EP0900354B1 - Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation - Google Patents

Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation Download PDF

Info

Publication number
EP0900354B1
EP0900354B1 EP97925114A EP97925114A EP0900354B1 EP 0900354 B1 EP0900354 B1 EP 0900354B1 EP 97925114 A EP97925114 A EP 97925114A EP 97925114 A EP97925114 A EP 97925114A EP 0900354 B1 EP0900354 B1 EP 0900354B1
Authority
EP
European Patent Office
Prior art keywords
firing
module
modules
control unit
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97925114A
Other languages
German (de)
French (fr)
Other versions
EP0900354A1 (en
Inventor
Claude Pathe
Raphael Trousselle
Philippe Clot
Eric Fivaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Davey Bickford SAS
Original Assignee
Davey Bickford SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Davey Bickford SAS filed Critical Davey Bickford SAS
Publication of EP0900354A1 publication Critical patent/EP0900354A1/en
Application granted granted Critical
Publication of EP0900354B1 publication Critical patent/EP0900354B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/121Initiators with incorporated integrated circuit
    • F42B3/122Programmable electronic delay initiators

Definitions

  • the present invention relates to a method of control of detonators of the ignition module type electronic, as well as a coded control command of firing and an ignition module for its implementation.
  • a pyrotechnic device at level of the detonators themselves allows obtaining various delay time between charge explosions.
  • the detonators are simultaneously initiated by an exploder which delivers a certain electrical energy in a line of fire connecting detonators in series or in parallel.
  • the combustion of retarding pyrotechnic compositions then generates the desired pyrotechnic delays.
  • delay detonator ignition devices integrated electronic type. These devices allow take advantage of the precision of electronic systems for enrich and refine the delay time ranges obtained previously in a pyrotechnic manner.
  • Patent application FR-2,695,719 proposes a method of controlling detonators with ignition module integrated delay electronics in which the modules are programmed using a control unit programming. They require a precise time base at level of each detonator.
  • detonators equipped with electronic means allowing them to interact with a control unit outside.
  • Each detonator is equipped with a capacity of which unloading activates the explosive charge.
  • the times of delay of each detonator can be programmed on site, an identification code having been previously assigned to each detonator, for example at the factory.
  • the detonators receive from the unit of order successive loading orders of the above capacity, then firing. They refer to the unity of commands information allowing this unit to control the smooth running of the shooting sequence.
  • the detonators are equipped for this purpose with local intelligence by microprocessor.
  • the delay times they have allocated are stored on non-volatile memories of their microprocessors.
  • each of the detonators has an internal time base allowing a countdown related to the delay time assigned to it.
  • its time base is compared to a reference time base of the unit of ordered. A possible error is then compensated by an adjusted value of the delay time, this adjusted value being stored in a detonator memory.
  • Document FR-A-2.672.675 relates to a module ignition for detonators with integrated electronic delay and, more particularly, a security and arming device typically military in which the modules receive information given by external sensors.
  • EP-A-0.433.697 relates to a device safety modular designed to provide security against inadvertent ignition to previous ignition modules exempt from such security. This device is designed so to also provide security in the event of failure of one of its own components.
  • the system clock is a quartz clock.
  • the object of the present invention is a method of electronic ignition module type control as well that a coded fire control assembly and a module for its implementation, giving the detonators the aforementioned advantages of delay detonators integrated electronics, but also greater simplicity of manufacture and operation, as well as increased security.
  • an objective of the invention is to ability to use detonators with clocks rudimentary internals while allowing excellent accuracy of a firing sequence.
  • Another object of the invention is to use as inexpensive and not very fragile oscillator internal clocks, and incorporated into integrated circuits.
  • the modules are able to interact with a unit of fire control with a reference time base, and intended to transmit to them in particular an order of loading of their fire capacities, as well as a fire order and to receive modules one or more information relating to their condition.
  • the control method according to the invention is characterized in that after saving the parameters specific in the fire control unit and before the loading of the firing capacities, one carries out with the unit of fire command for each successive module a measure from the local frequency of the module's internal clock to using the reference time base, a determination of an algorithmic correction value of the local frequency, and a send to the delay time module associated.
  • Determining the algorithmic correction value appropriate for each module does act not on the internal clock itself and therefore does not change not its local frequency.
  • the internal clocks are calibrated shortly before a firing sequence.
  • This calibration is all the more important as the local frequencies of the modules are a priori all distinct, and therefore lead to a correction value different algorithm for each module.
  • the control method according to the invention is distinguishes from the prior art by the roles played by the unity of programming, fire control unit and support computer science. It is particularly original in that the internal clocks of the modules are first adjusted time during their manufacture and then calibrated in a second time shortly before a shooting sequence, using the reference time base of the fire control unit. The calibration of internal clocks is dissociated from the programming of module delay times.
  • a clear advantage of the process according to the invention is that it is possible to use in the modules rudimentary adjustable internal clocks, only the base of reference time contained in the fire control unit to be precise.
  • Such an internal clock can by example be incorporated into an integrated circuit, such as a specific integrated circuit commonly known as ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • To act clock circuit a simple circuit comprising a resistor and a capacity is therefore suitable, although a recorded frequency in this circuit undergoes a marked alteration during the time. It is however interesting to use clocks internal enough stable over time, to avoid a step final reset.
  • the solution proposed in the process according to the invention notably reduces the cost of the circuit by compared to the use of a quartz, without compromising the precision and to the safety of a shooting sequence.
  • oscillators rudimentary Another benefit of using oscillators rudimentary is that they can be more resistant to vibrations, and therefore less fragile, than a quartz.
  • the clocks are reset internal of all modules. Internal clocks are thus reset just before a firing sequence.
  • each module with a processing unit during the calibration of the internal clock of this module, we send to the module with the fire control unit the correction value algorithm of the local frequency of its internal clock, then we calculate with the module processing unit a time corrected delay.
  • each module then sends back to the fire control unit a confirmation of its state ready for firing.
  • the internal clock of each of the ignition means is a rudimentary clock composed of a simple RC circuit
  • the unit of fire control and the modules include calibration means for determining an algorithmic correction value of the local frequency of each of the internal clocks relative to the base of reference time after memorizing specific parameters in the fire control unit.
  • the modules include means for resetting their clocks interns following a firing order sent by the fire command.
  • the coded assembly comprising an electrical connection between each module and the detonator's primer head associated, and this module being able to send in this head initiating by the electrical connection a current causing a firing it is interesting that the primer heads have conductive or semiconductor bridges.
  • the invention also relates to an ignition module for pyrotechnic charge detonator comprising a circuit including a battery capacity ensuring momentary operating autonomy, a communication interface, charge management circuit pyrotechnic including a firing capacity intended, after loading, to discharge into a head of the detonator, as well as a logical management unit of the whole module.
  • This logical unit includes a non-volatile identification memory intended to receive minus a module identification parameter and a rudimentary internal clock with a local frequency.
  • the ignition module according to the invention is original in what it includes a calibration memory allowing receive an algorithmic correction value of the local frequency of the internal clock by compared to a reference time base, from a fire control unit capable of sending the module a firing order.
  • the module according to the invention comprises means for resetting the internal clock to a calibrated state and the unit logic includes a reset command activating the reset means during a firing order.
  • module ignition in a preferred embodiment, it comprises an integrated circuit custom ASIC type, firing capacity, capacity battery, power transistor and means of protection against electrostatic discharge.
  • This means of protection is advantageously consisting of an element called transil.
  • ASIC circuits allow both miniaturization and low consumption.
  • Figure 1 is a schematic representation of a detonator equipped with a delayed ignition module integrated electronics according to an embodiment and implementation of the invention.
  • Figures 2A, 2B and 2C are representations schematics of a shooting unit comprising detonators mounted in parallel, of the type shown in Figure 1, showing circuits of communication established respectively during the programming of a detonator, information transfer from the programming unit to the fire control unit and during a firing sequence of a detonator volley.
  • Figure 3 is an overall representation of a ignition module according to the invention.
  • FIG. 4 shows the principle architecture of a ignition module according to the invention.
  • FIG. 5 is a representation in the form of ignition module block diagram of Figure 4.
  • Figure 6 is a representation of the management of the pyrotechnic charge of the ignition module of Figure 4.
  • Detonator 1 with electronic ignition module described, shown in Figure 1 has a case 2 serving housing and whose body has an elongated cylindrical shape terminated at one end by a bottom 3. At its other end this case 2 is closed by a plug also elongated 4, the walls of the case 2 being integral with the plug 4 by crimping 5.
  • the case 2 is made of alloy of aluminum, the plug 4 being made of standard PVC.
  • the end 3 of the case 2 is associated with a cover 6 aluminum with a bottom 7 arranged in a section right of the case 2 and bordered by a cylindrical skirt 8 extending from the bottom 7 of the cover 6 towards the bottom 3 of the case 2.
  • the external walls of the skirt 8 substantially match the inner walls of the case 2.
  • the bottom 7 of this cover 6 is traversed in its thickness by a bore 9 whose contour is a circle centered on the axis of the case 2.
  • This cover 6 delimits with the bottom 3 and the walls of the body of the case 2 a chamber 10 containing, inside, a load 11 such than penthrite, this charge 11 being supplemented by a priming mixture 12 placed in chamber 10 at level from cover 6.
  • the proportions of penthrite and mixture prime are 0.6 g and 0.2 g respectively.
