (en) Liquid bleaching compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19991004

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20021105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080911