EP0904271A1 - 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES - Google Patents

5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES

Info

Publication number
EP0904271A1
EP0904271A1 EP96931596A EP96931596A EP0904271A1 EP 0904271 A1 EP0904271 A1 EP 0904271A1 EP 96931596 A EP96931596 A EP 96931596A EP 96931596 A EP96931596 A EP 96931596A EP 0904271 A1 EP0904271 A1 EP 0904271A1
Authority
EP
European Patent Office
Prior art keywords
tetrahydropyrido
pyrimidin
ethyl
hydroxy
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96931596A
Other languages
German (de)
French (fr)
Other versions
EP0904271A4 (en
Inventor
Edward C. Taylor
Chuan Shih
Koo Lee
Lynn S. Gossett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Princeton University
Original Assignee
Eli Lilly and Co
Princeton University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co, Princeton University filed Critical Eli Lilly and Co
Publication of EP0904271A1 publication Critical patent/EP0904271A1/en
Publication of EP0904271A4 publication Critical patent/EP0904271A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to 5,6,7,8-tetrahydropyrido[2,3- ⁇ r Jpyrimidines of the formula:
  • R 1 is hydroxy or amino
  • R 2 is hydroxy or a carboxylic acid protecting group
  • R 3 is hydrogen or an amino protecting group
  • Z is a divalent, five-membered, nitrogen-containing heterocyclic ring system optionally containing a sulfur or nitrogen atom as a second hetero ring member, the valence bonds originating from nonadjacent carbon atoms of the heterocyclic ring
  • n has a value of 2 or 3.
  • the present invention also pertains to the pharmaceutically acceptable salts of the
  • the invention pertains to a method of inhibiting neoplastic growth in a mammal in which the growth is dependent on folic acid, or a metabolic derivative of folic acid (such as N 5 ,N 10 -methylenetetrahydrofolate), as a substrate.
  • the method comprises administering, in a single or multiple dose regimen, an effective amount of a compound according to Formula I to a mammal in need of such therapy.
  • the invention pertains to pharmaceutical compositions for inhibiting such neoplastic growth in a mammal through inhibition of folate enzymes which comprises a compound according to Formula I in combination with a pharmaceutically acceptable carrier.
  • the compounds of Formula I are named herein as derivatives of the pyrido[2,3-d]- pyrimidine fused ring system which is numbered as follows:
  • pyrido[2,3-d]pyrimidines of Formula I are the tautomeric equivalent of the corresponding 3-H-4-oxo or 3-H-4-imino structures.
  • the compounds are depicted herein as 4-hydroxy and 4-amino com ⁇ pounds, it being understood the corresponding and tautomeric keto and imino structures, respectively, are fully equivalent; e.g. :
  • the compounds of Formula I can be employed in the form of the free dicarboxylic acid, in which case both R 2 groups are hydroxyl.
  • the compounds often can be employed in the form of a pharmaceutically acceptable salt, in which case the hydrogen atom when R 2 is hydroxy is replaced by a pharmaceutically acceptable cation.
  • Such salt forms, including hydrates thereof, are often crystalline and advanta- geous for forming solutions or formulating pharmaceutical compositions.
  • Pharmaceut ⁇ ically acceptable salts with bases include those formed from the alkali metals, alkaline earth metals, non-toxic metals, ammonium, and mono-, di- and trisubstituted amines, such as for example the sodium, potassium, lithium, calcium, magnesium, aluminum, zinc, ammonium, trimethylammonium, triethanolammonium, pyridinium, and substituted pyridinium salts.
  • the mono and disodium salts, particularly the disodium salt are advantageous.
  • a second chiral center is present in the 6-position of the 5,6,7,8- tetrahydropyrido[2,3-d]pyrimidine ring system. Both the therapeutically active diastereomeric mixtures and the individual diastereomers are included in the scope of this invention.
  • both individual diastereomers When both individual diastereomers are formed, they can be separated mechanically as by chromatography or chemically by forming salts with a chiral acid, such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha- bromocamphoric acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-car- boxylic acid, and the like, and then freeing one or both of the individual diastereomeric bases, optionally repeating the process, so as obtain either or both substantially free of the other; i.e., in a form having an optical purity of >95%.
  • a chiral acid such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha- bromocamphoric acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-car- boxylic acid, and the like
  • the protecting groups designated by R 2 and R 3 utilized herein denote groups which generally are not found in the final therapeutic compounds but which are in ⁇ tentionally introduced at some stage of the synthesis in order to protect groups which otherwise might be altered in the course of chemical manipulations. Such protecting groups are removed at a later stage of the synthesis and compounds bearing such pro- tecting groups thus are of importance primarily as chemical intermediates (although some derivatives also exhibit biological activity). Accordingly the precise structure of the protecting group is not critical. Numerous reactions for the formation and removal of such protecting groups are described in a number of standard works including, for example, "Protective Groups in Organic Chemistry", Plenum Press, London and New York, 1973; Greene, Th. W.
  • a carboxy group can be protected as an ester which is selectively removable under sufficiently mild conditions not to disrupt the desired structure of the molecule, especially a lower alkyl ester of 1 to 12 carbon atoms such as methyl or ethyl and particularly one which is branched at the 1 - or ⁇ position such as t-butyl; and such lower alkyl ester substituted in the 1- or 2-position with (/) lower alkoxy, such as for example, methoxymethyl, 1-methoxyethyl, and ethoxymethyl, (/ ' /) lower alkylthio, such as for example methylthiomethyl and 1-ethylthioethyl; (/ ' / ' /) halogen, such as 2,2,2-trichloroethyl, 2-bromoethyl, and 2-iodoethoxycarbonyl; (iv) one or two phenyl groups each of which can be unsubstituted or mono-,
  • a carboxy group also can be protected in the form of an organic silyl group such as trimethyl silylethyl or tri-lower alkylsilyl, as for example tri-methyl- silyloxycarbonyl.
  • an amino group can be protected as an amide utilizing an acyl group which is selectively removable under mild conditions, especially formyl, a lower alkanoyl group which is branched in 1- or ⁇ position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, or a lower alkanoyl group which is substituted in the position ⁇ to the carbonyl group, as for example trifluoroacetyl.
  • an acyl group which is selectively removable under mild conditions, especially formyl, a lower alkanoyl group which is branched in 1- or ⁇ position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, or a lower alkanoyl group which is substituted in the position ⁇ to the carbonyl group, as for example trifluoroacetyl.
  • Z is a divalent, five-membered, nitrogen- containing heterocyclic ring system.
  • the ring may containing a sulfur or nitrogen atom as a second hetero ring member.
  • the depicted valence bonds of Z originate from nonadjacent carbon atoms of the ring.
  • Z thus can be, for example, pyrrolediyl, imidazolediyl, pyrazolediyl., thiazolediyl, or isothiazolediyl.
  • the divalent heterocyclic group comprised by Z is asymmetric, as for example pyrrole-2,4-diyl (as contrasted with the symmetrical pyrrole-2,5-diyl)
  • the single group can be oriented in either of two ways; e.g., (i) with the -C «H 2 n- group depicted in Formula I in the 2-position and the carbonyl group in the 4- position, or (/ ' /) with the carbonyl group in the 2-position and the -C «H 2 w- group in the 4- position
  • Particularly preferred compounds are those wherein R 2 is hydroxy, R 3 is hydrogen, and n has a value of 2; e.g., N- ⁇ 2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-5-ylcarbonyl ⁇ -L-glutamic acid; N- ⁇ 2-[2-(2- amino-4-hydroxy- 5 ,6,7, 8-tetrahydropyrido[2, 3 -d]pyrimidin-6-yl)ethyl]-pyrrol-4-ylcar- bonyl ⁇ -L-glutamic acid; N- ⁇ 4-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]-pyrrol-2-ylcarbonyl ⁇ -L-glutamic acid; N- ⁇ 3-[2-
  • the compounds of this invention can be prepared through catalytic hydrogenation of a compound of the formula:
  • R 2" is a carboxylic acid protecting group or CH(COR 2' )CH 2 CH 2 COR 2' in which R 2' s a carboxylic acid protecting group; R 3 is an amino protecting group; and each Y when taken separately is hydrogen or both Y's when taken together are a carbon-carbon bond.
  • Suitable hydrogenation catalysts include noble metals and noble metal oxides such as palladium or platinum oxide, rhodium oxide, and the foregoing on a support such as carbon or calcium oxide.
  • R 2" is -CONHCH(COOR 2 )CH 2 CH 2 COOR 2'
  • protecting groups encompassed by R 2 and R 3 are removed.
  • R 2" is a carboxylic acid protecting group
  • the R 2" protecting group can removed following hydrogenation as described above, and the resulting free carboxylic acid then coupled with a protected glutamic acid derivative in the manner described in U.S. Patent No. 4,684,653, the disclosure of which is incorporated herein by reference, using conventional conden ⁇ sation techniques for forming peptide bonds such as dicyclohexylcarbodiimide or diphenylchlorophosphonate. Following this coupling reaction, any remaining protecting groups are removed.
  • Protecting groups encompassed by R 2 , R 2 , R 2" , and R 3 can be removed through acidic or basic hydrolysis, as for example with sodium hydroxide. Methods of removing the various protective groups are described in the standard references noted above and incorporated herein by reference.
  • a 6-vinyl- or 6-ethynylpyrido[2,3-d]pyrimidine is allowed to react with a halo-Z-carbonyl compound in the presence of a palladium/trisubstituted phosphine catalyst:
  • each of R 2" , R 3 , Y, and Z is as defined above and X is bromo or iodo.
  • the 6- vinyl- and 6-ethynylpyrido[2,3-d]pyrimidine intermediates are known chemical intermediates being described, for example, in U.S. Patent No. 4,818,819, noted supra.
  • a 6-bromo- or 6-iodopyrido[2,3-d]pyrimidine intermediate is allowed to react with a vinyl or ethynyl derivative of the heterocycle comprised by Z, again in the presence of the same palladium/trisubstituted phosphine catalyst'
  • the heterocyclic starting materials either are known or can be made through a variety of conventional techniques
  • vinyl-Z-COR 2" intermediates can be obtained from the corresponding aldehydes through treatment with methyltriphenylphosphonium bromide and lithium hexamethyldisilazide in tetrahydrofuran
  • a vinyl-Z-H compound can be carboxylated, as for example with ethyl chloroformate and n-butyllithium
  • the X-Z-COR 2" compounds can be obtained through halogenation of a heterocylic carboxylate, e.g., H-Z-COR 2 , utilizing conventional halogenation reagents such as N-bromosuccinimide or N- iodosuccinimide In any of these routes, compounds carrying a substitutable ring nitrogen atom in the heterocyclic system can be protected through prior formation of the corresponding N-trityl compound or N-triisopropylsilyl compound
  • the compounds of this invention have an effect on one or more enzymes which utilize folic acid, and in particular metabolic derivatives of folic acid, as a substrate
  • the action of the compounds appear to be similar in this regard to that of 5,10- dideazatetrahydrofolic acid which is described in U S Patent No 4,684,653
  • the compounds exhibit particularly strong inhibitory activity against the enzyme glycinamide ribonucleotide formyltransferase
  • the compounds also exhibit inhibitory activity against folate enzymes such as dihydrofolate reductase and thymidylate synthetase
  • Representative IC ⁇ - 0 values for example against human T-cell derived lymphoblastic leukemia cells (CCRF-CEM), for (/) N- ⁇ 4-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-2-ylcarbonyl
  • the compounds can be used, under the supervision of qualified professionals, to inhibit the growth of neoplasms including choriocarcinoma, leukemia, adenocarcinoma of the female breast, epidermic cancers of the head and neck, squamous or small-cell lung cancer, and various lymphosarcomas.
  • the compounds can also be used to treat mycosis fungoides, arthritis, and psoriasis.
  • the compounds can be administered orally but preferably are administered parenterally, alone or in combination with other thera ⁇ Chamberic agents including other anti-neoplastic agents, steroids, etc., to a mammal suffering from neoplasm and in need of treatment.
  • Parenteral routes of administration include intramuscular, intrathecal, intravenous and intra-arterial. Dosage regimens must be titrated to the particular neoplasm, the condition of the patient, and the response but generally doses will be from about 10 to about 100 mg/day for 5-10 days or single daily administration of 250-500 mg, repeated periodically; e.g. every 14 days. While having a low toxicity as compared to other antimetabolites now in use, a toxic response often can be eliminated by either or both of reducing the daily dosage or administering the compound on alternative days or at longer intervals such as every three days. Concomitant administration of folic acid as a rescue therapy also may be indicated. Oral dosage forms include tablets and capsules containing from 1-10 mg of drug per unit dosage. Isotonic saline solutions containing 20-100 mg/mL can be used for parenteral administration.
  • Tetrahydrofuran was distilled from sodium/benzophenone; dimethylformamide and acetonitrile were distilled over calcium hydride. All reactions in these solvents were conducted under positive pressure of an inert gas. Column chromatography was car ⁇ ried out with Merck grade 60 silica gel (230-400 mesh). NMR spectra (250 or 300 MHz) were recorded using CDCL, CD-OD, or DMSO- ⁇ i, as solvents and internal standards. In the NMR data, “s” denotes singlet, “d” denotes doublet, “t” denotes triplet, “q” denotes quartet, "m” denotes multiplet, and "br” denotes a broad peak. Melting points are uncorrected.
  • the 3-iodo-5-methoxycarbonyl-l-triisopropylsilylpyrrole starting material can be prepared as follows. Sodium hydride (80% dispersion; 660 mg, 22 mmol) was washed with pentane and suspended in tetrahydrofuran (20 mL). A solution of methyl pyrrole- 2-carboxylate (1.251 g, 10 mmol) in tetrahydrofuran (10 mL) was added and the mixture stirred at room temperature. When gas evolution ceased, triisopropylsilyl chloride (1.928 mg, 10 mmol) was added dropwise, and the mixture was stirred for 1 hour, heated at reflux overnight, and partitioned between ether and water.
  • N-Iodosuccinimide (653 mg, 2.9 mmol) was added to a stirred solution of 2- methoxycarbonyl-1-triisopro ⁇ ylsilylpyrrole (815 g, 2.9 mmol) in tetrahydrofuran (20 mL). The reaction mixture was stirred at room temperature for two days. The solvent was then removed in vacuo and the oily residue suspended in hexanes (50 mL) with vigorous stirring. The insoluble solid was removed by filtration and the filtrate concentrated in vacuo.
  • the methyl 5-vinylpyrrole-2-carboxylate starting material is obtained as follows. To a stirred suspension of methyltriphenylphosphonium bromide (2.358 g, 6.6 mmol) in tetrahydrofuran (50 mL) was added dropwise 1 N lithium hexamethyldisilazide in tetrahydrofuran (6.6 mL, 6.6 mmol) at 0°C.
  • methyl 5-formylpyrrole-2-carboxylate (453 mg, 3.0 mmol) was added in one portion to the resulting solution, and the reaction mixture was stirred for 1.5 hours at room temperature, quenched by addition of water (10 mL) and then acidified with 1 N HCl. The organic phase was dried (magnesium sulfate) and concentrated.
  • [2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carboxylic acid 227.5 mg g, 0.75 mmol
  • 2- chloro-4,6-dimethoxy-l,3,5-triazine 145 mg, 0.825 mmol
  • 4-methylmorpholine (0.20 mL, 1.8 mmol
  • dimethyl L-glutamate hydrochloride (191 mg, 0.9 mmol) according to the method of Example 15 is dimethyl N- ⁇ 5-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrol-2-ylcarbonyl ⁇ -L-glutamate as a pale yellow solid after flash column chromatography using chloroform: methanol (4:1).
  • the starting material can be prepared in the following manner.
  • a mixture of 2- iodo-4-hydroxymethyl-l-(triphenylmethyl)imidazole (3.264 g, 7.0 mmol) and manganese dioxide (12.17 g, 140 mmol) in methylene chloride (100 mL) was stirred overnight at room temperature and filtered though Celite. The filtrate was concentrated in vacuo to give 2-iodo-4-formyl-l-triphenylmethylimidazole as a white foamy solid (3.05 g, 94%), mp 173-75°C which was sufficiently pure to be used in the next step without further purification.
  • ⁇ NMR (CDC1 3 ) ⁇ 9.77 (s, 1 H), 7.55 (s, 1 H), 7.38-7.30 (m, 9 H), 7.16-7.09 (m, 6 H).
  • the starting material can be prepared as follows.
  • the starting material can be prepared as follows. To a 500 mL 24/40 3-neck round bottom flask equiped with a mechanical stirrer, was charged 3.4 g (19.7 mmol) of 2-amino-5-thiazolecarboxylic acid ethyl ester (Ber., 1888, 21, 938), partially dissolved in 30 mL of concentrated phosphoric acid. The stirring mixture was cooled in an ice bath and then 9 mL of concentrated nitric acid was added slowly, followed by the dropwise addition of 2.85 g (41.3 mmol) of sodium nitrite in 5 mL of water.
  • Hard gelatin capsules are prepared using the following ingredients:
  • the components are blended and compressed to form tablets each weighing 665 mg.
  • An intravenous formulation may be prepared as follows: Quantity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Glutamic acid derivatives in which the amino group is substituted with a 2-amino-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-ylalkyl-Z-carbonyl group, in which Z is a divalent, five-membered, nitrogen-containing heterocyclic ring system optionally containing a sulfur or nitrogen atom as a second hetero ring member, are antineoplastic agents. A typical embodiment is N-{3-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrazol-5-ylcarbonyl}-L-glutamic acid.