  • a primer head 13 On the side of the cover 6 which is opposite the chamber 10, is disposed a primer head 13 extending axially in the case 2 and protected by a cylindrical envelope 14. This primer head 13 is directly connected to a module electronic ignition 15 placed in the case 2 between the casing 14 and the plug 4. This electronic module 15 is fed at its end, at plug 4, by two sheathed wires 16a and 16b which pass through the plug 4 in its height and connect the module 15 to an ignition circuit (not represented).
  • the primer of the example of embodiment, shown in Figure 1 can be replaced by a primer head comprising a conductive bridge or semiconductor.
  • a current flowing in the primer head 13 having an intensity above an operating threshold initiates the primer head 13 and excites the load 12 through the opening 9 to through operculum 6. This excitation triggers the detonation.
  • a firing set can be made from detonators 1 identical to that presented previously.
  • This firing set visible in Figures 2B and 2C, includes any number of detonators 1, including modules 15 are mounted in line in a parallel network with a fire control unit 17, also called "shooting console"
  • the detonators 1 and their modules 15 are in production all identical and coded. They are only identified on site at the time of their programming. The realization of the shooting set is thus facilitated.
  • the ignition modules 15 are non-polarized. They can be used in large numbers during assembly parallel, up to 200 or more, without resulting problems that could be due to too much line current important.
  • the modules 15 are able to interact with the firing console 17, which can transmit orders to them and receive information from them.
  • the shooting set also includes a programming 18, also called “console programming ". This is for programming each modules 15 before or after its installation in a hole. It can also be used to transfer information on shooting sequences in the shooting console 17.
  • the programming console 18 is connected successively to each of the detonators 1.
  • This first configuration corresponds to a first step, during which modules 15 are programmed by the console programming 18.
  • the programming console 18 is connected to the firing console 17, while the link between the detonators 1 and the fire console 17 is deactivated.
  • This second configuration corresponds to a second step, during which we transfer from the console programming 18 to the shooting console 17, information on detonators 1 and usable in one or more subsequent shooting sequences.
  • the programming console 18 and the detonators 1 are connected to the shooting console 17, the modules 15 of the detonators 1 being connected to the firing console 17 by a line firing range 50.
  • This third configuration corresponds to a third stage, during which the shooting console 17 is likely to communicate with modules 15, then to a final stage, during which the shooting console 17 can manage a procedure for firing and firing detonators 1 connected on the firing line 50.
  • the fire console 17 and the ignition modules 15 exchange information via messages coded binaries.
  • the line of fire 50 being two-wire, the console shot 17 and the ignition modules 15 must be tolerant to damage to electrical signals during of their transit on this line 50.
  • the messages transmitted to modules are coded as four-bit words.
  • the shooting console 17 also serves to power the ignition modules 15. This power supply is the source of energy likely to ignite. Of the so the ignition modules 15 are safe inadvertent triggering outside of shooting sequences.
  • the shooting consoles 17 and programming 18 are of neighboring structures and different mainly by their functionality, and therefore by the management software to which they are associated.
  • Each of the ignition modules 15 is associated with three specific parameters. Two of these specific parameters are parameters for identifying module 15. Several shooting sequences taking place successively and involving each a part of the detonators 1, these two parameters identification include a shooting card number representative of the shooting sequence concerned, and a number order designating module 15 as part of this sequence. The third specific parameter is a time of detonator 1 explosion delay corresponding to the module 15 during the shooting sequence.
  • the modules 15 are capable of receiving two types of messages: an order or information storable, this information can consist in particular in one of the specific parameters of module 15. Any receipt of storable information is preceded by the receipt of an appropriate order, so that the ignition module systematically knows what type information will be sent to him.
  • the shooting console 17 includes four keys user-operable to activate respectively four functions. These four keys trigger respectively a test of the ignition modules 15, a arming detonators 1, a firing sequence, and a cancellation of the shooting sequence.
  • a fifth function of the fire console 17, automatically activated, consists of a automatic transfer of data to the shooting console 17, from the programming console 18 or from a support internal or external IT.
  • Two LEDs, one green and one red, are also intended to serve as witnesses during a test of the modules 15. The green LED is intended to light up normal situation, and the red light in case of problem.
  • the shooting console 17 is advantageously provided with a magnetic card authorizing its use.
  • the programming console 18 includes a keyboard 12 alphanumeric keys, allowing in particular enter the specific parameters of modules 15. It also includes a push button to switch between two programming procedures. In first of these procedures, called manual procedure, the operator programs the times of delay, while in the second procedure, called procedure automatic these times are stored separately on the IT support internal or external to the shooting console 17.
  • the programming console 18 has six functions. The first of these functions is the programming or reprogramming one of the modules ignition 15, by recording its parameters identification, and possibly its delay time, by memory of this module 15. A second function of the programming console 18 is the parameter storage specific in its own memory. A third function consists of a test of any of the modules 15. A fourth function is to delete the programming console screen 18. A fifth function is to read the contents of one's memory any of the ignition modules 15 programmed. The sixth function consists of a transfer to the shooting console 17 of the set of specific parameters saved in modules 15.
  • the ignition modules 15 include circuits specific integrated devices, commonly referred to as ASICs (Application Specific Integrated Circuit). Each of the modules 15 also includes one or more tank capacities, a power transistor and a transil.
  • the supply circuit 302 includes a double rectifier bridge 40 alternating diodes, which provides a DC voltage Valim to from the DC voltage coming from the firing line 50.
  • Valim voltage is nominally between 8V and 15 V.
  • the supply circuit 302 also includes a battery capacity 41 of 100 ⁇ F with a nominal voltage of 16 V, ensuring smoothing of the DC voltage and constituting an energy reservoir allowing the entire microsystem to operate for a few seconds when it is no longer supplied by the firing line 50.
  • a regulator 42 is provided to produce a voltage of continuous Vcc operation and equal to 3 V, intended for supply all the low voltage modules of the module 15.
  • This regulator 42 is connected to the rectifier bridge 40 from which it receives a supply voltage, as well as battery capacity 41
  • the regulator 42 has a reference tension and an adjustment loop including a operational amplifier.
  • the voltage reference is potential barrier type (band-gap voltage reference) and provides a stable reference voltage at 1.20 V.
  • the operational amplifier receives the reference voltage by a setpoint input and the supply voltage by a power input, and compare a fraction of the voltage power supply at the desired 3 V voltage.
  • the supply circuit 302 includes a circuit input 32 connected to logic unit 303 by an input line 58 and a command line 69.
  • the voltage line Vcc is connected to a capacitor 53 100 nF.
  • the communication interface 301 includes the input circuit 32 which acts as a sub-assembly receiver, as well as a transmitter sub-assembly 33.
  • the latter essentially comprises a transistor, the grid is connected to logic unit 303 by an output line 59, the drain to the management circuit 300 by a head line primer 57, and the source to the ground.
  • the pyrotechnic charge management circuit 300 has was shown more particularly in Figure 6. It manages the firing capacity of the ignition module 15, as well as the control of a DMOS transistor referenced 56, external to the management circuit 300, and used to trigger an update fire.
  • the transistor 56 has its drain connected to the primer head 13 and its source to the earth. Its grid is controlled by a line firing 62 coming from logic unit 303, by through two transistors 74 and 79.
  • Transistor 74 has its grid connected to line 62, its source to the ground and its drain to the gate of transistor 79, as well as to the Valim voltage in parallel, a resistor 77 of 4 M ⁇ being interposed between the drain and the voltage Valim.
  • the transistor 79 has its drain connected to the Valim voltage, and its source to the gate of the transistor 56, as well as to earth via a resistor 78 of 50 k ⁇ .
  • a diode 84 is arranged from the earth to the grid of the transistor 56, and a diode 83 from earth to the terminal of the primer head 13 other than that connected to transistor 56.
  • a decoupling capacity 82 can be connected between the gate and the source of transistor 56.
  • the management circuit 300 makes it possible to charge a firing capacity 29 of 220 ⁇ F at its nominal voltage of 16 V.
  • the primer head line 57 receiving a rectified voltage Vtam from the firing line 50.
  • the voltage Vtam has a nominal value between 11 V and 16 V.
  • the firing capacity 29 has a first frame 191 directly connected to earth, and its second armature 192 is earthed via a resistor 20 of 400 ⁇ and a MOS transistor referenced 30.
  • the gate of the transistor 30 being controlled by the logic unit 303 by means of a discharge line 63, firing capacity 29 can be rapidly discharged through resistor 20 when a discharge command is sent to the ignition module 15 or when a power failure occurs. Typically, this discharge can be carried out in 300 ms.
  • the second frame 192 is also connected to the head primer 13.
  • the ignition module 15 is armed via a load line 64 coming from logic unit 303.
  • This load line 64 ends at the gate a transistor 70 of the management circuit 300, the source of which is connected to earth and the drain to the second frame 192 of the firing capacity 29 through a resistance 71 of 193 k ⁇ and a resistance 22 of 1700 k ⁇ .
  • the second frame 192 of the firing capacity 29 is also connected to earth via resistor 22 and a resistance 23 equal to 1700 k ⁇ . Whatever whole microsystem failure, firing ability 29 is always self-discharged during a power failure this security being ensured by resistors 22 and 23.
  • the management circuit 300 includes a loop of control 24 comprising an operational amplifier 26 and a voltage reference 27.
  • the voltage reference 27 from a PTAT, provides a stable reference voltage at 1.20 V.
  • the operational amplifier 26 has an input of setpoint linked to voltage reference 27, and an input supply connected to the second armature 192 of the capacity firing 29, via resistance 22.
  • the output of the operational amplifier 26 is connected to a comparison line 65 leading to the unit logic 303. It is also connected to a first entrance to a NOR 72 door, including two other entrances.
  • the second entrance to door NOR 72 receives load line 64 information via a NOR 73 gate, this door having a second input connected to a line 67 of Charge test.
  • the third input receives signals clock from logic unit 303 by a line charge pumping 66, at a frequency of 64 kHz.
  • This device 25 is supplied by the head line initiator 57 at Vtam voltage and two outputs. The first one of these outputs is connected to the second armature 192 of the firing capacity 29, while the second is connected to the drain of a transistor 75 by a resistor 76 of 50 k ⁇ .
  • the transistor 75 has its gate controlled by the discharge line 63 and its source connected to the earth.
  • signals are sent to the frequency of 64 kHz at NOR gate 72 by the line of charge pumping 66.
  • the exit from door NOR 72 is worth 0, so that the firing capacity 29 is not supplied by the primer head line 57.