Description

S,6,l,S-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES
This invention relates to 5,6,7,8-tetrahydropyrido[2,3-αrJpyrimidines of the formula:
I. in which
R1 is hydroxy or amino;
R2 is hydroxy or a carboxylic acid protecting group;
R3 is hydrogen or an amino protecting group; Z is a divalent, five-membered, nitrogen-containing heterocyclic ring system optionally containing a sulfur or nitrogen atom as a second hetero ring member, the valence bonds originating from nonadjacent carbon atoms of the heterocyclic ring; and n has a value of 2 or 3. The present invention also pertains to the pharmaceutically acceptable salts of the
5,6,7,8-tetrahydropyrido[2,3-c/]pyrimidines of Formula I.
In addition, the invention pertains to a method of inhibiting neoplastic growth in a mammal in which the growth is dependent on folic acid, or a metabolic derivative of folic acid (such as N5,N10-methylenetetrahydrofolate), as a substrate. The method comprises administering, in a single or multiple dose regimen, an effective amount of a compound according to Formula I to a mammal in need of such therapy.
Finally, the invention pertains to pharmaceutical compositions for inhibiting such neoplastic growth in a mammal through inhibition of folate enzymes which comprises a compound according to Formula I in combination with a pharmaceutically acceptable carrier. The compounds of Formula I are named herein as derivatives of the pyrido[2,3-d]- pyrimidine fused ring system which is numbered as follows:
It will be appreciated that the pyrido[2,3-d]pyrimidines of Formula I are the tautomeric equivalent of the corresponding 3-H-4-oxo or 3-H-4-imino structures. For simplicity's sake, the compounds are depicted herein as 4-hydroxy and 4-amino com¬ pounds, it being understood the corresponding and tautomeric keto and imino structures, respectively, are fully equivalent; e.g. :
The compounds of Formula I can be employed in the form of the free dicarboxylic acid, in which case both R2 groups are hydroxyl. Alternatively, the compounds often can be employed in the form of a pharmaceutically acceptable salt, in which case the hydrogen atom when R2 is hydroxy is replaced by a pharmaceutically acceptable cation. Such salt forms, including hydrates thereof, are often crystalline and advanta- geous for forming solutions or formulating pharmaceutical compositions. Pharmaceut¬ ically acceptable salts with bases include those formed from the alkali metals, alkaline earth metals, non-toxic metals, ammonium, and mono-, di- and trisubstituted amines, such as for example the sodium, potassium, lithium, calcium, magnesium, aluminum, zinc, ammonium, trimethylammonium, triethanolammonium, pyridinium, and substituted pyridinium salts. The mono and disodium salts, particularly the disodium salt, are advantageous.
In addition to the center of chirality about the carbon atom on the glutamic acid designated *, a second chiral center is present in the 6-position of the 5,6,7,8- tetrahydropyrido[2,3-d]pyrimidine ring system. Both the therapeutically active diastereomeric mixtures and the individual diastereomers are included in the scope of this invention. When both individual diastereomers are formed, they can be separated mechanically as by chromatography or chemically by forming salts with a chiral acid, such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha- bromocamphoric acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-car- boxylic acid, and the like, and then freeing one or both of the individual diastereomeric bases, optionally repeating the process, so as obtain either or both substantially free of the other; i.e., in a form having an optical purity of >95%. The protecting groups designated by R2 and R3 utilized herein denote groups which generally are not found in the final therapeutic compounds but which are in¬ tentionally introduced at some stage of the synthesis in order to protect groups which otherwise might be altered in the course of chemical manipulations. Such protecting groups are removed at a later stage of the synthesis and compounds bearing such pro- tecting groups thus are of importance primarily as chemical intermediates (although some derivatives also exhibit biological activity). Accordingly the precise structure of the protecting group is not critical. Numerous reactions for the formation and removal of such protecting groups are described in a number of standard works including, for example, "Protective Groups in Organic Chemistry", Plenum Press, London and New York, 1973; Greene, Th. W. "Protective Groups in Organic Synthesis", Wiley, New York, 1981; "The Peptides", Vol. I, Schroder and Lubke, Academic Press, London and New York, 1965; "Methoden der organischen Chemie", Houben-Weyl, 4th Edition, Vol.15/1, Georg Thieme Verlag, Stuttgart 1974, the disclosures of which are incorporated herein by reference. With respect to R2, a carboxy group can be protected as an ester which is selectively removable under sufficiently mild conditions not to disrupt the desired structure of the molecule, especially a lower alkyl ester of 1 to 12 carbon atoms such as methyl or ethyl and particularly one which is branched at the 1 - or α position such as t-butyl; and such lower alkyl ester substituted in the 1- or 2-position with (/) lower alkoxy, such as for example, methoxymethyl, 1-methoxyethyl, and ethoxymethyl, (/'/) lower alkylthio, such as for example methylthiomethyl and 1-ethylthioethyl; (/'/'/) halogen, such as 2,2,2-trichloroethyl, 2-bromoethyl, and 2-iodoethoxycarbonyl; (iv) one or two phenyl groups each of which can be unsubstituted or mono-, di- or tri- substituted with, for example lower alkyl such as tert. -butyl, lower alkoxy such as methoxy, hydroxy, halo such as chloro, and nitro, such as for example, benzyl, 4- nitrobenzyl, diphenylmethyl, di-(4-methoxyphenyl)methyl; or (v) aroyl, such as phenacyl. A carboxy group also can be protected in the form of an organic silyl group such as trimethyl silylethyl or tri-lower alkylsilyl, as for example tri-methyl- silyloxycarbonyl.
With respect to R3, an amino group can be protected as an amide utilizing an acyl group which is selectively removable under mild conditions, especially formyl, a lower alkanoyl group which is branched in 1- or α position to the carbonyl group, particularly tertiary alkanoyl such as pivaloyl, or a lower alkanoyl group which is substituted in the position α to the carbonyl group, as for example trifluoroacetyl.
In the compounds of Formula I, Z is a divalent, five-membered, nitrogen- containing heterocyclic ring system. Optionally the ring may containing a sulfur or nitrogen atom as a second hetero ring member. The depicted valence bonds of Z originate from nonadjacent carbon atoms of the ring. Z thus can be, for example, pyrrolediyl, imidazolediyl, pyrazolediyl., thiazolediyl, or isothiazolediyl. It will be appreciated that when the divalent heterocyclic group comprised by Z is asymmetric, as for example pyrrole-2,4-diyl (as contrasted with the symmetrical pyrrole-2,5-diyl), the single group can be oriented in either of two ways; e.g., (i) with the -C«H2n- group depicted in Formula I in the 2-position and the carbonyl group in the 4- position, or (/'/) with the carbonyl group in the 2-position and the -C«H2w- group in the 4- position
Particularly preferred compounds are those wherein R2 is hydroxy, R3 is hydrogen, and n has a value of 2; e.g., N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-5-ylcarbonyl}-L-glutamic acid; N-{2-[2-(2- amino-4-hydroxy- 5 ,6,7, 8-tetrahydropyrido[2, 3 -d]pyrimidin-6-yl)ethyl]-pyrrol-4-ylcar- bonyl}-L-glutamic acid; N-{4-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]-pyrrol-2-ylcarbonyl}-L-glutamic acid; N-{3-[2-(2-amino-4-hydr- oxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrazol-5-ylcarbonyl}-L- glutamic acid; N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl] -thiazol-4-ylcarbonyl } -L-glutami c acid ; N- { 2- [2-(2-amino-4-hy droxy- 5,6,7, 8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-thiazol-5-ylcarbonyl}-L-glutamic acid; N-{3-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]-isothiazol-5-ylcarbonyl}-L-glutamic acid; N-{5-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-isothiazol-3-ylcarbonyl}-L- glutamic acid; N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-imidazol-4-ylcarbonyl}-L-glutamic acid; N-{2-[2-(2,4-diamino-5,6,7,8- tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-5-ylcarbonyl}-L-glutamic acid; N- {2-[2-(2,4-diamino-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-4- ylcarbonyl}-L-glutamic acid; N-{4-[2-(2,4-diamino-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]-pyrrol-2-ylcarbonyl}-L-glutamic acid; N-{3-[2-(2,4-diamino- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrazol-5-ylcarbonyl}-L-glutamic acid; N-{2-[2-(2,4-diamino-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]- thiazol-4-ylcarbonyl}-L-glutamic acid; N-{2-[2-(2,4-diamino-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]-thiazol-5-ylcarbonyl}-L-glutamic acid; N-{3-[2- (2,4-diamino-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-isothiazol-5-ylcar- bonyl}-L-glutamic acid; N-{5-[2-(2,4-diamino-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]-isothiazol-3-ylcarbonyl}-L-glutamic acid; and N-{2-[2-(2,4- diamino-5 ,6, 7, 8-tetrahydropyrido [2,3 -d]pyrimidin-6-yl)ethyl]-imidazol-4-ylcarbonyl } - L-glutamic acid.
The compounds of this invention can be prepared through catalytic hydrogenation ofa compound of the formula:
II in which:
Z is as defined above;
R2" is a carboxylic acid protecting group or CH(COR2')CH2CH2COR2' in which R2' s a carboxylic acid protecting group; R3 is an amino protecting group; and each Y when taken separately is hydrogen or both Y's when taken together are a carbon-carbon bond.
Suitable hydrogenation catalysts include noble metals and noble metal oxides such as palladium or platinum oxide, rhodium oxide, and the foregoing on a support such as carbon or calcium oxide.