  • the output of the NOR 72 gate produces the value 1 to a frequency of 64 kHz, as long as the amplifier output operational 26 does not indicate equality between voltage nominal imposed by means of the voltage reference 27, and the effective voltage across the firing capacity 29.
  • the gate of transistor 28 is thus activated, and voltage Vtam takes charge of the firing capacity 29.
  • the output of the operational amplifier 26 is 0, so the output from NOR gate 72 is 0 and that the supply of the firing capacity 29 is interrupted.
  • the adjustment loop 24 thus ensures the stability of the nominal voltage of the firing capacity 29, whatever the value of the voltage Vtam between 11 V and 16 V.
  • the gate of transistor 75 is activated and the firing capacity 29 discharges through the circuit of dump.
  • a test mode is provided to charge the firing capacity 29 at a nominal voltage of 2.4 V. Entry into this mode is performed by activating a test load variable in logic unit 303 The processor can then, by testing the output of operational amplifier 26, check that the duration charge of the firing capacity 29 is included in a acceptable range
  • Logic unit 303 which manages each ignition module 15, detailed on the block diagram of the Figure 5, manages communications with firing line 50 as well than the pyrotechnic charge controls. She includes in particular a control unit 45 essentially digital or CPU (central processing unit), composed of a four-bit microprocessor 48, a ROM memory referenced 43 of 2048 words of 16 bits containing the application program, from a register to test offset 44. and different peripheral blocks. Each of these devices is related to one of the analog blocks of the ignition module 15, which it ensures software controlled operation.
  • Logic unit 303 also includes a set 46 of registers or register bank, intended for storage temporary digitized information, and an internal clock 49.
  • All non-volatile information necessary for ignition module 15 are stored in an EEPROM memory referenced 47 organized in eight words of 4 bits, this EEPROM memory being managed by the unit of command 45 by means of a memory microcontroller 35.
  • the memory 47 is intended in particular to receive the ignition module identification parameters 15 in the firing line 50, an internal clock setting word 49 of logic unit 303, and a firing delay.
  • the microprocessor 48 of the control unit 45 is respectively connected to the management circuit 300, to the clock internal 49 and receiver 32 and transmitter 33 sub-assemblies of the communication interface 301, by microcontrollers 36, 37 and 38.
  • the internal clock 49 of the logic unit 303 comprises a double ramp oscillator providing a value signal nominal 1 MHz, but which can in practice have a frequency between 500 kHz and 2 MHz due to technological dispersions.
  • the clock oscillator internal 49 is composed of a simple RC circuit in technology ASIC.
  • the internal clock 49 also includes a device logic dividing the frequency produced by the oscillator by a adjustment coefficient, so as to generate a first output frequency of approximately 64 kHz to within 20%.
  • This first output frequency which is the local frequency of the internal clock 49 is sent to the control unit 45 by a local frequency line 68.
  • Adjustment of coefficient is carried out once and for all when mounting the ignition module 15 by a command writing in the EEPROM memory 47 the adjustment coefficient. Of temperature fluctuations between - 10 ° C and 40 ° C cause drift this first output frequency of 10% maximum by compared to a value fixed at 20 ° C.
  • Local frequency line 68 reaches the microprocessor 48 through a comparator of frequency 81, of which a first entry is line 68, a second input is an external clock line 61, and the output is connected to microprocessor 48.
  • the comparator 81 is intended to allow calibration of the internal clock 49, line 61 being connected to the reference time base console 17.
  • the internal clock 49 also makes it possible to produce a second output frequency of 500 kHz to work with EEPROM memory 47, via a divider of frequency 54. This second output frequency is intended to be sent to a voltage tripler 55, connected to the supply circuit 302.
  • the internal clock 49 also provides a third 16 kHz output frequency to management circuit 300.
  • Logic unit 303 also has a circuit POR (Power-on Reset) referenced 51, connected to the microprocessor 48 via the microcontroller 37.
  • the POR circuit 51 produced when switching on the ignition module 15 an initialization pulse making it possible to generate a initialization signal from the control unit 45 and from various control variables. This impulse initialization appears during an ascent or descent of the supply voltage normally equal to 3 V. From this done, the ignition module 15 also produces a signal initialization when the supply voltage drops below a correct operating threshold. During a initialization, the firing capacity 29 is automatically discharged. This property guarantees the absence of ignition untimely in case of accidental power cut.
  • the logical unit 303 is connected to the input circuit 32 by the input line 58 and the line 69.
  • Connections between logic unit 303 and the circuit management 300 include the firing lines 62, discharge 63, charge 64, comparison 65 and charge pumping 66.
  • the logic unit is also connected to a range of test connections 80 (test pads), which act as test points control of the circuit during its manufacture.
  • the operator programs on the programming console keyboard 18 the times of desired delay, in milliseconds. These delay times are between 1 and 3000 milliseconds or more, and defined with a step of 1 millisecond. Late times can be freely chosen by the operator and can be for example identical for two or more than two modules 15.
  • Console 18 is connected to module 15, as it appears on the Figure 2A. The operator then enters the delay time correspondent, then validates it by pressing a key validation of the alphanumeric keyboard. Console 18 sends then to the ignition module 15 a programming order.
  • This programming order is broken down into two time: the first consists of a test of the functionality of the electronic and pyrotechnic parts of the detonator 1 partner, and the second step consists of writing effective identification parameters in memory no volatile of module 15, and specific parameters in EEPROM memories of the programming console 18.
  • the two identification parameters, card number and number are determined automatically by the programming console 18 according to the number of current firing card and the programming order carried out.
  • the programming console 18 automatically increments the serial number after each programming, and the firing card number after each shooting sequence.
  • the operator can choose for himself the two identification parameters.
  • the erase function of the console programming 18 is used if the operator made a mistake in the delay time entry operation.
  • console programming 18 is connected to the shooting console 17, as shown in Figure 2B.
  • connection of the shooting consoles 17 and programming 18 is only authorized after introduction of the appropriate magnetic card. Any other security organ can also be used to authorize this connection.
  • the specific parameters of the modules 15, stored in the programming console 18 are then automatically transferred to the shooting console 17 during the connection between the two consoles 17 and 18, by the function transfer planned on the programming console 18. This transfer is achieved by type communication RS 232.
  • the specific parameters are stored in EEPROM memories of the firing console 17.
  • the firing line 50 connecting the firing console 17 to the detonators 1 is activated, as this appears in Figure 2C.
  • the shooting console 17 performs then automatically a test of the ignition modules 15 in line. It then waits for the time necessary to complete of this test order by all modules 15, then interrogates individually each of the modules 15 by its parameters identification. Each module 15 successively sends the test result in the form of binary information relating to its operating state: information of the "module" type correct "or" module incorrect ". This information can be possibly more complicated.
  • the local frequency of the clock internal 49 of module 15 is measured and compared to the base of the firing console reference time 17.
  • the firing console shot 17 then calculates an algorithmic correction value that it saves in an EEPROM memory of the module 15.
  • the delay time associated with module 15 is then also sent to this module 15 by the shooting console 17.
  • the module 15 deduces a count value allowing to obtain the desired real delay time.
  • the real delay times are calculated by the shooting console 17 and directly sent to modules 15.
  • the operator can cancel the firing by giving the order to the ignition modules 15 of discharge their shooting capabilities 29, by the use of the cancel button on the firing console 17.
  • the firing line 50 can be disconnected, the autonomous battery of each module 15, under form of the battery capacity 41, getting started.
  • Logic unit 303 can then control advantageously a reset of the internal clock 49, which reconfigures it to its previously calibrated state by the firing console 17 using the reference time base. Immediately afterwards, it starts counting down the time of corrected delay, determining the moment of ignition. The shooting sequence is thus set in motion for all of the modules 15.
  • the test, calibration and programming steps last ten of minutes, and the loading of the firing capacities 29, approximately 5 minutes.
  • a shooting sequence is for example triggered half an hour after programming the modules 15, this shooting sequence spanning ten seconds.
  • the rudimentary 49 internal clocks are perfectly suited to these operations, even without reset. Indeed, ASIC circuits benefit from a good thermal protection, which makes them not very sensitive to half hour between programming and sequence shoot. The local frequencies of the internal clocks thus have the property of being stable over time.
  • the internal clocks 49 are more precisely reconfigured in the calibrated state. Oscillators employees are then very stable during the ten seconds between, maximum, reset and reset fire.
  • the operator does not program not the delay times but is content press the validation key on the console programming 18.
  • the console programming 18 performs a test of module 15, then stores in the memory of the latter its identification parameters in case of satisfactory test information, as in the manual procedure.
  • the automatic procedure differs from the procedure manual in that the specific parameters of the modules 15 are transferred to the firing console 17 not by the programming console 18 but by support internal or external computer to the shooting console 17.
  • This computer medium can typically be a floppy disk or a cassette, the shooting console 17 then being provided with a corresponding reader. It can also consist of a memory internal to the firing console 17.
  • the rest of the procedure automatic is the same as manual.
  • the shooting console 17 is able to detect the presence on the firing line 50 of any ignition module 15 not programmed by the programming console 18.
  • the shooting console 17 is capable of processing information coming simultaneously from several consoles of programming 18.
  • Consoles 17 and 18 and modules 15 can be customized before leaving the factory.
  • the shooting console 17 cannot execute a firing only if it is physically connected, at the time of a shot, to the console (s) of programming 18 used to program the modules 15 affected by the firing sequence. This measure increases the security of the device.
  • Recognition may therefore be provided between the 17 and programming 18 consoles.
  • an operator then has the possibility of using a firing console 17 to fire modules 15 only if this shooting console 17 corresponds to the console of programming 18 having been used to program the modules 15.
  • Recognition by an internal code of the console programming 18 by the shooting console 17 is provided for this effect. If the code is not recognized, the shooting console 17 does not record information relating to delay stored in the programming console 18 and the shot is blocked.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air Bags (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