When R2" is -CONHCH(COOR2)CH2CH2COOR2', protecting groups encompassed by R2 and R3 are removed. If on the other hand R2" is a carboxylic acid protecting group, the R2" protecting group can removed following hydrogenation as described above, and the resulting free carboxylic acid then coupled with a protected glutamic acid derivative in the manner described in U.S. Patent No. 4,684,653, the disclosure of which is incorporated herein by reference, using conventional conden¬ sation techniques for forming peptide bonds such as dicyclohexylcarbodiimide or diphenylchlorophosphonate. Following this coupling reaction, any remaining protecting groups are removed.
Protecting groups encompassed by R2, R2, R2", and R3 can be removed through acidic or basic hydrolysis, as for example with sodium hydroxide. Methods of removing the various protective groups are described in the standard references noted above and incorporated herein by reference.
According to the foregoing processes, compounds of Formula II in which R1 is hydroxy are obtained. When a compound of Formula I in which R1 is amino is desired, a compound in which R1 is hydroxy can be treated with 1,2, 4-triazole and (4-chloro- phenyl)dichlorophosphate and the product of this reaction then treated with concen- trated ammonia.
Compounds of Formula II can be prepared utilizing the procedures described in
U.S. Patent No. 4,818,819, the disclosure of which is incorporated herein by reference.
In one embodiment a 6-vinyl- or 6-ethynylpyrido[2,3-d]pyrimidine is allowed to react with a halo-Z-carbonyl compound in the presence of a palladium/trisubstituted phosphine catalyst:
in which each of R2", R3, Y, and Z is as defined above and X is bromo or iodo. The 6- vinyl- and 6-ethynylpyrido[2,3-d]pyrimidine intermediates are known chemical intermediates being described, for example, in U.S. Patent No. 4,818,819, noted supra. Alternatively, a 6-bromo- or 6-iodopyrido[2,3-d]pyrimidine intermediate is allowed to react with a vinyl or ethynyl derivative of the heterocycle comprised by Z, again in the presence of the same palladium/trisubstituted phosphine catalyst'
in which each of R2", R3 , Y, X, and Z is as defined above Both the 6-bromo- or 6- iodopyrido[2,3-d]pyrimidine intermediates and palladium/trisubstituted phosphine cata¬ lyst again are described in U S Patent No 4,818,819, noted supra
The heterocyclic starting materials either are known or can be made through a variety of conventional techniques For example, vinyl-Z-COR2" intermediates can be obtained from the corresponding aldehydes through treatment with methyltriphenylphosphonium bromide and lithium hexamethyldisilazide in tetrahydrofuran Alternatively a vinyl-Z-H compound can be carboxylated, as for example with ethyl chloroformate and n-butyllithium The X-Z-COR2" compounds can be obtained through halogenation of a heterocylic carboxylate, e.g., H-Z-COR2 , utilizing conventional halogenation reagents such as N-bromosuccinimide or N- iodosuccinimide In any of these routes, compounds carrying a substitutable ring nitrogen atom in the heterocyclic system can be protected through prior formation of the corresponding N-trityl compound or N-triisopropylsilyl compound
The compounds of this invention have an effect on one or more enzymes which utilize folic acid, and in particular metabolic derivatives of folic acid, as a substrate The action of the compounds appear to be similar in this regard to that of 5,10- dideazatetrahydrofolic acid which is described in U S Patent No 4,684,653 Thus the compounds exhibit particularly strong inhibitory activity against the enzyme glycinamide ribonucleotide formyltransferase The compounds also exhibit inhibitory activity against folate enzymes such as dihydrofolate reductase and thymidylate synthetase Representative IC<-0 values for example against human T-cell derived lymphoblastic leukemia cells (CCRF-CEM), for (/) N-{4-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-2-ylcarbonyl}-L-glutamic acid, (ii) N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]-pyrrol-4-ylcarbonyl}-L-glutamic acid, (//'/') N-{2-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-pyrrol-5-ylcarbonyl}-L-glutamic acid, and (;"v) N-{3-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-pyrazol-5-ylcarbonyl}-L-glutamic acid are (;') 0.024 μ/mL, (/'/') 0.008 μ/mL, (iii) 0.009 μ/mL, and (iv) 0.0019 μ/mL.
The compounds can be used, under the supervision of qualified professionals, to inhibit the growth of neoplasms including choriocarcinoma, leukemia, adenocarcinoma of the female breast, epidermic cancers of the head and neck, squamous or small-cell lung cancer, and various lymphosarcomas. The compounds can also be used to treat mycosis fungoides, arthritis, and psoriasis. The compounds can be administered orally but preferably are administered parenterally, alone or in combination with other thera¬ peutic agents including other anti-neoplastic agents, steroids, etc., to a mammal suffering from neoplasm and in need of treatment. Parenteral routes of administration include intramuscular, intrathecal, intravenous and intra-arterial. Dosage regimens must be titrated to the particular neoplasm, the condition of the patient, and the response but generally doses will be from about 10 to about 100 mg/day for 5-10 days or single daily administration of 250-500 mg, repeated periodically; e.g. every 14 days. While having a low toxicity as compared to other antimetabolites now in use, a toxic response often can be eliminated by either or both of reducing the daily dosage or administering the compound on alternative days or at longer intervals such as every three days. Concomitant administration of folic acid as a rescue therapy also may be indicated. Oral dosage forms include tablets and capsules containing from 1-10 mg of drug per unit dosage. Isotonic saline solutions containing 20-100 mg/mL can be used for parenteral administration.
The following examples will serve to further illustrate the invention.
Methods and Materials
Tetrahydrofuran was distilled from sodium/benzophenone; dimethylformamide and acetonitrile were distilled over calcium hydride. All reactions in these solvents were conducted under positive pressure of an inert gas. Column chromatography was car¬ ried out with Merck grade 60 silica gel (230-400 mesh). NMR spectra (250 or 300 MHz) were recorded using CDCL, CD-OD, or DMSO-<i, as solvents and internal standards. In the NMR data, "s" denotes singlet, "d" denotes doublet, "t" denotes triplet, "q" denotes quartet, "m" denotes multiplet, and "br" denotes a broad peak. Melting points are uncorrected.
EXAMPLE 1
Methyl 4-[2-(2-pivaIoylamino-4-hydroxypyrido[2,3-dlpyrimidin-6-yl)ethynyI]-l- tri-isopropyIsiIyIpyrrole-2-carboxylate
A mixture of 3-iodo-5-methoxycarbonyl-l-triisopropylsilylpyrrole (1.222 g, 3.0 mmol), 2-pivaloylamino-4-hydroxy-6-ethynylpyrido[2,3-d]pyrimidine (0.851 g, 3.15 mmol), Pd(PPh)2C12 (105 mg, 0.15 mmol), cuprous iodide (2g mg, 0.15 mmol), and triethylamine (0.5 mL) in acetonitrile (50 mL) was heated at reflux for 4 hours. The resulting solution was cooled, filtered, and concentrated in vacuo. The residue was purified by flash chromatography, eluting with hexanes:ethyl acetate(2: l). The first major fraction is unchanged starting material (270 mg, 32%); the subsequent major fluorescent fractions were combined and concentrated in vacuo to give methyl 4-[2-(2- pivaloylamino-4-hydroxypyrido[2,3-dlpyrimidin-6-yl)ethynyl]- 1 - triisopropylsilylpyrrole-2-carboxylate as a pale yellow solid (935 mg, 57%, mp 163- 165°C): 'H NMR (CDC13) δ 8.90 (br s, 1 H), 8.52 (d, 1 H, J = 2.4Hz), 7.35 (d, 1 H, J = 1.4Hz), 7.23 (d, 1 H, J = 1.4Hz), 3.79 (s, 3 H), 1.75 (sept, 3 H, J = 7.6Hz), 1.31 (s, 9 H), 1.10 (d, 18 H, J = 7.6 Hz). Anal. Calcd for C29H39N5O4Si: C, 63.36; H, 7.15; N, 12.74. Found: C, 63.14;
H, 7.12; N, 12.62.
The 3-iodo-5-methoxycarbonyl-l-triisopropylsilylpyrrole starting material can be prepared as follows. Sodium hydride (80% dispersion; 660 mg, 22 mmol) was washed with pentane and suspended in tetrahydrofuran (20 mL). A solution of methyl pyrrole- 2-carboxylate (1.251 g, 10 mmol) in tetrahydrofuran (10 mL) was added and the mixture stirred at room temperature. When gas evolution ceased, triisopropylsilyl chloride (1.928 mg, 10 mmol) was added dropwise, and the mixture was stirred for 1 hour, heated at reflux overnight, and partitioned between ether and water. The ethereal layer was dried (magnesium sulfate) and concentrated in vacuo. The residue was purified by chromatography using hexanes: ethyl acetate (8: 1) to yield 2- methoxycarbonyl-1-triisopropylsilylpyrrole as an oil (2.05 g, 73%): 1H NMR (CDCL) δ 7.12 (m, 2 H), 6.26 (m, 1 H), 3.78 (m, 3 H), 1.76 (sept, 3 H, J = 7.6 Hz), 1.04 (d, 18 H, J = 7.6 Hz).
Anal. Calcd for C15H2?NO2Si: C, 64.01; H, 9.67; N, 4.98. Found: C, 64.30; H, 9.96; N, 4.72. N-Iodosuccinimide (653 mg, 2.9 mmol) was added to a stirred solution of 2- methoxycarbonyl-1-triisoproρylsilylpyrrole (815 g, 2.9 mmol) in tetrahydrofuran (20 mL). The reaction mixture was stirred at room temperature for two days. The solvent was then removed in vacuo and the oily residue suspended in hexanes (50 mL) with vigorous stirring. The insoluble solid was removed by filtration and the filtrate concentrated in vacuo. Purification of the residue by column chromatography using hexanes gave 3-iodo-5-methoxycarbonyl-l-triisopropylsilylpyrrole (1.044 g, 88%) as a white crystalline solid, mp 81-83°C: 1H NMR (CDCy δ 7.18 (d, 1 H, J = 1 5 Hz), 7.09 (d, I H, J = 1.5 Hz), 3 79 (s, 3 H), 1.74 (sept, 3 H, J = 7.6 Hz), 1.11 (d, 18 H, J = 7.6 Hz).
Anal. Calcd for C15H26INO2Si: C, 44.23; H, 6.43; N, 3.44. Found: C, 44.00; H,
6.53; N, 3.43.
EXAMPLE 2
Methyl 4-[2-(2-P.valoy.amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyI]-l-triisopropylsilylpyrrole-2-carboxylate