A control method for detonators (1) fitted with an electronic ignition module (15). Each module (15) is associated with specific parameters including at least one identification parameter and one explosion delay time, and includes a firing capacitor and a rudimentary internal clock. The modules (15) are capable of establishing a dialogue with a firing control unit (17) fitted with a reference time basis. The identification parameters are stored in the modules using a programming unit (18); the specific parameters are stored in the firing control unit (17); for each successive module, its internal clock is calibrated using the firing control unit and the associated delay time is sent to the module; the modules are ordered to load the firing capacitors; and a firing order is sent to the modules using the firing control unit, triggering off eventual resetting of the internal clocks as well as a firing sequence.

Description

La présente invention est relative à un procédé de commande de détonateurs du type à module d'allumage électronique, ainsi qu'à un ensemble codé de commande de tir et à un module d'allumage pour sa mise en oeuvre.The present invention relates to a method of control of detonators of the ignition module type electronic, as well as a coded control command of firing and an ignition module for its implementation.

Dans la plupart des travaux à l'explosif, on provoque la détonation de charges contenant les détonateurs selon une séquence temporelle bien précise, ceci afin d'améliorer le rendement du travail de l'explosif et de mieux en contrôler les effets.In most explosive work, we cause the detonation of charges containing the detonators according to a very precise time sequence, this in order to improve the efficiency of the work of the explosive and better control its effects.

De façon classique, un dispositif pyrotechnique au niveau des détonateurs eux-mêmes permet d'obtenir divers temps de retard entre les explosions des charges. Les détonateurs sont initiés simultanément par un exploseur qui délivre une certaine énergie électrique dans une ligne de tir reliant les détonateurs en série ou en parallèle. La combustion de compositions pyrotechniques retardatrices génère alors les retards pyrotechniques voulus.Conventionally, a pyrotechnic device at level of the detonators themselves allows obtaining various delay time between charge explosions. The detonators are simultaneously initiated by an exploder which delivers a certain electrical energy in a line of fire connecting detonators in series or in parallel. The combustion of retarding pyrotechnic compositions then generates the desired pyrotechnic delays.

Cependant, ces retards pyrotechniques sont d'une précision relative souvent insuffisante.However, these pyrotechnic delays are of a often insufficient relative precision.

Pour surmonter cet inconvénient, il a été proposé d'utiliser des dispositifs d'allumage de détonateur à retard intégré du type électronique. Ces dispositifs permettent de tirer partie de la précision de systèmes électroniques pour enrichir et affiner les gammes de temps de retard obtenues précédemment de façon pyrotechnique.To overcome this drawback, it has been proposed to use delay detonator ignition devices integrated electronic type. These devices allow take advantage of the precision of electronic systems for enrich and refine the delay time ranges obtained previously in a pyrotechnic manner.

La demande de brevet FR-2.695.719 propose un procédé de commande de détonateurs à module d'allumage électronique à retard intégré dans lequel les modules d'allumage sont programmés à l'aide d'une unité de programmation. Ils nécessitent une base de temps précise au niveau de chaque détonateur. Patent application FR-2,695,719 proposes a method of controlling detonators with ignition module integrated delay electronics in which the modules are programmed using a control unit programming. They require a precise time base at level of each detonator.

Il a par ailleurs été proposé dans le brevet US-4.674.047, des détonateurs équipés de moyens électroniques leur permettant de dialoguer avec une unité de commande extérieure. Chaque détonateur est muni d'une capacité dont le déchargement active la charge explosive. Les temps de retard de chaque détonateur peuvent être programmés sur site, un code d'identification ayant été préalablement attribué à chaque détonateur, par exemple en sortie d'usine. Lors d'une séquence de tir, les détonateurs reçoivent de l'unité de commande des ordres successivement de chargement de la capacité précitée, puis de tir. Ils renvoient à l'unité de commande des informations permettant à cette unité de contrôler le bon déroulement de la séquence de tir. Les détonateurs sont munis à cet effet d'une intelligence locale par microprocesseur. Les temps de retard qui leur sont attribués sont stockés sur des mémoires non volatiles de leurs microprocesseurs.It has moreover been proposed in patent US-4,674,047, detonators equipped with electronic means allowing them to interact with a control unit outside. Each detonator is equipped with a capacity of which unloading activates the explosive charge. The times of delay of each detonator can be programmed on site, an identification code having been previously assigned to each detonator, for example at the factory. When of a firing sequence, the detonators receive from the unit of order successive loading orders of the above capacity, then firing. They refer to the unity of commands information allowing this unit to control the smooth running of the shooting sequence. The detonators are equipped for this purpose with local intelligence by microprocessor. The delay times they have allocated are stored on non-volatile memories of their microprocessors.

Dans ce dernier système connu, chacun des détonateurs dispose d'une base de temps interne lui permettant d'effectuer un compte à rebours en rapport avec le temps de retard qui lui est affecté. Au moment de la programmation du détonateur, sa base de temps est comparée à une base de temps de référence de l'unité de commande. Une erreur éventuelle est alors compensée par une valeur ajustée du temps de retard, cette valeur ajustée étant stockée dans une mémoire du détonateur.In this latter known system, each of the detonators has an internal time base allowing a countdown related to the delay time assigned to it. At the time of detonator programming, its time base is compared to a reference time base of the unit of ordered. A possible error is then compensated by an adjusted value of the delay time, this adjusted value being stored in a detonator memory.

Le document FR-A-2.672.675 concerne un module d'allumage pour détonateurs à retard électronique intégré et, plus particulièrement, un dispositif de sécurité et d'armement typiquement militaire dans lequel les modules reçoivent des informations données par des capteurs extérieurs.Document FR-A-2.672.675 relates to a module ignition for detonators with integrated electronic delay and, more particularly, a security and arming device typically military in which the modules receive information given by external sensors.

Le document EP-A-0.433.697 concerne un dispositif modulaire de sécurité destiné à apporter une sécurité contre un allumage intempestif à des modules d'allumage antérieurs exempts d'une telle sécurité. Ce dispositif est conçu de façon à assurer aussi une sécurité en cas de défaillance d'un de ses composants propres. L'horloge du système est une horloge à quartz.EP-A-0.433.697 relates to a device safety modular designed to provide security against inadvertent ignition to previous ignition modules exempt from such security. This device is designed so to also provide security in the event of failure of one of its own components. The system clock is a quartz clock.

Le document WO-A-87/00265 enseigne un dispositif de commande de détonateurs dont le retard d'allumage peut être ajusté à distance et avec précision, ce dispositif comprenant des moyens pour calibrer une horloge interne à quartz juste avant le tir.Document WO-A-87/00265 teaches a device for control of detonators whose ignition delay can be adjusted remotely and precisely, this device comprising means to calibrate an internal quartz clock just before firing.

Le but de la présente invention est un procédé de commande du type à module d'allumage électronique, ainsi qu'un ensemble codé de commande de tir et un module d'allumage pour sa mise en oeuvre, conférant aux détonateurs les avantages précités des détonateurs à retard électronique intégré, mais également une plus grande simplicité de fabrication et de fonctionnement, ainsi qu'une sécurité accrue. The object of the present invention is a method of electronic ignition module type control as well that a coded fire control assembly and a module for its implementation, giving the detonators the aforementioned advantages of delay detonators integrated electronics, but also greater simplicity of manufacture and operation, as well as increased security.

Plus précisément, un objectif de l'invention est de pouvoir employer des détonateurs disposant d'horloges internes rudimentaires tout en permettant une excellente précision d'une séquence de tir.More specifically, an objective of the invention is to ability to use detonators with clocks rudimentary internals while allowing excellent accuracy of a firing sequence.

Un autre objectif de l'invention est d'utiliser comme horloges internes des oscillateurs peu coûteux et peu fragiles, et incorporés dans des circuits intégrés.Another object of the invention is to use as inexpensive and not very fragile oscillator internal clocks, and incorporated into integrated circuits.

L'invention a ainsi pour objet un procédé de commande de détonateurs du type à module d'allumage électronique, chaque module d'allumage étant associé à des paramètres spécifiques comprenant au moins un paramètre d'identification et un temps de retard d'explosion du détonateur associé. Le module d'allumage comporte:

  • une capacité de tir destinée, après chargement, à se décharger dans une tête d'amorce du détonateur pour produire une mise à feu,
  • une capacité batterie assurant une autonomie momentanée de fonctionnement,
  • une horloge interne rudimentaire ayant une fréquence locale,
  • une mémoire d'identification non volatile destinée à stocker les paramètres d'identification.
The subject of the invention is therefore a method for controlling detonators of the type with electronic ignition module, each ignition module being associated with specific parameters comprising at least one identification parameter and an explosion delay time of the associated detonator. The ignition module includes:
  • a firing capacity intended, after loading, to discharge into a primer head of the detonator to produce a firing,
  • a battery capacity ensuring momentary operating autonomy,
  • a rudimentary internal clock having a local frequency,
  • a non-volatile identification memory intended to store the identification parameters.

Les modules sont aptes à dialoguer avec une unité de commande de tir munie d'une base de temps de référence, et destinée à leur transmettre notamment un ordre de chargement de leurs capacités de tirs, ainsi qu'un ordre de tir et à recevoir des modules une ou des informations relatives à leur état.The modules are able to interact with a unit of fire control with a reference time base, and intended to transmit to them in particular an order of loading of their fire capacities, as well as a fire order and to receive modules one or more information relating to their condition.

Dans le procédé:

  • on mémorise dans au moins un support informatique les paramètres spécifiques,
  • on fait acquérir à au moins une unité de programmation les paramètres d'identification,
  • on mémorise avec l'unité de programmation dans les modules les paramètres d'identification,
  • on mémorise avec le support informatique dans l'unité de commande de tir les paramètres spécifiques,
  • on ordonne aux modules avec l'unité de commande de tir un chargement des capacités de tir,
  • on envoie aux modules avec l'unité de commande de tir un ordre de tir déclenchant une séquence de tir synchronisée au moyen des fréquences locales.
In the process:
  • the specific parameters are stored in at least one computer medium,
  • at least one programming unit is acquired to identify the parameters,
  • the identification parameters are stored with the programming unit in the modules,
  • the specific parameters are stored with the computer support in the fire control unit,
  • the modules are ordered with the fire control unit to load the fire capacities,
  • the modules are sent with the firing control unit a firing order triggering a firing sequence synchronized by means of the local frequencies.

Le procédé de commande selon l'invention est caractérisé en ce qu'après la mémorisation des paramètres spécifiques dans l'unité de commande de tir et avant le chargement des capacités de tir, on effectue avec l'unité de commande de tir pour chaque module successif une mesure de la fréquence locale de l'horloge interne du module au moyen de la base de temps de référence, une détermination d'une valeur de correction algorithmique de la fréquence locale, et un envoi au module du temps de retard associé.The control method according to the invention is characterized in that after saving the parameters specific in the fire control unit and before the loading of the firing capacities, one carries out with the unit of fire command for each successive module a measure from the local frequency of the module's internal clock to using the reference time base, a determination of an algorithmic correction value of the local frequency, and a send to the delay time module associated.

La détermination de la valeur de correction algorithmique appropriée pour chaque module n'agit pas sur l'horloge interne elle-même et donc ne modifie pas sa fréquence locale.Determining the algorithmic correction value appropriate for each module does act not on the internal clock itself and therefore does not change not its local frequency.

Les horloges internes, ajustables en usine, sont calibrées peu avant une séquence de tir.The internal clocks, adjustable at the factory, are calibrated shortly before a firing sequence.

Ce calibrage est d'autant plus important que les fréquences locales des modules sont a priori toutes distinctes, et conduisent donc à une valeur de correction algorithmique différente pour chaque module.This calibration is all the more important as the local frequencies of the modules are a priori all distinct, and therefore lead to a correction value different algorithm for each module.

Le procédé de commande selon l'invention se distingue de l'art antérieur par les rôles joués par l'unité de programmation, l'unité de commande de tir et le support informatique. Il est particulièrement original en ce que les horloges internes des modules sont ajustées dans un premier temps lors de leur fabrication, puis calibrées dans un deuxième temps peu avant une séquence de tir, à l'aide de la base de temps de référence de l'unité de commande de tir. Le calibrage des horloges internes est dissocié de la programmation des temps de retard des modules.The control method according to the invention is distinguishes from the prior art by the roles played by the unity of programming, fire control unit and support computer science. It is particularly original in that the internal clocks of the modules are first adjusted time during their manufacture and then calibrated in a second time shortly before a shooting sequence, using the reference time base of the fire control unit. The calibration of internal clocks is dissociated from the programming of module delay times.

Un avantage manifeste du procédé selon l'invention est qu'il est possible d'employer dans les modules des horloges internes ajustables rudimentaires, seule la base de temps de référence contenue dans l'unité de commande de tir devant être précise. Une telle horloge interne peut par exemple être incorporée dans un circuit intégré, tel qu'un circuit intégré spécifique couramment dénommé ASIC (Application Specific Integrated Circuit). Pour faire office d'horloge, un simple circuit comportant une résistance et une capacité convient donc, bien qu'une fréquence enregistrée dans ce circuit subisse une altération marquée au cours du temps. Il est cependant intéressant d'employer des horloges internes assez stables dans le temps, afin d'éviter une étape finale de réinitialisation. La solution proposée dans le procédé selon l'invention réduit notamment le coût du circuit par rapport à l'utilisation d'un quartz, sans nuire à la précision et à la sécurité d'une séquence de tir.A clear advantage of the process according to the invention is that it is possible to use in the modules rudimentary adjustable internal clocks, only the base of reference time contained in the fire control unit to be precise. Such an internal clock can by example be incorporated into an integrated circuit, such as a specific integrated circuit commonly known as ASIC (Application Specific Integrated Circuit). To act clock circuit, a simple circuit comprising a resistor and a capacity is therefore suitable, although a recorded frequency in this circuit undergoes a marked alteration during the time. It is however interesting to use clocks internal enough stable over time, to avoid a step final reset. The solution proposed in the process according to the invention notably reduces the cost of the circuit by compared to the use of a quartz, without compromising the precision and to the safety of a shooting sequence.