A mixture of methyl 4-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-dlpyrimidin-6- yl)ethynyl]-l-triisopropylsilylpyrrole-2-carboxylate (550 mg, 1.0 mmol) and 10% palladium-on-carbon (220 mg) in methanol (45 mL) was stirred overnight under hydrogen (50 psi). The reaction mixture was filtered through Celite and the filtrate concentrated in vacuo. The residue was dissolved in methylene chloride and filtered through a short silica gel column. The eluate was evaporated to give methyl 4-[2-(2- pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]-l- triisopropylsilylpyrrole-2-carboxylate (524 mg, 94%). The analytical sample, mp 202- 204°C, was obtained by column chromatography using chloroform: methanol (19: 1): 1H NMR (CDC13) δ 11.34 (br s, 1 H), 7.85 (br s, 1 H), 6.98 (s, 1 H), 6.90 (s, 1 H), 4.69 (s, 1 H), 3.79 (s, 3 H), 3.36 (br d, 1 H, J = 10.0 Hz), 2.99 (m, 1 H), 2.83 (m, 1 H), 2.59 (m, 2 H), 2.12 (dd, 1 H, J = 15.6, 9.0 Hz), 1.90 -1.50 (m, 6 H), 1.30 (s, 9 H), 1.11 (d, 18 H, J = 7.6 Hz).
Anal. Calcd for C29H4?N5O4Si: C, 62.15; H, 8.49; N, 12.42. Found: C, 62.15; H, 8.54; N, 12.42. EXAMPLE 3
Ethyl 5-[2-(2-PivaloyIamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]pyrazole-3-carboxylate
Reduction of ethyl 5-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-
6-yl)ethenyl]pyrazole-3-carboxylate (820 mg, 2.0 mmol) using palladium-on-carbon (820 mg) as catalyst as in Example 2 similarly yields ethyl 5-[2-(2-pivaloylamino-4- hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrazole-3-carboxylate, mp 235-237°C: 1H NMR (DMSO-^) δ 13.25 (s, 1 H), 11.22 (s, 1 H), 10.67 (s, 1 H), 6.47 (s, 1 H), 6.45 (s, 1 H), 4.22 (q, 2 H, J = 7.0Hz), 3.36 (brd, 1 H, J = 107Hz), 2.83 (m, 1 H), 2.69 (m, 2 H), 2.54 (brd, 1 H, J = 15.2Hz), 1.90 (dd, 1 H, J = 15.2, 7.9 Hz), 1.72 -1.50 (m, 3 H), 1.26 (t, 3 H, J = 7.0 Hz), 1.25 (s, 9 H). HRMS calcd for
C20H28N6°4 416-2172> found 416.2179.
Anal. Calcd for C2()H27N6O4: C, 57.82; H, 6.55; N, 20.23. Found: C, 57.64; H, 6.58 N, 20.61.
EXAMPLE 4
Methyl 5-[2-(2-PivaIoylamino-4-hydroxypyrido[2,3-d]pyrimidin- 6-yl)ethenyl]pyrrole-2-carboxylate
A mixture of methyl 5-vinylpyrrole-2-carboxylate (298 mg, 2.0 mmol), 2-pivaloyl- amino-4-hydroxy-6-bromopyrido[2,3-d]pyrimidine (683 mg, 2.1 mmol), palladium acetate (22.5 mg, 0.1 mmol), tri-o-tolylphosphine (60.9 mg, 0.2 mmol), and triethylamine (7.0 mL) in acetonitrile (20 mL) was heated overnight at reflux. The reaction mixture was cooled to room temperature, and the solid which formed collected by filtration, washed with cold acetonitrile, and dried to give methyl 5-[2-(2- pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6-yl)ethenyl]pyrrole-2-carboxylate as a yellow solid (706 mg, 89%). The product can be used in the next step without further purification. An analytical sample, mp >260°C, was obtained by recrystallization from methanol: Η NMR (DMSO-^) δ 12.28 (s, 1 H), 12.08 (s, 1 H), 11.40 (s, 1 H), 8.93 (s, 1 H), 8.40 (s, 1 H), 7.36 (d, 1 H, J = 16.6 Hz), 7.27 (d, 1 H, J = 16.6 Hz), 6.81 (m, 1 H), 6.48 (m, 1 H), 3.76 (s, 3 H), 1.23 (s, 9 H).
Anal. Calcd for Q^^^O^ C, 60.75; H, 5.35; N, 17.71. Found: C, 60.80; H, 5.36; N, 17.92. EXAMPLE 5
Methyl 4-[2-(2-Pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6-yI)- ethenyl]pyrrole-2-carboxylate
Similarly obtained from methyl 4-vinylpyrrole-2-carboxylate (298 mg, 2.0 mmol),
2-pivaloylamino-4-hydroxy-6-bromopyrido[2,3-d]pyrimidine (715 mg, 2.2 mmol), palladium acetate (27 mg, 0.1 mmol), tri-ø-tolylphosphine (61 mg, 0.2 mmol), and triethylamine (1.4 mL) according to the procedure of Example 4 is methyl 4-[2-(2- pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6-yl)ethenyl]pyrrole-2-carboxylate (700 mg, 89%): mp >260° C: Η NMR (DMSO-tf^) δ 12.30 (br s, 1 H), 12.06 (s, 1 H), 11.39 (s, 1 H), 8.98 (s, 1 H), 8.41 (s, 1 H), 7.31 (d, 1 H, J = 16.5 Hz), 7.26 (s, I H), 7.11 (s, I H), 7.15 (d, 1 H, J = 16.5 Hz), 3.76 (s, 3 H), 1.25 (s, 9 H).
Anal. Calcd for C2QH21N5O4.0.5 H2O: C, 59.38; H, 5.49; N, 17.32. Found: C, 59.24; H, 5.33; N, 17.37. EXAMPLE 6
Methyl 5-[2-(2-Pivaloylamino-4-hydroxypyrido[2,3-dlpyrimidin-6- yl)ethenyl]pyrrole-3-carboxylate
Use of methyl 5-vinylpyrrole-3-carboxylate in the same fashion as Example 4 yields methyl 5-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6-yl)ethenyl]- pyrrole-3-carboxylate (1.02 g, 86%) mp >260°C: 1H NMR (DMSO-^) δ 11.95 (br s, 1 H), 11.06 (s, 1 H), 9.76 (s, 1 H), 8.86 (s, 1 H), 8.33 (s, 1 H), 7.51 (s, 1 H), 7.20 (d, 1 H, J = 16.4 Hz), 7.03 (d, 1 H, J = 16.4 Hz), 6.64 (s, 1 H), 3.69 (s, 3 H), 1.2:2 (s, 9 H). Anal. Calcd for ^K^I^S0^- C' 60 75; H' 5"35 N' 17,71- Found: C' 6α 50; H'
5.27; N, 17.76.
The methyl 5-vinylpyrrole-2-carboxylate starting material is obtained as follows. To a stirred suspension of methyltriphenylphosphonium bromide (2.358 g, 6.6 mmol) in tetrahydrofuran (50 mL) was added dropwise 1 N lithium hexamethyldisilazide in tetrahydrofuran (6.6 mL, 6.6 mmol) at 0°C. After the solution was stirred for 1 hour, methyl 5-formylpyrrole-2-carboxylate (453 mg, 3.0 mmol) was added in one portion to the resulting solution, and the reaction mixture was stirred for 1.5 hours at room temperature, quenched by addition of water (10 mL) and then acidified with 1 N HCl. The organic phase was dried (magnesium sulfate) and concentrated. Purification of the residue by flash chromatography using hexanes:ethyl acetate (4:1) gave methyl 5- vinylpyrrole-2-carboxylate (400 mg, 90%) as a white crystalline solid, mp 91 -93 °C: Η NMR (CDC13) δ 9.40 (br s, 1 H), 6.86 (dd, 1 H, J = 3.7, 2.4 Hz), 6.56 (dd, 1 H, J = 17.8, 11.2Hz), 6.27 (dd, 1 H, J = 3.7, 2.8 Hz), 5.59 (d, 1 H, J = 17.8 Hz), 5.22 (d, I H, 11.2Hz), 3.85 (s, 3 H).
Anal. Calcd for CgHgNO^ C, 63.56; H, 6.00; N, 9.27. Found: C, 63.33; H, 6.28; N, 9.00.
Similarly obtained from methyl 4-formylpyrrole-2-carboxylate (453 mg, 3.0 mmol) and methyltriphenylphosphonium bromide (2.36 g, 6.6 mmol) is methyl 4-vinylpyrrole- 2-carboxylate as a white crystalline solid (436 mg, 98%, mp 63-65°C): !H NMR (CDC13) δ 9.34 (br s, 1 H), 7.00 (m, 1 H), 6.94 (s, 1 H), 6.54 (dd, 1 H, J = 17.7, 11.0 Hz), 5.43 (dd, 1 H, J = 17.7, 1.2Hz), 5.02 (dd, 1 H, J = 11.0, 1.2Hz).
Anal. Calcd for C9H9NO2: C, 63.56, H, 6.00; N, 9.27. Found: C, 63.38; H, 6.08;
N, 9.27.
Similarly obtained from methyl 5-formylpyrrole-3 -carboxylate (907 mg, 6 mmol) and methyltriphenylphosphonium bromide (5.71 g, 13.2 mmol) is methyl 5- vinylpyrrole-3-carboxylate, mp 97-99°C: Η NMR (CDC13) δ 8.83 (br s, 1 H), 7.36 (s,
1 H), 6.59 (s, 1 H), 6.56 (dd, 1 H, J = 17.7, 11.2Hz), 5.35 (d, 1 H, J = 17.7 Hz),5.11
(d, l H, J = 11.2Hz), 3.81 (s, 3 H).
Anal. Calcd for CgHgNO^ C, 63.56; H, 6.00; N, 9.27. Found: C, 63.35; H, 6.10; N, 9.20.
Similarly prepared from ethyl 5-formylpyrazole-3 -carboxylate (1.66 g, 10 mmol) and methyltriphenylphosphonium bromide (7.50 g, 21 mmol) is ethyl 5-vinylpyrazole- 3-carboxylate as a white crystalline solid (1.55 g, 95%), mp 75-77°C; 11 1 NMR (CDC13) δ 11.20 (br s, 1 H), 6.89 (s, 1 H), 6.68 (dd, 1 H, J = 17.7, 11.3Hz), 5.76 (d, 1 H, J = 17.7Hz), 5.38 (d, 1 H, J = 11.3Hz), 4.37 (q, 2 H, J = 7.2Hz), 1.37 (t, 3 H, J = 7.2Hz).
Anal. Calcd for CgH^N^: C, 57.82; H, 6.07; N, 16.86. Found: C, 57.66; H, 6.21; N, 17.05.
EXAMPLE 7
Ethyl 5-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]pyriιτιidin-6- yl)ethenyl]pyrazole-3-carboxylate
From ethyl 5-vinylpyrazole-3-carboxylate (492 mg, 3.0 mmol), 2-pivaloylamino-4- hydroxy-6-bromopyrido[2,3-d]pyrimidine (25, 1.07 g, 3.3 mmol), palladium acetate (34 mg, 0.15 mmol), tri-o-tolylphosphine (91 mg, 0.3 mmol), and triethylamine (2.1 mL) there is similarly obtained according to the procedure of Example 4, ethyl 5-[2-(2- pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6-yl)ethenyl]pyrazole-3-carboxylate (1.04 g, 85%, mp >260°C); 1H NMR (DMSO-tf^) δ 13.75 (s, 1 H), 12.28 (s, 1 H), 11.42 (s, 1 H), 9.01 (s, 1 H), 8.47 (d, 1 H, J = 2.5Hz), 7.36 (AB, 2 H), 6.96 (s, 1 H), 4.29 (q, 2 H ,J = 7.0Hz), 1.30 (t, 3 H, J = 7.0 Hz), 1.25 (s, 9 H). HRMS calcd for C20H22N6°4 410-1703' found 410.1692.
Anal. Calcd for C H^N^: C, 58.67; H, 5.17; N, 20.53. Found: C, 58.50; H, 5.13 N, 20.44.
EXAMPLE 8
Methyl 5-[2-(2-Pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]pyrrole-2-carboxylate
A mixture of methyl 5-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]-pyrimidin-6- yl)ethenyl]pyrrole-2-carboxylate (593 mg, 1.5 mmol) and platinum oxide (68 mg) in glacial acetic acid (200 mL) was stirred overnight under hydrogen (50 psi). The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo. The solid was recrystallized from methanol to give methyl 5-[2-(2-pivaloylamino-4- hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carboxylate as an off-white solid (505 mg, 84%), mp 246-248°C: 1H NMR (OMSO-dJ δ 11.67 (s, 1 H), 10.90 (br s, 1 H), 10.60 (br s, 1 H), 6.66 (s, 1 H), 6.45 (s, 1 H), 5.91 (s, 1 H), 3.72 (s, 3 H), 3.22 (brd, 1 H, J = 10.5 Hz), 2.81 (m, 1 H), 2.64 (m, 2 H), 2.52 (brd, 1 H, J = 15.2Hz), 1.88 (dd, 1 H, J = 15.2, 7.9 Hz), 1.68 -1.50 (m, 3 H), 1.21 (s, 9 H). Anal. Calcd for C20H2?N5O4: C, 59.84; H, 6.78; N, 17.44. Found: C, 59.55; H,
6.79; N, 17.20.
EXAMPLE 9
Methyl 4-[2-(2-Pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yI)ethyllpyrrole-2-carboxylate
Upon reduction of methyl 4-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]- pyrimidin-6-yl)ethenyl]pyrrole-2-carboxylate with hydrogen and palladium-on-carbon catalyst (200 mg) analogously to that described in Example 8, there is obtained methyl
4-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrole-2-carboxylate (380 mg, 95%): mp 236-238°C: 1H NMR (DMSO-fiy δ 11.59 (s, 1 H), 11.21 (s, 1 H), 10.60 (s, 1 H), 6.81 (s, 1 H), 6.62 (s, 1 H), 6.42 (s, 1 H), 3.7() (s, 3 H), 3.23 (br d, 1 H, J = 10.5 Hz), 2.82 (m, 1 H), 2.57 - 2.43 (m, 3 H), 1.87 (dd, 1 H, J = 15.2, 8.0 Hz), 1.68 -1.43 (m, 3 H), 1.18 (s, 9 H).
Anal. Calcd for C2()H27N5O4: C, 59.84; H, 6.78; N, 17.44. Found: C, 59.70; H, 6.61 ; N, 17.65.
EXAMPLE 10
Methyl 5-[2-(2-Pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]pyrrole-3-carboxylate Similarly prepared as in Example 8 but from methyl 5-[2-(2-pivaloylamino-4- hydroxypyrido[2,3-d]pyrimidin-6-yl)ethanyl]pyrrole-3-carboxylate is methyl 5-[2-(2- pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole- 3-carboxylate, mp >260°C: Η NMR (CDCyCD-jOD, 1/1) δ 7.22 (s, 1 H), 6.20 (s, 1 H), 3.71 (s, 3 H), 3.28 (br d, 1 H, J = 12.1Hz), 2.91 (dd, 1 H, J = 12.1, 8.7 Hz), 2.75-2.55 (m, 3 H), 2.00 (dd, 1 H, J = 15.8, 9.0 Hz), 1.74 (m, 1 H), 1.61 (m, 1 H), 1.21 (s, 9 H).