Un autre avantage procuré par l'emploi d'oscillateurs rudimentaires est qu'ils peuvent être plus résistants aux vibrations, et donc moins fragiles, qu'un quartz.Another benefit of using oscillators rudimentary is that they can be more resistant to vibrations, and therefore less fragile, than a quartz.

On peut faire acquérir à l'unité de programmation les paramètres d'identification de deux manières: soit en les rentrant manuellement, soit en laissant l'unité de programmation les calculer automatiquement par incrémentation. Dans une forme de mise en oeuvre avantageuse, après l'ordre de tir, on réinitialise les horloges internes de l'ensemble des modules. Les horloges internes sont ainsi réinitialisées juste avant une séquence de tir.You can have the programming unit acquire the identification parameters in two ways: either by re-entering manually, either by leaving the unit programming automatically calculate them by increment. In one form of implementation advantageous, after the firing order, the clocks are reset internal of all modules. Internal clocks are thus reset just before a firing sequence.

Ce mode de mise en oeuvre est nécessaire lorsque les horloges internes ont des fréquences subissant des dérives sensibles au cours du temps. En revanche, si elles sont suffisamment stables, il s'avère optionnel, voire superflu.This mode of implementation is necessary when internal clocks have frequencies undergoing sensitive drifts over time. On the other hand, if they are sufficiently stable, it is optional, even superfluous.

Dans un premier mode de mise en oeuvre préféré du procédé de commande selon l'invention, lors du calibrage de l'horloge interne de chaque module, on calcule avec l'unité de commande de tir un temps de retard corrigé, ce temps de retard étant envoyé au module.In a first preferred embodiment of the control method according to the invention, during the calibration of the internal clock of each module, we calculate with the unit of fire command a corrected delay time, this delay being sent to the module.

Dans un second mode de mise en oeuvre préféré du procédé de commande selon l'invention, chaque module comportant une unité de traitement, lors du calibrage de l'horloge interne de ce module, on envoie au module avec l'unité de commande de tir la valeur de correction algorithmique de la fréquence locale de son horloge interne, puis on calcule avec l'unité de traitement du module un temps de retard corrigé.In a second preferred embodiment of the control method according to the invention, each module with a processing unit, during the calibration of the internal clock of this module, we send to the module with the fire control unit the correction value algorithm of the local frequency of its internal clock, then we calculate with the module processing unit a time corrected delay.

Le support informatique est avantageusement distinct de l'unité de programmation.IT support is advantageously distinct of the programming unit.

Ainsi, un enregistrement préalable des données de tir est possible. Cependant, le support informatique peut aussi être identifié à l'unité de programmation.Thus, a prior recording of the firing data is possible. However, IT support can also be identified with the programming unit.

Plusieurs tests gagnent à être réalisés au cours du procédé de commande selon l'invention.Several tests benefit from being carried out during the control method according to the invention.

Ainsi, après la mémorisation des paramètres spécifiques dans l'unité de commande de tir et avant la mesure des fréquences locales, on teste préférentiellement les modules avec l'unité de commande de tir, en leur demandant simultanément au moins une information et en s'adressant individuellement à chaque module par ses paramètres d'identification pour recueillir cette information.So after saving the parameters specific in the fire control unit and before the measurement of local frequencies, we preferentially test the modules with the fire control unit, in their simultaneously requesting at least one piece of information and addressing each module individually through its identification parameters to collect this information.

De plus, avant de mémoriser les paramètres d'identification dans chaque module, on teste de préférence les fonctionnalités électronique et pyrotechnique du détonateur associé.In addition, before storing the parameters identification in each module, we preferably test the electronic and pyrotechnic functionalities of the associated detonator.

Un test supplémentaire est avantageusement effectué à la suite de l'envoi aux modules d'un ordre de tir, avant la réinitialisation de leurs horloges internes: chaque module envoie alors en retour à l'unité de commande de tir une confirmation de son état prêt à une mise à feu.An additional test is advantageously carried out following the sending to the modules of a firing order, before the reset their internal clocks: each module then sends back to the fire control unit a confirmation of its state ready for firing.

L'invention a également pour objet un ensemble codé de commande de tir comportant des détonateurs à module d'allumage électronique, chaque module d'allumage étant associé à des paramètres spécifiques comprenant au moins un paramètre d'identification et un temps de retard d'explosion du détonateur correspondant lors d'une séquence de tir, ce module d'allumage comportant:

  • une capacité de tir destinée, après chargement, à se décharger dans une tête d'amorce du détonateur pour produire une mise à feu,
  • une capacité batterie assurant une autonomie momentanée de fonctionnement,
  • une horloge interne ayant une fréquence locale,
  • une mémoire d'identification non volatile destinée à stocker les paramètres d'identification.
The subject of the invention is also a coded firing control assembly comprising detonators with electronic ignition module, each ignition module being associated with specific parameters comprising at least one identification parameter and a delay time of explosion of the corresponding detonator during a firing sequence, this ignition module comprising:
  • a firing capacity intended, after loading, to discharge into a primer head of the detonator to produce a firing,
  • a battery capacity ensuring momentary operating autonomy,
  • an internal clock with a local frequency,
  • a non-volatile identification memory intended to store the identification parameters.

L'ensemble codé comporte également:

  • une unité de programmation apte à acquérir les paramètres spécifiques des modules et à mémoriser les paramètres d'identification dans les modules correspondants,
  • une unité de commande de tir munie d'une base de temps de référence et d'une mémoire pouvant recevoir les paramètres spécifiques des modules, cette unité de commande de tir pouvant être reliée électriquement en ligne aux modules et dialoguer avec eux, en particulier en envoyant aux modules ayant reçu de l'unité de programmation leurs paramètres d'identification, les temps de retard associés, en mesurant les fréquences locales de leurs horloges internes au moyen de la base de temps de référence, en calibrant ces horloges internes et en envoyant aux modules un ordre de tir déclenchant une séquence de tir.
The coded set also includes:
  • a programming unit capable of acquiring the specific parameters of the modules and of storing the identification parameters in the corresponding modules,
  • a fire control unit provided with a reference time base and a memory capable of receiving the specific parameters of the modules, this fire control unit being able to be connected electrically to the modules online and to dialogue with them, in particular by sending to the modules having received from the programming unit their identification parameters, the associated delay times, by measuring the local frequencies of their internal clocks by means of the reference time base, by calibrating these internal clocks and by sending modules a firing order triggering a firing sequence.

Selon l'invention, l'horloge interne de chacun des moyens d'allumage est une horloge rudimentaire composée d'un simple circuit RC, et l'unité de commande de tir et les modules comprennent des moyens de calibrage permettant de déterminer une valeur de correction algorithmique de la fréquence locale de chacune des horloges internes par rapport à la base de temps de référence après mémorisation des paramètres spécifiques dans l'unité de commande de tir. According to the invention, the internal clock of each of the ignition means is a rudimentary clock composed of a simple RC circuit, and the unit of fire control and the modules include calibration means for determining an algorithmic correction value of the local frequency of each of the internal clocks relative to the base of reference time after memorizing specific parameters in the fire control unit.

Dans un mode avantageux de réalisation, les modules comportent des moyens de réinitialisation de leurs horloges internes à la suite d'un ordre de tir envoyé par l'unité de commande de tir.In an advantageous embodiment, the modules include means for resetting their clocks interns following a firing order sent by the fire command.

L'ensemble codé comportant une liaison électrique entre chaque module et la tête d'amorce du détonateur associé, et ce module étant capable d'envoyer dans cette tête d'amorce par la liaison électrique un courant provoquant une mise à feu, il est intéressant que les têtes d'amorce comportent des ponts conducteurs ou semi-conducteurs.The coded assembly comprising an electrical connection between each module and the detonator's primer head associated, and this module being able to send in this head initiating by the electrical connection a current causing a firing it is interesting that the primer heads have conductive or semiconductor bridges.

L'invention concerne aussi un module d'allumage de détonateur à charge pyrotechnique comportant un circuit d'alimentation comprenant notamment une capacité batterie assurant une autonomie momentanée de fonctionnement, une interface de communication, un circuit de gestion de la charge pyrotechnique comprenant notamment une capacité de tir destinée, après chargement, à se décharger dans une tête d'amorce du détonateur, ainsi qu'une unité logique de gestion de l'ensemble du module. Cette unité logique comprend une mémoire d'identification non volatile destinée à recevoir au moins un paramètre d'identification du module et une horloge interne rudimentaire ayant une fréquence locale.The invention also relates to an ignition module for pyrotechnic charge detonator comprising a circuit including a battery capacity ensuring momentary operating autonomy, a communication interface, charge management circuit pyrotechnic including a firing capacity intended, after loading, to discharge into a head of the detonator, as well as a logical management unit of the whole module. This logical unit includes a non-volatile identification memory intended to receive minus a module identification parameter and a rudimentary internal clock with a local frequency.

Le module d'allumage selon l'invention est original en ce qu'il comprend une mémoire de calibrage permettant de recevoir une valeur de correction algorithmique de la fréquence locale de l'horloge interne par rapport à une base de temps de référence, en provenance d'une unité de commande de tir apte à envoyer au module un ordre de tir.The ignition module according to the invention is original in what it includes a calibration memory allowing receive an algorithmic correction value of the local frequency of the internal clock by compared to a reference time base, from a fire control unit capable of sending the module a firing order.

Dans une forme avantageuse de réalisation, le module selon l'invention comprend des moyens de réinitialisation de l'horloge interne à un état calibré et l'unité logique comprend une commande de réinitialisation activant les moyens de réinitialisation lors d'un ordre de tir.In an advantageous embodiment, the module according to the invention comprises means for resetting the internal clock to a calibrated state and the unit logic includes a reset command activating the reset means during a firing order.

Dans un mode de réalisation préféré du module d'allumage selon l'invention, il comprend un circuit intégré personnalisé du type ASIC, la capacité de tir, la capacité batterie, un transistor de puissance et un moyen de protection contre des décharges électrostatiques.In a preferred embodiment of the module ignition according to the invention, it comprises an integrated circuit custom ASIC type, firing capacity, capacity battery, power transistor and means of protection against electrostatic discharge.

Ce moyen de protection est avantageusement constitué par un élément dénommé transil.This means of protection is advantageously consisting of an element called transil.

Les circuits ASIC permettent à la fois une miniaturisation et une faible consommation.ASIC circuits allow both miniaturization and low consumption.

La présente invention va maintenant être illustrée sans être aucunement limitée par des exemples de réalisation, en référence aux dessins annexés, sur lesquels:The present invention will now be illustrated without being in any way limited by examples of realization, with reference to the appended drawings, in which:

La Figure 1 est une représentation schématique d'un détonateur équipé d'un module d'allumage à retard électronique intégré conforme à un mode de réalisation et de mise en oeuvre de l'invention.Figure 1 is a schematic representation of a detonator equipped with a delayed ignition module integrated electronics according to an embodiment and implementation of the invention.

Les Figures 2A, 2B et 2C sont des représentations schématiques d'un ensemble de tir comportant des détonateurs montés en parallèle, du type de celui représenté sur la Figure 1, faisant apparaítre des circuits de communication établis respectivement lors de la programmation d'un détonateur, du transfert d'informations de l'unité de programmation vers l'unité de commande de tir et lors d'une séquence de mise à feu d'une volée de détonateur.Figures 2A, 2B and 2C are representations schematics of a shooting unit comprising detonators mounted in parallel, of the type shown in Figure 1, showing circuits of communication established respectively during the programming of a detonator, information transfer from the programming unit to the fire control unit and during a firing sequence of a detonator volley.

La Figure 3 est une représentation d'ensemble d'un module d'allumage conforme à l'invention.Figure 3 is an overall representation of a ignition module according to the invention.

La Figure 4 représente l'architecture de principe d'un module d'allumage conforme à l'invention.Figure 4 shows the principle architecture of a ignition module according to the invention.

La Figure 5 est une représentation sous forme de schéma-bloc du module d'allumage de la Figure 4. Figure 5 is a representation in the form of ignition module block diagram of Figure 4.

La Figure 6 est une représentation du circuit de gestion de la charge pyrotechnique du module d'allumage de la Figure 4.Figure 6 is a representation of the management of the pyrotechnic charge of the ignition module of Figure 4.

Le détonateur 1 à module d'allumage électronique décrit, représenté sur la Figure 1, comporte un étui 2 servant de boítier et dont le corps à une forme cylindrique allongée terminée à une de ses extrémités par un fond 3. A son autre extrémité cet étui 2 est obturé par un bouchon également allongé 4, les parois de l'étui 2 étant solidaires du bouchon 4 par l'intermédiaire d'un sertissage 5. L'étui 2 est en alliage d'aluminium, le bouchon 4 étant en PVC standard.Detonator 1 with electronic ignition module described, shown in Figure 1, has a case 2 serving housing and whose body has an elongated cylindrical shape terminated at one end by a bottom 3. At its other end this case 2 is closed by a plug also elongated 4, the walls of the case 2 being integral with the plug 4 by crimping 5. The case 2 is made of alloy of aluminum, the plug 4 being made of standard PVC.

L'extrémité 3 de l'étui 2 est associé à un opercule 6 en aluminium comportant un fond 7 disposé selon une section droite de l'étui 2 et bordé par une jupe 8 cylindrique s'étendant du fond 7 de l'opercule 6 vers le fond 3 de l'étui 2. Les parois externes de la jupe 8 épousent sensiblement les parois internes de l'étui 2. Le fond 7 de cet opercule 6 est traversé dans son épaisseur par un alésage 9 dont le contour est un cercle centré sur l'axe de l'étui 2. Cet opercule 6 délimite avec le fond 3 et les parois du corps de l'étui 2 une chambre 10 contenant, en son intérieur, une charge 11 telle que de la penthrite, cette charge 11 étant complétée par un mélange amorçant 12 disposé dans la chambre 10 au niveau de l'opercule 6. Les proportions de penthrite et de mélange amorçant sont respectivement de 0,6 g et de 0,2 g.The end 3 of the case 2 is associated with a cover 6 aluminum with a bottom 7 arranged in a section right of the case 2 and bordered by a cylindrical skirt 8 extending from the bottom 7 of the cover 6 towards the bottom 3 of the case 2. The external walls of the skirt 8 substantially match the inner walls of the case 2. The bottom 7 of this cover 6 is traversed in its thickness by a bore 9 whose contour is a circle centered on the axis of the case 2. This cover 6 delimits with the bottom 3 and the walls of the body of the case 2 a chamber 10 containing, inside, a load 11 such than penthrite, this charge 11 being supplemented by a priming mixture 12 placed in chamber 10 at level from cover 6. The proportions of penthrite and mixture prime are 0.6 g and 0.2 g respectively.

Du côté de l'opercule 6 qui est opposée à la chambre 10, est disposée une tête d'amorce 13 s'étendant axialement dans l'étui 2 et protégée par une enveloppe cylindrique 14. Cette tête d'amorce 13 est directement reliée à un module d'allumage électronique 15 disposé dans l'étui 2 entre l'enveloppe 14 et le bouchon 4. Ce module électronique 15 est alimenté à son extrémité, au niveau du bouchon 4, par deux fils gainés 16a et 16b qui traversent le bouchon 4 dans sa hauteur et relient le module 15 à un circuit d'allumage (non représenté). On the side of the cover 6 which is opposite the chamber 10, is disposed a primer head 13 extending axially in the case 2 and protected by a cylindrical envelope 14. This primer head 13 is directly connected to a module electronic ignition 15 placed in the case 2 between the casing 14 and the plug 4. This electronic module 15 is fed at its end, at plug 4, by two sheathed wires 16a and 16b which pass through the plug 4 in its height and connect the module 15 to an ignition circuit (not represented).

Avantageusement, la tête d'amorce de l'exemple de réalisation, représentée sur la Figure 1, peut être remplacée par une tête d'amorce comprenant un pont conducteur ou semi-conducteur.Advantageously, the primer of the example of embodiment, shown in Figure 1, can be replaced by a primer head comprising a conductive bridge or semiconductor.

Un courant circulant dans la tête d'amorce 13 ayant une intensité supérieure à un seuil de fonctionnement, initie la tête d'amorce 13 et excite la charge 12 par l'ouverture 9 à travers l'opercule 6. Cette excitation déclenche la détonation.A current flowing in the primer head 13 having an intensity above an operating threshold, initiates the primer head 13 and excites the load 12 through the opening 9 to through operculum 6. This excitation triggers the detonation.