Anal. Calcd for C2QH27N5O40.5 H2O: C, 58.51; H, 6.88; N, 17.07. Found: C, 58.55; H, 6.95; N, 16.90.
EXAMPLE 11
4-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]pyrrole-2-carboxylic Acid
A suspension of methyl 4-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]-l-triisopropylsilylpyrrole-2-carboxylate (390.4 mg, 0.7 mmol) in 1 N sodium hydroxide (1 mL) was heated under reflux until clear (about 4 hours). The mixture was cooled to room temperature, extracted with ethyl acetate, and then acidified with glacial acetic acid. The solid which formed was collected by filtration, washed with water, and dried in vacuo to give 4-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carboxylic acid (199 mg, 94%), mp >260°C: 1H NMR (DMSO-<y δ 11.39 (s, 1 H), 9.72 (br s, 1 H), 6.73 (s, 1 H), 6.55 (s, 1 H), 6.25 (s, 1 H), 5.93 (s, 2 H), 3.16 (br d, 1 H, J = 9.5 Hz), 2.72 (m, 1 H), 2.43 (m, 3 H), 1.75 (m, 1 H), 1.42 - 1.53 (m, 3 H); Η NMR (CD3OD) δ 6.69 (s, 1 H), 6.63 (s, 1 H), 3.31 (brd, 1 H, J = 12.1 Hz), 2.91 (dd, 1 H, J = 12.1, 9.2Hz), 2.67 (dd, 1 H, J = 15.3, 4.4Hz), 2.55 (m, 2 H), 1.99 (dd, 1 H, J = 15.3, 9.4 Hz), 1.76 (m, 1 H), 1.60 (m, 2 H). Anal. Calcd for C14H1 ?N5O3: C, 55.44; H, 5.65; N, 23.09. Found: C, 55.44; H, 5.84; N, 23.49.
EXAMPLE 12 5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrole-2-carboxylic Acid
In the same manner as Example 11 there is obtained from methyl 5-[2-(2-pivaloyl- amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carb- oxylate (401 mg, 1.0 mmol) and IN sodium hydroxide (6 mL), 5-[2-(2-amino-4- hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carboxylic acid (257 mg, 85%) as an off-white solid, mp >260°C: 1H NMR (DMSO-cy δ 11.34 (s, 1 H), 10.20 (br s, 1 H), 6.50 (s, 1 H), 6.25 (s, 1 H), 5.96 (s, 2 H), 5.87 (s, 1 H), 3.15 (br d, 1 H, J = 10.3 Hz), 2.73 (m, 1 H), 2.63 (m, 2 H), 2.55 (br d, 1 H, J = 14.9 Hz), 1.78 (dd, 1 H, J = 14.9, 7.9 Hz), 1.80 -1.50 (m, 3 H). Anal. Calcd for C14H1 ?N5O3 0.5H2O: C, 53.82 H, 5.81; N, 22.43. Found: C,
54.13; H, 5.65; N, 22.19.
EXAMPLE 13
5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrole-3-carboxyiic Acid
Upon saponification of methyl 5-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8- tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-3-carboxylate (401 mg g, 1.0 mmol) with IN sodium hydroxide (15 mL) as described in Example 11, there is obtained 5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)eth- yl]pyrrole-3-carboxylic acid, mp >260°C: !H NMR (DMSO-^) δ 11.49 (s, 1 H), 10.12 (br s, 1 H), 9.66 (s, 1 H), 7.16 (s, 1 H), 6.23 (s, 1 H), 6.05 (s, 2 H), 5.90 (s, I H), 3.16 (brd, 1 H, J = 10.9 Hz), 2.78 (m, 1 H), 2.63-2.40 (m, 2 H), 1.77 (dd, 1 H, J = 15.2, 8.6 Hz), 1.69 -1.43 (m, 3 H).
EXAMPLE 14
5- [2-(Amino-4-hyd roxy-5,6,7,8-tetrahyd ropy rido [2,3-d] pyrimid in-6- yl)ethyl]pyrazole-3-carboxylic Acid
Upon saponification of ethyl 5-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrazole-3-carboxylate (637 mg, 1.5 mmol) with IN sodium hydroxide (3 mL) as described in Example 11, there is obtained 5-[2-(amino-4- hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrazole-3-carboxylic acid (368 mg, 80%, mp >260°C): Η NMR (DMSO^) δ 12.90 (br s, 1 H), 9.85 (br s, 1 H), 6.67 (s, 1 H), 6.42 (s, 1 H), 6.27 (s, 1 H), 5.96 (s, 2 H), 3.16 (br d, 1 H, J = 107 Hz), 2.74 (m, 1 H), 2.65 (m, 1 H), 2.46 (brd, 1 H, J = 15.0 Hz), 1.90 (dd, 1 H, J = 15.0, 7.9 Hz), 1.68-1.47 (m, 3 H).
Anal. Calcd for C13H16N6O3 1.5 H20: C, 47.13; H, 5.78; N, 25.36. Found: C, 46.82; H, 5.78 N, 24.97.
EXAMPLE 15 Dimethyl N-{4-[2-(Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-
6— yl)ethyl] pyrroI-2-ylcarbony}-L-glutamate
A solution of 4-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]pyrrole-2-carboxylic acid (152 mg, 0.5 mmol), 2-chloro-4,6-dimethoxy- 1,3,5-triazine (98 mg, 0.55 mmol), and 4-methylmorpholine (0.066 mL, 0.6 mmol) in DMF (3 mL) was stirred at room temperature for 2 hours. Dimethyl L-glutamate hydrochloride (0.1 16 g, 0.55 mmol) and 4-methylmorpholine (0.066 mL, 0.6 mmol) were sequentially added and the mixture was stirred overnight at room temperature. The solvent was removed in vacuo, and the residue chromatographed using chloroform: methanol (9:1) to give dimethyl N-{4-[2-(amino-4-hydroxy-5, 6,7,8- tetrahydropyrido[2, 3 -d]pyrimidin-6-yl)ethyl]pyrrol-2-ylcarbonyl} -L-glutamate (152 mg, 66%) as a white solid, mp 151-153°C: 1H NMR (CDCyi drop CD3OD) δ 10.20 (br s, 1 H), 7.27 (s, 1 H, J = 7.9 Hz), 6.70 (s, 1 H), 6.82 (s, 1 H), 5.83 (br s, 2 H), 5.38 (br s, 1 H), 4.80 (m, 1 H), 3.84 (s, 3 H), 3.73 (s, 3 H), 3.42 (br d, 1 H, J = 10.1 Hz), 3.05 (m, 1 H), 2.76 (dd, 1 H, J = 15.0, 4.4 Hz), 2.65 (m, 2 H), 2.56 (m, 2 H), 2.36 (m, 1 H), 2.14 (m, 2 H), 1.91 (m, 1 H), 1.68 (m, 2 H).
Anal. Calcd for C21H2gN6O6 i.5H2O: C, 53.71; H, 6.23; N, 17.91. Found: C, 53.34; H, 6.12; N, 18.03.
EXAMPLE 16 Dimethyl N-{5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyI]pyrrol-2-ylcarbonyl}-L-glutamate
Similarly obtained from 5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido-
[2,3-d]pyrimidin-6-yl)ethyl]pyrrole-2-carboxylic acid (227.5 mg g, 0.75 mmol), 2- chloro-4,6-dimethoxy-l,3,5-triazine (145 mg, 0.825 mmol), 4-methylmorpholine (0.20 mL, 1.8 mmol), and dimethyl L-glutamate hydrochloride (191 mg, 0.9 mmol) according to the method of Example 15 is dimethyl N-{5-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrol-2-ylcarbonyl}-L-glutamate as a pale yellow solid after flash column chromatography using chloroform: methanol (4:1). The analytical sample, mp 200-202°C, was recrystallized from methanol: *H NMR (CD3OD) δ 6.85 (d, 1 H, J = 3.7 Hz), 6.03 (d, 1 H, J = 3.7 Hz), 4.69 (m, 1 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.40 (m, 1 H), 3.02 (m, 1 H), 2.87 - 2.60 (m, 3 H), 2.56 (m, 2 H), 2.34 (m, 1 H), 2.40 - 2.07 (m, 2 H), 1.84 (m, 1 H), 1.77(m, 2 H). Anal. Calcd for C21H29N6O60.5 H2O: C, 53.71; H, 6.23; N, 17.91. Found: C, 53.48; H, 6.08; N, 18.02. EXAMPLE 17
Dimethyl N-{5-[2-(Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]pyrrol-3-ylcarbonyl}-L-glutamate
From 5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)- ethyl]pyrrole-3 -carboxylic acid (228 mg, 0.75 mmol), 2-chloro-4,6-dimethoxy-l,3,5- triazine (145 mg, 0.825 mmol), 4-methylmorpholine (0.20 mL, 1.8 mmol), and dimethyl L-glutamate hydrochloride (191 mg, 0.9 mmol) there is obtained according to the procedure of Example 15, dimethyl N-{5-[2-(amino-4-hydroxy-5,6,7,8-tetrahydro- pyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrol-3-ylcarbonyl} -L-glutamate as a white solid (184 mg, 53%) after flash column chromatography (chloroform: methanol, 4:1): LH NMR (CD3OD) δ 7.25 (d, 1 H, J = 1.7 Hz), 6.30 (d, 1 H, J = 1.7 Hz), 4.58 (m, 1 H), 3.71 (s, 3 H), 3.63 (s, 3 H), 3.33 (m, 1 H), 2.92 (dd, 1 H, J = 12.2, 8.5 Hz), 2.71 - 2.60 (m, 3 H), 2.45 (t, 2 H, J = 7.3 Hz), 2.22 (m, 1 H), 2.09 - 1.96 (m, 2 H), 1.76 (m, I H), 1.66 (m, 2 H). Anal. Calcd for C^H^NgOg l.S H2O: C, 51.74; H, 6.41; N, 17.24. Found: C,
51.57; H, 6.58; N, 16.90.
EXAMPLE 18
Dimethyl N-{S-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]pyrazol-3-ylcarbonyl}-L~glutamate
From 5-[2-(amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)eth- yl]pyrazole-3-carboxylic acid (228 mg g, 0.75 mmol), 2-chloro-4,6-dimethoxy- 1,3,5- triazine (145 mg, 0.825 mmol), 4-methylmorpholine (0.20 mL, 1.8 mmol), and dimethyl L-glutamate hydrochloride (191 mg, 0.9 mmol), there is obtained according to the procedure of Example 15, dimethyl N-{5-[2-(2-amino-4-hydroxy-5,6,7,8- tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrazol-3-ylcarbonyl}-L-glutamate (175 mg, 51%, mp 219-221 °C); 1H NMR (CDCl3/CD3OD, 3/1) δ 6.55 (s, 1 H), 4.62 (m,
1 H), 3.77 (s, 3 H), 3.54 (s, 3 H), 3.18 (brd, 1 H, J = 11.6Hz), 2.79 (m, 1 H), 2.61 (m,
2 H), 2.43 (brd, 1 H, J = 15.0 Hz), 2.37 (t, 2 H, J = 4.3Hz), 2.18 (m, 1 H), 2.03 (m, 1 H), 1.78 (dd, 1 H, J = 15.0 Hz), 1.63 -1.35 (m, 3 H). HR FAB MS calcd for
C20H28N7°6 462.2101 (M++H), found 462.2094.
EXAMPLE 19
N-{4-[2-(Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]pyrrol-2-ylcarbonyl}-L-gIutamic Acid
A solution of dimethyl N-{4-[2-(amino-4-hydroxy-5,6,7,8-tetrahydropyrido- [2,3-d]pyrimidin-6-yl)ethyl]pyrrol-2-ylcarbony}-L-glutamate (92 mg, 0.2 mmol) in IN sodium hydroxide ( 1 mL) was stirred at room temperature for 3 days, then acidified to pH 5 by addition of glacial acetic acid. The white solid was collected by filtration, washed with water, and dried in vacuo to give N-{4-[2-(amino-4-hydroxy-5,6,7,8- tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrol-2-ylcarbonyl}-L-glutamic acid (68 mg, 79%) as a white solid: 1H NMR (DMSO-J^) δ 11.44 (s, 1 H), 9.84 (br s, 1 H), 7.79 (d, 1 H, J = 7.7 Hz), 6.64 (s, 2 H), 6.23 (s, 1 H), 5.97 (s, 2 H), 4.27 (s, 1 H), 3.16 (brd, 1 H, J = 9.6Hz), 2.74 (brt, 1 H, J = 10.2Hz), 2.45 - 2.18 (m, 5 H), 1.95 - 1.75 (m, 3 H), 1.65 - 1.40 (m, 3 H). HR FAB MS calcd for C19H25N6O6 433.1836 (MVH), found 433.1866.
Anal. Calcd for Cj ^^0^ 1.5^0: C, 49.65; H, 5.93; N, 18.30. Found: C, 49.28; H, 5.89; N, 18.38.
EXAMPLE 20
N-{5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrol-2-ylcarbonyl}-L-glutamic Acid
Similarly prepared from dimethyl N-{5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetra- hydropyrido[2,3-d]pyrimidin-6-yl)ethyl]pyrrol-2-yl]carbonyl]-L-glutamate (138 mg g, 0.3 mmol) and IN sodium hydroxide (1.5 mL) according to the procedure of Example 19 is N-{5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)eth- yl]pyrrol-2-ylcarbonyl}-L-glutamic acid as an off white solid (105 mg, 81%), mp >260°C: 1H NMR (DMSO-^) δ 11.22 (s, 1 H), 9.76 (br s, 1 H), 7.83 (d, 1 H, J = 7.8 Hz), 6.69 (s, 1 H), 6.27 (s, 1 H), 5.97 (s, 2 H), 5.81 (s, 1 H), 4.32 (s, 1 H), 3.16 (m, 1 H), 2.73 (m, 1 H), 2.61 - 2.24 (m, 3 H), 2.28 (m, 2 H), 2.02 - 1.69 (m, 3 H), 1.60 - 1.43 (m, 3 H). HR FAB MS calcd for C] 9H25N6O6 433.1836 (M++H), found 433.1840.
Anal. Calcd for C] 9H24N6O60.5 H2O: C, 51.70; H, 5.71; N, 19.04. Found: C, 51.79; H, 5.90; N, 18.87.
EXAMPLE 21
N-{5-[2-(Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrol-3-ylcarbonyl}-L-glutamic Acid
From dimethyl N-{5-[2-(amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]pyrrol-3-ylcarbonyl}-L-glutamate (92 mg g, 0.2 mmol) and IN sodium hydroxide (1 mL), there is similarly obtained according to the procedure of Example 19 N-{5-[2-(amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- yl)ethyl]pyrrol-3-ylcarbonyl}-L-glutamic acid as an off-white solid (57 mg, 66%, mp >260°C): Η NMR (CD3OD) δ 7.25 (d, 1 H, J = 1.6 Hz), 6.30 (d, 1 H, J = 1.6 Hz), 4.53 (m, 1 H), 3.33 (m, 1 H), 2.92 (dd, 1 H, J = 12.2, 8.5 Hz), 2.70 - 2,60 (m, 3 H), 2.43 (t, 2 H, J = 7.6 Hz), 2.22 (m, 1 H), 2.08-1.96 (m, 2 H), 1.76 (m, 1 H), 1.66 (m, 2 H). HR FAB MS calcd for C19H25N6O6 433.1836(M++H), found 433.1858.
Anal. Calcd for C^H^NgO^O: C, 50.66; H, 5.82; N, 18.66. Found: C, 50.58; H, 5.58; N, 18.37. EXAMPLE 22
N-{5-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6- y.)ethyllpyrazol-3-ylcarbonyl}-L-glutamic Acid
From dimethyl N-{ 5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyri- midin-6-yl)ethyl]pyrazol-3-ylcarbonyl} -L-glutamate (92 mg, 0.2 mmol) and IN sodium hydroxide (0.5 mL), there is similarly obtained according to the procedure of Example 19, N-{5-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]- pyrazol-3-ylcarbonyl}-L-glutamic acid (69 mg, 79%, mp >260°C): 1H NMR (DMSO- d6) δ 12.90 (br s, 1 H), 9.84 (br s, 1 H), 7.99 (d, 1 H, J = 7.7 Hz), 6.43 (s, 1 H), 6.26 (s, 1 H), 5.98 (s, 2 H), 4.24 (m, 1 H), 3.16 (brd, 1 H, J = 10.4Hz), 2.77 (m, 1 H), 2.67 (m, 2 H), 2.47 (brd, 1 H, J = 15.0 Hz), 2.26 (m, 2 H), 2.05-1.74 (m, 3 H), 1.68 -1.45 (m, 3 H). HR FAB MS calcd for C18H24N7O6 434.1788 (M"+H), found 434.1813. EXAMPLE 23
Dimethyl N-{2-[2-(2-PivaIoylamino-4-hydroxypyrido[2,3-d]pyrimidin-6- yl)ethynyl]-l-triphenylmethylimidazoI-4-ylcarbonyl}-L-glutamate
Following the procedure of Example 1, dimethyl N-(2-iodo-l-triphenylmethylimi- dazol-4-ylcarbonyl)-L-glutamate (638 mg, 1.0 mmol), 2-pivaloylamino-4-hydroxy-6- ethynylpyrido[2,3-d]pyrimidine (541 mg, 2.0 mmol), Pd(PPh)2Cl2 (35 mg, 0.05 mmol), cuprous iodide (19 mg, 0.1 mmol), triethylamine (0.7 mL), and acetonitrile (50 mL) yield dimethyl N-{2-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]pyrimidin-6- yl)ethynyl]-l-triphenylmethylimidazol-4-ylcarbonyl} -L-glutamate [515 mg, 66% after flash column chromatography (ethyl acetate: hexanes, 2:1), mp 93-95°C]: 1H NMR (CDC13) δ 12.05 (br s, 1 H), 8.43 (br s, 1 H), 8.26 (s, 1 H), 7.93 (d, 1 H, J = 2.2Hz), 7.61 (s, 1 H), 7.54 (d, 1 H, J = 7.6 Hz), 7.33 - 7.28 (m, 9 H), 7.18 - 7.12 (m, 6 H), 4.77 (m, 1 H), 3.74 (s, 3 H), 3.65 (s, 3 H), 2.45 (m, 2 H), 2.32 (m, 1 H), 2.05 (m, 1 H), 1.30 (s, 9 H). HRMS calcd for C44H41N?O7 779.3067, found 779.3088.
Anal. Calcd for C44H41N7O?: C, 67.77; H, 5.30; N, 12.57. Found: C, 67.48; H,
5.59; N, 22.72.
The starting material can be prepared in the following manner. A mixture of 2- iodo-4-hydroxymethyl-l-(triphenylmethyl)imidazole (3.264 g, 7.0 mmol) and manganese dioxide (12.17 g, 140 mmol) in methylene chloride (100 mL) was stirred overnight at room temperature and filtered though Celite. The filtrate was concentrated in vacuo to give 2-iodo-4-formyl-l-triphenylmethylimidazole as a white foamy solid (3.05 g, 94%), mp 173-75°C which was sufficiently pure to be used in the next step without further purification. Η NMR (CDC13) δ 9.77 (s, 1 H), 7.55 (s, 1 H), 7.38-7.30 (m, 9 H), 7.16-7.09 (m, 6 H).
Anal. Calcd for C23H17IN2O: C, 59.50; H, 3.69; N, 6.03. Found: C, 59.27; H, 3.76; N, 5.95.
To a mixture of activated manganese dioxide (5.66 g, 65 mmol), sodium cyanide (833 mg, 17 mmol), and glacial acetic acid (300 mg) in methanol (70 mL) was added 2-iodo-4-formyl-l-triphenylmethylimidazole (2.33 g, 5.0 mmol) in one portion. The mixture was stirred for 1 hour at room temperature and then filtered through Celite. The filtrate was concentrated and the residue was partitioned into methylene chloride and water. The organic phase was dried (magnesium sulfate) and concentrated in vacuo to give a white foamy solid. Purification by column chromatography using ethyl acetate: hexanes (1 :2) afforded 2-iodo-4-(methoxycarbonyl)-l-triphenylmethylimid- azole (2.26 g, 92%) as a white solid, mp 192-194°C. 1H NMR (CDCy δ 7.55 (s, 1 H), 7.37-7.29 (m, 9 H), 7.18-7.09 (m, 6 H), 3.84 (s, 3 H).
Anal. Calcd for C^H^IN^: C, 58.31; H, 3.87; N, 5.67. Found: C, 58.03; H, 3.90; N, 5.64. A suspension of 2-iodo-4-(methoxycarbonyl)-l-triphenylmethylimidazole (1.978 g, 4 mmol) in 6N sodium hydroxide (15 mL) was heated at reflux for 4 hours. The resulting suspension was diluted with ethyl acetate (20 mL) and then slightly acidified with acetic acid. The resulting clear solution was extracted three times with ethyl acetate (20 mL) and the combined extracts were dried (magnesium sulfate) and concentrated in vacuo. Residual acetic acid was removed under high vacuum to give 2-iodo-l-triphenylmethylimidazo!e-4-carboxylic acid (1.67 g, 87%) as a white solid, mp 203-205°C: 1H NMR (CDC13) δ 7.60 (s, 1 H), 7.38 - 7.20 (m, 9 H), 7.18 - 7.09 (m, 6 H).
Anal. Calcd for C23H17IN2O2: C, 57.52; H, 3.57; N, 5.83. Found: C, 57.37; H, 3.87; N, 5.65.
2-Iodo-l-triphenylmethylimidazole-4-carboxylic acid (1.443 g, 3.0 mmol), 2- chloro-4,6-dimethoxy-l,3,5-triazine (553 mg, 3.15 mmol), 4-methylmorpholine (0.614 mL, 6.6 mmol), dimethyl L-glutamate hydrochloride (698 mg, 3.3 mmol), and tetrahydrofuran (20 mL) were then allowed to react in the manner described in Example 15 to yield dimethyl N-(2-iodo-l-triphenylmethylimidazol-4-ylcarbonyl)-L- glutamate (1.44 g, 75%, mp 86-88°C): 1H NMR (CDC13) δ 7.47 (s, 1 H), 7.44 (d, 1 H, J = 8.6 Hz), 7.32 - 7.26 (m, 9 H), 7.21 - 7.05 (m, 6 H), 4.72 (m, 1 H), 3.71 (s, 3 H), 3.62 (s, 3 H), 2.41 (m, 2 H), 2.27 (m, 1 H), 1,99 (m, 1 H). HRMS calcd for C30H2gIN3O5 637.1074, found 637.1054. Anal. Calcd for C30H2gIN3O5: C, 56.52; H, 4.43; N, 6.59. Found: C, 56.36; H, 4.45, N, 6.57.
EXAMPLE 24
Dimethyl N-{2-[2-(2-Pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3- d]pyrimidin-6-yl)ethyl]imidazol-4-ylcarbonyl}-L-glutamate
A mixture of dimethyl N-{2-[2-(2-pivaloylamino-4-hydroxypyrido[2,3-d]- pyrimidin-6-yl)ethynyl]- 1 -triphenylmethylimidazol-4-ylcarbonyl } -L-glutamate (390 mg, 0.5 mmol) and 10% palladium-on-carbon catalyst (390 mg) in methanol (15 mL) was stirred under 50 psi of hydrogen for 7 days at room temperature. The workup was performed as described in Example 2 to yield 130 mg (48%) of dimethyl N-{2-[2- (2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin-6-yl)ethyl]imid- azol-4-ylcarbonyl} -L-glutamate as a pale yellow solid, mp 129-131°C: *H NMR (CDC13) δ 1 1.35 (br s, 1 H), 8.95 (br s, 1 H), 7.54 (d, 1 H, J = 8.4 Hz), 7.49 (s, 1 H), 4.75 (m, 1 H), 3.69 (s, 3 H), 3.60 (s, 3 H), 3.30 (M, 1 H), 2.87 (m, 1 H), 2.80 - 2.60 (m, 3 H), 2.43 (m, 2 H), 2.27 (m, 1 H), 2.15-1.92 (m, 2 H), 1.80 - 1.60 (m, 3 H), 1.26 (s, 9 H).
EXAMPLE 25
N-{2-[2-(Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3d]pyrimidin-6- yl)ethyl]imidazol-4-ylcarbonyl}-L-glutamic Acid
Dimethyl N-{2-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl]imidazol-4-ylcarbonyl} -L-glutamate (109 mg g, 0.2 mmol) and 0.5N sodium hydroxide (1 mL) are allowed to react analogously to the method described in Example 19 to yield N-{2-[2-(amino-4-hydroxy-5,6,7,8-tetrahydropyrido- [2,3-d]pyrimidin-6-yl)ethyl]imidazol-4-ylcarbonyl}-L-glutamic acid (38 mg, 44%, mp >260°C): 1H NMR (DMSO^) d 12.35 (br s, 1 H), 12.21 (br s, 1 H), 9.77 (br s, 1 H), 7.80 (br s, 1 H), 7.50 (s, 1 H), 6.27 (s, 1 H), 5.92 (s, 2 H), 4.37 (m, 1 H), 3.17 (br d, 1 H, J = 10.6 Hz), 2.79-2.61 (m, 3 H), 2.44 (m, 1 H), 2.26 (m, 2 H), 2.07-1.76 (m, 3 H), 1.68 - 1 .59 (m, 3 H).
EXAMPLE 26
Diethyl N-{2-[2-PivaIoylamino-4-hydroxypyrido[2,3-</]pyrimidin- 6-ylethynyl]-4-thiazolylcarbonyl}-L-glutamate
To a 100 mL 14/20 round bottom flask under an argon atmosphere were added
0.316 g (1.17 mmol) of 2-pivaloylamino-4-hydroxy-6-ethynylpyrido[2,3-f/]pyrimidine suspended in 10 mL of acetonitrile, followed by the addition of 0.47 g (1.2 mmol) of diethyl N- (2-bromo-4-thiazolylcarbonyl)-L-glutamate, 0.14 g (0.12 mmol) of tetraA;s(triphenylphosphine)palladium (0), 0.046 g (0.24 mmol) of copper (I) iodide, and 0.35 mL (2.5 mmol) of triethylamine with an additional 10 mL of acetonitrile. The reaction was heated to reflux for 2 hours The volatiles were removed in vacuo, and the residue purified using silica gel flash chromatography, eluting with a step gradient of 100% chloroform to 2% methanol/chloroform to give 0.46 g (67%) of diethyl N-{2- [2-pivaloylamino-4-hydroxypyrido[2,3-α']pyrimidin-6-ylethynyl]-4-thiazolylcarbonyl}- L-glutamate as an off-white solid, m.p. 201-202° C (dec). Rf = 0.28 (4% methanol/chloroform). IH NMR (300 MHz, DMSO- d£ δ 1.12-1.29 (m, 15 H), 2.05- 2.15 (m, IH), 2.37 (t, J = 7.2 Hz, 2H), 3.98-4.13 (m, 4H), 4.45-4.49 (m, IH), 8.47 (s, IH), 8.61 (d, J = 1.8 Hz, IH), 8.84 (d, J= 8.1 Hz, IH), 9.07 (d, J = 1.9 Hz, IH)
The starting material can be prepared as follows.
To a 100 mL 24/40 round bottom flask was charged 3.25 g (13.8 mmol) of 2- bromo-4-thiazolecarboxylic acid ethyl ester (Helv. Chim. Acta, 1942, 25, 1073) dissolved in 20 mL of IN sodium hydroxide. The reaction was stirred at room temperature for 3 h, cooled down in an ice bath and acidified to pH 2 with 5N hydrochloric acid. The white precipitate was filtered, washed with 20 mL cold water, and dried in a vacuum oven to give 2.7 g (94%) of 2-bromo-4-thiazolecarboxylic acid. m.p. 227-229o C, Rf = 0.16 (20% methanol/chloroform). IH NMR (300 MHz, DMSO- d6) δ 8.43 (s, IH).
Anal. Cal'd for C4H2BrNO5S: C, 23.10; H, 0.97; N, 6.73. Found: C, 23.42; H, 0.97; N, 6.51.
To a 100 mL 14/20 round bottom flask under a nitrogen atmosphere was charged 1.7 g (8.17 mmmol) of 2-bromo-4-thiazolecarboxylic acid in 17 mL of benzene, followed by the addition of 2.4 mL (33 mmol) of thionyl chloride, and a catalytic amount of dimethylformamide. The reaction was heated to reflux for 2 hours The volatiles were removed in vacuo, and this residue was then dissolved in 20 mL of methylene chloride and added dropwise to an ice-bath cooled mixture of 2.06 g (8.58 mmol) of L-glutamic acid diethyl ester, 2.39 mL (10.1 mmol) of triethylamine, and 10 mg of dimethylaminopyridine in 30 mL of methylene chloride. After the addition, the ice bath was removed and the reaction was stirred at room temperature for 2 hours The reaction was diluted with methylene chloride, washed with 0.5 N hydrochloric acid, water, 5% sodium bicarbonate, water, dried over sodium sulfate, and removed in vacuo. The crude residue was purified using silica gel flash chromatography eluting with 3:1 chloroform/ether to give 2.7 g (84%) of diethyl N- (2-bromo-4- thiazolylcarbonyl)-L-glutamate as a yellow oil. Rf = 0.43 (3:1 chloroform/ether). IH NMR (300 MHz, DMSO- d£ δ 1.14 (q, J = 7.1 Hz, 6 H), 1.98-2.18 (m, 2H), 2.35 (t, J = 7.3 Hz, 2H), 3.97-4.11 (m, 4H), 4.37-4.50 (m, IH), 8.28 (d, J = 5.9 Hz, IH), 8.73 (d, J= 7.7 Hz, IH)
Anal. Cal'd for C13H1?BrN2O5S: C, 39.71; H, 4.36; N, 7.12. Found: C, 39.84; H, 4.29; N, 7.36. EXAMPLE 27
Diethyl N-{2-[2-(2-Pivaloylamino-4-hydroxy-5,6,7,8-tetrahydro- pyridoI2,3-rfjpyrimidin-6-yl)ethyl]-4-thiazoIylcarbonyl}-L-glutamate To a 50 mL round bottom flask were charged 0.25 g (0.43 mmol) of diethyl N-{2-
[2-pivaloylamino-4-hydroxypyrido[2,3-ύT]pyrimidin-6-ylethynyl]-4-thiazolylcarbonyl}- L-glutamate dissolved in 8 mL of glacial acetic acid, followed by the addition of 0.25 g of platinum oxide catalyst. The reaction was then stirred under hydrogen at 1 atmosphere for 24 hours The catalyst was then filtered away, and the filtrate was removed in vacuo. The residue was then purified using silica gel flash chromatography eluting with 2% methanol/chloroform to give 0.092 g (36%) of diethyl N-{2-[2-(2- pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-^T|pyrimidin-6-yl)ethyl]-4- thiazolyl carbonyl} -L-glutamate, m.p. 63-166o C, as a yellow solid. Rf = 0.28 (5% methanol/chloroform); IH NMR (300 MHz, DMSO d£ δ 1.09-1.23 (m, 15 H), 1.73- 1.77 (m, 3H), 1.97-2.10 (m, 4H), 2.34 (t, J = 7.2 Hz, 2H), 2.50-2.62 (m, 2H), 2.86- 2.95 (m, IH), 3.08-3.12 (m, 2H), 3.96-4.11 (m, 4H), 4.43-4.45 (m, IH), 6.46 (s, IH), 8.14 (s, IH), 8.48 (d, J = 8.0 Hz, IH)
EXAMPLE 28
N-{2-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-</|pyrimidin-
6-yl)ethyl]-4-thiazolylcarbonyl}-L-glutamic Acid
To a 25 mL 14/20 round bottom flask was charged 0.067 g (0.11 mmol) of diethyl
N-{2-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydroρyrido[2,3-(/]pyrimidin-6- yl)ethyl]-4-thiazolylcarbonyl} -L-glutamate dissolved in 3 mL of IN sodium hydroxide. The reaction was stirred at room temperature for 84 hours The solution was cooled down in an ice bath and acidified with IN hydrochloric acid to pH 3. The precipitate was filtered, washed with 25 mL water, and dried in a vacuum oven at 60o C to give 0.036 g (70%) of N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3- c/]pyrimidin-6-yl)ethyl]-4-thiazolylcarbonyl} -L-glutamic acid m.p. 210-212o C as a tan solid. Rf = 0.08 (50% methanol/chloroform); IH NMR (300 MHz, DMSO d£ δ 1.69- 2.09 (m, 8H), 2.26 (t, J = 7.1 Hz, 2H), 2.80 (t, J = 8.2 Hz, 2H), 3.05-3.17 (m, 2H), 4.34-4.41 (m, IH), 5.93 (s, 2H), 6.26 (s, IH), 8.12 (s, IH), 8.33 (d, J = 7.7 Hz, IH), 9.70 (br s, IH). EXAMPLE 29
Diethyl N-{2-[2-Pivaloylamino-4-hydroxypyrido[2,3-tf]pyrimidin-6-yl- ethynyI]-5-thiazolylcarbonyl}-L-gIutamate In a similar fashion to that described in Example 26, there is obtained from 2- pivaloylamino-4-hydroxy-6-ethynylpyrido[2,3-flQpyrimidine (0.57 mmol) and of N-(2- bromo-5-thiazolylcarbonyl)-L-glutamic acid diethyl ester (0.58 mmol), 0.19 g (56%) of diethyl N-{2-[2-pivaloylamino-4-hydroxypyrido[2,3-£/]pyrimidin-6-ylethynyl]-5-thia- zolylcarbonyl} -L-glutamate as an off-white solid m.p. 223-225o C (dec). Rf = 0.25 (5% methanol/chloroform). IH NMR (300 MHz, DMSO d£ δ 1.17 (q, J = 7.5 Hz,
6H), 1.25 (s, IH), 1.95-2.11 (m, 2H), 2.42-2.48 (m, 2H), 3.99-4.14 (m, 4H), 4.38-445
(m, IH), 8.29 (s, IH), 8.63 (d, J = 2.1 Hz, IH), 9.08 (d, J - 2.0 Hz, IH), 9.12 (d, J =
7.4 Hz, IH).
Anal. Cal'd for C27H3QN6O6S: C, 55.66; H, 5.19; N, 14.42. Found: C, 55.95; H, 5.16; N, 14.57.
The starting material can be prepared as follows. To a 500 mL 24/40 3-neck round bottom flask equiped with a mechanical stirrer, was charged 3.4 g (19.7 mmol) of 2-amino-5-thiazolecarboxylic acid ethyl ester (Ber., 1888, 21, 938), partially dissolved in 30 mL of concentrated phosphoric acid. The stirring mixture was cooled in an ice bath and then 9 mL of concentrated nitric acid was added slowly, followed by the dropwise addition of 2.85 g (41.3 mmol) of sodium nitrite in 5 mL of water. The mixture was stirred in the cold for 35 minutes, and then added dropwise was 3.0 g (47.2 mmol) of copper powder in 75 mL of 48% hydrobromic acid cooled to -lOo C. After the evolution of nitrogen gas ceased, the thick reaction mixture was removed from the ice bath and neutralized to pH 8, first using 5N sodium hydroxide and then sodium carbonate. The aqueous was then extracted with 400 mL ether. The insoluble material was filtered away and the filtrate was washed with 5% sodium bicarbonate, water, dried over sodium sulfate, and removed in vacuo. The crude residue was then purified using silica gel flash chromatography eluting with 1 : 1 ether/hexanes to give 2.4 g (52%) of 2-bromo-5-thiazolecarboxylic acid ethyl ester as a yellow oil. Rf = 0.62 (1 : 1 ether/hexanes). IH NMR (300 MHz, DMSO <y δ 1.26 (t, J = 7.0 Hz, 3H), 4.29 (q, J = 7.1 Hz, 2H), 8.28 (s, IH).
Anal. Cal'd for C6H6BrNO2S: C, 30.53; H, 2.56; N, 5.93. Found: C, 30.78; H, 2.62; N, 5.98. To a 100 mL 14/20 round bottom flask was charged 2.4 g (10.1 mmol) of 2- bromo-5-thiazolecarboxylic acid ethyl ester dissolved in 14 mL of IN sodium hydroxide. The reaction was stirred at room temperature for 1.5 hours The yellow solution was acidified with 5N hydrochloric acid to pH 2. The solid which formed was cooled in an ice bath, filtered, washed with water, and dried in a vacuum oven at 60o C to give 1.9 g (90%) of 2-bromo-5-thiazolecarboxylic acid m.p. 185-186o C (dec) as a white solid. Rf = 0.12 (20% methanol/chloroform). IH NMR (300 MHz, DMSO d£ δ 8.19 (s, IH).
To a 100 mL 14/20 round bottom flask under a nitrogen atmosphere was charged 1.0 g (4.81 mmmol) of 2-bromo-4-thiazolecarboxylic acid in 10 mL of benzene, followed by the addition of 1.4 mL (19 mmol) of thionyl chloride, and a catalytic amount of dimethylformamide. The reaction was heated to reflux for 2 hours The volatiles were removed in vacuo, and this residue was then dissolved in 15 mL of methylene chloride and added dropwise to an ice-bath cooled mixture of 1.21 g (5.05 mmol) of L-glutamic acid diethyl ester, 1.41 mL (10.1 mmol) of triethylamine, and 5 mg of dimethylaminopyridine in 15 mL methylene chloride. After the addition, the ice bath was removed and the reaction was stirred at room temperature for 2 hours The reaction was diluted with methylene chloride, washed with 0.1 N hydrochloric acid, water, 5% sodium bicarbonate, water, dried over sodium sulfate, and removed in vacuo. The crude residue was purified using silica gel flash chromatography eluting with a gradient of 1:2 ethyl acetate/hexanes to 1: 1 ethyl acetate/hexanes to give 0.9 g (48%) of N-[(2-bromo-5-thiazolyl)carbonyl]-L-glutamic acid diethyl ester as a yellow oil. Rf = 0.30 (1:2 ethyl acetate/hexanes); IH NMR (300 MHz, CDCI3) δ 1.24-1.34 (m, 6H), 2.15-2.32 (m, 2H), 2.47-2.55 (m, 2H), 4.12-4.30 (m, 4H), 4.64-4.71 (m, IH), 7.97 (s, IH)
EXAMPLE 30
Diethyl N-{2-[2-(2-PivaIoylamino-4-hydroxy-5,6,7,8-tetrahydropyrido- [2,3-rf]pyrimidin-6-yI)ethyl]-5-thiazolyIcarbonyl}-Lrglutamate In a similar fashion to that described in Example 27, there is obtained from diethyl
N-{2-[2-pivaloylamino-4-hydroxypyrido[2,3-^pyrimidin-6-ylethynyl]-5- thiazolylcarbonyl} -L-glutamate, diethyl N-{2-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8- tetrahydropyrido[2,3-fif)pyrimidin-6-yl)ethyl]-5-thiazolylcarbonyl } -L-glutamate as a yellow solid, m.p. 156-159o C; Rf = 0.36 (10% methanol/chloroform); IH NMR (300 MHz, DMSO-d6) δ 1.1 1-1.23 (m, 15H), 1.66-1.76 (m, 3H), 1.89-2.08 (m, 3H), 2.40 (t, J = 7.4 Hz, 2H), 2.51-2.55 (m, IH), 2.85-2.89 (m, IH), 3.06 (t, J = 6.6 Hz, IH), 3.14 (d, J = 5.2 Hz, 2H), 3.98-4.11 (m, 4H), 4.33-4.37 (m, IH), 6.45 (s, IH), 8.30 (s, IH), 8.84 (d, J = 7.4 Hz, IH).
EXAMPLE 31
N-{2-[2-(2-Amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-<flpyrimidin- 6-yl)ethyl]-5-thiazolylcarbonyl}-L-glutamic Acid
In a similar fashion to that described in Example 28, there is obtained from diethyl N-{2-[2-(2-pivaloylamino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-<^pyrimidin-6- yl)ethyl] -5 -thiazolylcarbonyl } -L-glutamate, N- { 2-[2-(2-amino-4-hydroxy-5,6, 7, 8-tetra- hydropyrido[2,3-^pyrimidin-6-yl)ethyl]-5-thiazolylcarbonyl}-L-glutamic acid, as a pale yellow solid, m.p. 197-199o C (dec); Rf = 0.09 (50% methanol/chloroform); IH NMR (300 MHz, DMSO d£ δ 1.67-1.92 (m, 6H), 2.03-2.08 (m, 2H), 2.33 (t, J = 7.0 Hz, 2H), 2.79-2.82 (m, IH), 3.10-3.21 (m, 2H), 4.33-4.40 (m, IH), 5.95 (s, 2H), 6.28 (s, IH), 8.31 (s, IH), 8.75 (d, J = 7.7 Hz, IH), 9.75 (br s, IH)
EXAMPLE 32
Hard gelatin capsules are prepared using the following ingredients:
Quantity
(mg/capsule)
N-{3-[2-(2-amino-4-hydroxy- 5,6,7,8-tetrahydropyrido 2,3-d]pyrimidin-6-yl)ethyl]- 250 pyrazol-5-ylcarbonyl } - L-glutamic acid
Starch, dried 200 Magnesium stearate JO 460 mg EXAMPLE 33
Tablets are prepared using the ingredients below:
Quantity (mg/capsulel
N- { 2-[2-(amino-4-hydroxy-
5,6,7,8-tetrahydropyrido-
[2,3-d]pyrimidin-6-yl)ethyl]- 250 imidazol-4-ylcarbonyl } -
L-glutamic acid
Cellulose, microcrystalline 400
Silicon dioxide, fumed 10
Stearic acid __5
665 mg
The components are blended and compressed to form tablets each weighing 665 mg.
EXAMPLE 34
An intravenous formulation may be prepared as follows: Quantity
N- { 4-[2-(amino-4-hydroxy-
5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidin-6-yl)ethyl] pyrrol-2- ylcarbonyl } -L-glutamic acid 100 mg Isotonic saline 1 ,000 mL
The following examples illustrate specific aspects of the present invention and are not intended to limit the scope thereof in any respect and should not be so construed.

Claims

What is claimed is:
1. A compound selected from the group consisting of (/) a fused pyrimidine of the formula:
in which R1 is -OH or -NH2, R2 is -OH or an a carboxylic acid protecting group, R3 is -H or an amino protecting group, Z is a divalent, five-membered, nitrogen-containing heterocyclic ring system optionally containing a sulfur or nitrogen atom as a second hetero ring member, said valence bonds originating from nonadjacent carbon atoms of said ring, n has a value of 2 or 3, and the configuration about the carbon atom designated * is L, and (/'/) a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1 in which Z is pyrrolediyl.
3. A compound according to claim 1 in which Z is imidazolediyl.
4. A compound according to claim 1 in which Z is pyrazolediyl.
5. A compound according to claim 1 in which Z is thiazolediyl.
6. A compound according to claim 1 in which in said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine R1 is -OH, R2 is -OH, R3 is -H, and n has a value of 2.
7. A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-pyrrol-5-ylcarbonyl) -L-glutamic acid. 8 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-pyrrol-4-yl carbonyl} -L-glutamic acid 9 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{4-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-pyrrol-2-ylcarbonyl} -L-glutamic acid 10 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{3-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-pyrazol-5-ylcarbonyl} -L-glutamic acid 11 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-thiazol-4-ylcarbonyl} -L-glutamic acid 12 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-thiazol-5-ylcarbonyl}-L-glutamic acid 13 A compound according to claim 6 in which said 5,6,7,8-tetrahydropyrido[2,3-d]- pyrimidine is N-{2-[2-(2-amino-4-hydroxy-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidin- 6-yl)ethyl]-imidazol-4-ylcarbonyl} -L-glutamic acid 14 The method of inhibiting neoplastic growth in a mammal which growth is dependent on folic acid or a metabolic derivative of folic acid as a substrate, which comprises administering to the mammal in a single or multiple dose regimen an effective amount ofa compound according to claim 1 15 A pharmaceutical composition for inhibiting neoplastic growth in a mammal which growth is dependent on folic acid or a metabolic derivative of folic acid as a substrate, which comprises an amount of a compound according to claim 1 which upon administration to the mammal in a single or multiple does regimen is effective to inhibit said growth, in combination with a pharmaceutically acceptable carrier
EP96931596A 1996-05-01 1996-09-17 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES Withdrawn EP0904271A4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US64066996A 1996-05-01 1996-05-01
US2117496P 1996-05-01 1996-05-01
US21174P 1996-05-01
PCT/US1996/014822 WO1997041115A1 (en) 1996-05-01 1996-09-17 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES

Publications (2)

Publication Number Publication Date
EP0904271A1 true EP0904271A1 (en) 1999-03-31
EP0904271A4 EP0904271A4 (en) 2002-01-23

Family

ID=26694360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96931596A Withdrawn EP0904271A4 (en) 1996-05-01 1996-09-17 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES

Country Status (5)

Country Link
EP (1) EP0904271A4 (en)
JP (1) JP2001524927A (en)
AU (1) AU7073296A (en)
CA (1) CA2251813A1 (en)
WO (1) WO1997041115A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113337A1 (en) * 2003-06-25 2004-12-29 Pfizer Inc. Convergent synthesis of a garft inhibitor containing a methyl substitute thiophene core and a tetrahydropyrido`2,3-d! pyrimidine ring system and intermediates therefor
US7488747B2 (en) * 2003-12-29 2009-02-10 Sepracor Inc. Pyrrole and pyrazole DAAO inhibitors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343801A2 (en) * 1988-05-25 1989-11-29 The Trustees Of Princeton University N-(5,6,7,8-tetrahydropyrido(2,3-D)pyrimidin-6-yl-alkanoyl)-glutamic acid derivatives
US5354751A (en) * 1992-03-03 1994-10-11 Sri International Heteroaroyl 10-deazaamino-pterine compounds and use for rheumatoid arthritis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895946A (en) * 1987-10-26 1990-01-23 The Trustees Of Princeton University Process for the preparation of fused pyridine compounds
US5008391A (en) * 1989-07-07 1991-04-16 Eli Lilly And Company Enantioselective synthesis of antifolates
US5508281A (en) * 1991-04-08 1996-04-16 Duquesne University Of The Holy Ghost Derivatives of pyrido [2,3-d] and [3,2-d] pyrimidine and methods of using these derivatives
US5536724A (en) * 1992-03-03 1996-07-16 Sri International Antiinflammatory and antineoplastic 5-deazaaminopterins and 5,10-dideazaaminopterins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343801A2 (en) * 1988-05-25 1989-11-29 The Trustees Of Princeton University N-(5,6,7,8-tetrahydropyrido(2,3-D)pyrimidin-6-yl-alkanoyl)-glutamic acid derivatives
US5354751A (en) * 1992-03-03 1994-10-11 Sri International Heteroaroyl 10-deazaamino-pterine compounds and use for rheumatoid arthritis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9741115A1 *

Also Published As

Publication number Publication date
EP0904271A4 (en) 2002-01-23
AU7073296A (en) 1997-11-19
JP2001524927A (en) 2001-12-04
CA2251813A1 (en) 1997-11-06
WO1997041115A1 (en) 1997-11-06

Similar Documents

Publication Publication Date Title
US4684653A (en) Pyrido(2,3-d)pyrimidine derivatives
US5321150A (en) 5-deaza-10-oxo- and 5-deaza-10-thio-5,6,7,8-tetrahydrofolic acids
AU640182B2 (en) N-(pyrrolo(2,3-d)pyrimidin-3-ylacyl)-glutamic acid derivatives
AU578813B2 (en) Pyrido (2,3-d) pyrimidin derivatives
CA1340792C (en) Pyrido[2,3-d]pyrimidine deratives
US4882334A (en) N-(5,6,7,8-tetrahydropyrido]2,3-d]pyrimidin-6-ylethl-thineyl-and furylcarbonyl)-glutamic acid derivatives
US4927828A (en) Diastereoisomeric tetrahydropyrido-(2,3,d) pyrimidine derivatives
US4833145A (en) 4(3H)-oxo-5,6,7,8-tetrahydropyrido[2,3-d]pyrimidine derivatives
AU594163B2 (en) 4(3h)-oxo-5,6,7,8-tetrahydropyrido-(2,3-d)pyrimidine derivatives
AU592182B2 (en) Diastereoisomeric tetrahydropyrido (2,3-d) pyrimidine derivatives
AU611027B2 (en) N-(5,6,7,8-tetrahydropyrido(2,3-d)pyrimidin-6-yl-alkanoyl) -glutamic acid derivatives
US5026851A (en) Pyrido[2,3-]pyrimidine derivatives
WO1997041115A1 (en) 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINES
US6066639A (en) 5,6,7,8-tetrahydropyrido[2,3-D]pyrimidines
US4831037A (en) 4 (3H)-oxo-5,6,7,8-tetrahydropyrido-(2,3-d)pyrimidine derivatives
JPH05262746A (en) L-glutamic acid derivative
CA1308411C (en) Pyrido ¬2,3-d|pyrimidines derivatives
WO1997049705A1 (en) 5,6,7,8-TETRAHYDROPYRIDO[2,3-d]PYRIMIDINE DERIVATIVES
WO1998000426A1 (en) 5,6,7,8-TETRAHYDROPYRIMIDO[4,5-b]AZEPINE DERIVATIVES
HU211492A9 (en) N-(5,6,7,8-tetrahydropyrido/2,3-d/pyrimidin-6-yl-ethyl-thienyl- and furylcarbonyl)-glutamic acid derivatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 20011212

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040811

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1019333

Country of ref document: HK

RTI1 Title (correction)

Free format text: 5,6,7,8-TETRAHYDROPYRIDO??2,3-D PYRIMIDINES