Un ensemble de tir peut être constitué à partir de détonateurs 1 identiques à celui présenté précédemment. Cet ensemble de tir, visible sur les Figures 2B et 2C, comprend un nombre quelconque de détonateurs 1, dont les modules d'allumage 15 sont montés en ligne selon un réseau parallèle avec une unité de commande de tir 17, appelée aussi "console de tir"A firing set can be made from detonators 1 identical to that presented previously. This firing set, visible in Figures 2B and 2C, includes any number of detonators 1, including modules 15 are mounted in line in a parallel network with a fire control unit 17, also called "shooting console"

De préférence, les détonateurs 1 et leurs modules d'allumage 15 sont en fabrication tous identiques et codés. Ils ne sont individualisés que sur site au moment de leur programmation. La réalisation de l'ensemble de tir est ainsi facilitée.Preferably, the detonators 1 and their modules 15 are in production all identical and coded. They are only identified on site at the time of their programming. The realization of the shooting set is thus facilitated.

Les modules d'allumage 15 sont non polarisés. Ils peuvent être utilisés en nombre important en montage parallèle, jusqu'à 200 et plus, sans qu'il en résulte des problèmes qui pourraient être dus à un courant de ligne trop important.The ignition modules 15 are non-polarized. They can be used in large numbers during assembly parallel, up to 200 or more, without resulting problems that could be due to too much line current important.

Les modules 15 sont aptes à dialoguer avec la console de tir 17, qui peut leur transmettre des ordres et recevoir d'eux des informations.The modules 15 are able to interact with the firing console 17, which can transmit orders to them and receive information from them.

L'ensemble de tir comprend également une unité de programmation 18, également appelée "console de programmation". Celle-ci est destinée à programmer chacun des modules 15 avant ou après sa mise en place dans un trou. Elle peut également être utilisée pour transférer des informations sur des séquences de tir dans la console de tir 17. The shooting set also includes a programming 18, also called "console programming ". This is for programming each modules 15 before or after its installation in a hole. It can also be used to transfer information on shooting sequences in the shooting console 17.

Trois configurations peuvent être envisagées pour les connexions entre détonateurs 1, console de tir 17, et console de programmation 18Three configurations can be envisaged for the connections between detonators 1, firing console 17, and console programming 18

Dans une première configuration, représentée sur la Figure 2A, la console de programmation 18 est connectée successivement à chacun des détonateurs 1. Cette première configuration correspond à une première étape, pendant laquelle les modules 15 sont programmés par la console de programmation 18.In a first configuration, represented on the Figure 2A, the programming console 18 is connected successively to each of the detonators 1. This first configuration corresponds to a first step, during which modules 15 are programmed by the console programming 18.

Dans une deuxième configuration, représentée sur la Figure 2B, la console de programmation 18 est connectée à la console de tir 17, tandis que la liaison entre les détonateurs 1 et la console de tir 17 est désactivée.In a second configuration, represented on the Figure 2B, the programming console 18 is connected to the firing console 17, while the link between the detonators 1 and the fire console 17 is deactivated.

Cette deuxième configuration correspond à une deuxième étape, pendant laquelle on transfère de la console de programmation 18 vers la console de tir 17, des informations concernant les détonateurs 1 et utilisables dans une ou plusieurs séquences de tir ultérieures.This second configuration corresponds to a second step, during which we transfer from the console programming 18 to the shooting console 17, information on detonators 1 and usable in one or more subsequent shooting sequences.

Dans la troisième configuration, représentée sur la Figure 2C, la console de programmation 18 et les détonateurs 1 sont connectés à la console de tir 17, les modules 15 des détonateurs 1 étant reliés à la console de tir 17 par une ligne de tir 50. Cette troisième configuration correspond à une troisième étape, pendant laquelle la console de tir 17 est susceptible de communiquer avec les modules 15, puis à une étape finale, lors de laquelle la console de tir 17 peut gérer une procédure de tir et une mise à feu des détonateurs 1 connectés sur la ligne de tir 50.In the third configuration, represented on the Figure 2C, the programming console 18 and the detonators 1 are connected to the shooting console 17, the modules 15 of the detonators 1 being connected to the firing console 17 by a line firing range 50. This third configuration corresponds to a third stage, during which the shooting console 17 is likely to communicate with modules 15, then to a final stage, during which the shooting console 17 can manage a procedure for firing and firing detonators 1 connected on the firing line 50.

La console de tir 17 et les modules d'allumage 15 échangent des informations par l'intermédiaire de messages binaires codés. La ligne de tir 50 étant bifilaire, la console de tir 17 et les modules d'allumage 15 doivent être tolérants aux dégradations que peuvent subir des signaux électriques lors de leur transit sur cette ligne 50. Les messages transmis aux modules sont codés sous la forme de mots de quatre bits. The fire console 17 and the ignition modules 15 exchange information via messages coded binaries. The line of fire 50 being two-wire, the console shot 17 and the ignition modules 15 must be tolerant to damage to electrical signals during of their transit on this line 50. The messages transmitted to modules are coded as four-bit words.

La console de tir 17 sert également à alimenter les modules d'allumage 15. Cette alimentation constitue la source d'énergie susceptible de déclencher une mise à feu. De la sorte, les modules d'allumage 15 ne présentent pas de risque de déclenchement intempestif en dehors de séquences de tir.The shooting console 17 also serves to power the ignition modules 15. This power supply is the source of energy likely to ignite. Of the so the ignition modules 15 are safe inadvertent triggering outside of shooting sequences.

Les consoles de tir 17 et de programmation 18 sont de structures voisines et différent principalement par leur fonctionnalité, et donc par les logiciels de gestion auxquels elles sont associées.The shooting consoles 17 and programming 18 are of neighboring structures and different mainly by their functionality, and therefore by the management software to which they are associated.

Chaque console comprend:

  • une unité logique organisée autour d'un microcontrôleur, par exemple du type de celui commercialisé par la société MOTOROLA sous la dénomination 68 HC 11, et qui intègre 512 octets de mémoires EEPROM permettant de stocker de manière non volatile certains paramètres de fonctionnement, une mémoire vive RAM, un réseau d'entrée et de sortie, une communication de type RS 232 pour permettre aux consoles de tir 17 et de programmation 18 de dialoguer ensemble,
  • un afficheur à cristaux liquides lumineux,
  • une alimentation qui fournit une tension de ± 5 volts à l'unité logique et de ± 18 volts à l'interface ligne, la tension amont nécessaire étant de 18 volts,
  • une interface ligne constituée de deux sous-systèmes, dont une partie émission qui est une alimentation stabilisée pouvant commuter pour délivrer + 12 ou + 6 volts, et une partie réception qui mesure le courant consommé sur la ligne et qui détecte des surconsommations transitoires des modules d'allumage 15,
  • une base de temps de référence, comprenant typiquement un quartz qui la pilote.
Each console includes:
  • a logic unit organized around a microcontroller, for example of the type marketed by MOTOROLA under the name 68 HC 11, and which incorporates 512 bytes of EEPROM memories allowing non-volatile storage of certain operating parameters, a memory RAM, an input and output network, RS 232 type communication to allow the shooting consoles 17 and programming 18 to dialogue together,
  • a bright liquid crystal display,
  • a power supply which supplies a voltage of ± 5 volts to the logic unit and of ± 18 volts to the line interface, the necessary upstream voltage being 18 volts,
  • a line interface made up of two subsystems, including a transmission part which is a stabilized power supply which can switch to deliver + 12 or + 6 volts, and a reception part which measures the current consumed on the line and which detects transient over-consumption of the modules ignition 15,
  • a reference time base, typically comprising a quartz which controls it.

Chacun des modules d'allumage 15 est associé à trois paramètres spécifiques. Deux de ces paramètres spécifiques sont des paramètres d'identification du module 15. Plusieurs séquences de tir ayant lieu successivement et impliquant chacune une partie des détonateurs 1, ces deux paramètres d'identification comprennent un numéro de carte de tir représentatif de la séquence de tir concernée, et un numéro d'ordre désignant le module 15 dans le cadre de cette séquence. Le troisième paramètre spécifique est un temps de retard d'explosion du détonateur 1 correspondant au module 15 au cours de la séquence de tir.Each of the ignition modules 15 is associated with three specific parameters. Two of these specific parameters are parameters for identifying module 15. Several shooting sequences taking place successively and involving each a part of the detonators 1, these two parameters identification include a shooting card number representative of the shooting sequence concerned, and a number order designating module 15 as part of this sequence. The third specific parameter is a time of detonator 1 explosion delay corresponding to the module 15 during the shooting sequence.

Les modules 15 sont susceptibles de recevoir deux types de messages: une commande ou une information stockable, cette information pouvant consister en particulier en l'un des paramètres spécifiques du module 15. Toute réception d'une information stockable est précédée par la réception d'une commande appropriée, de telle sorte que le module d'allumage sait systématiquement quel type d'information va lui être transmis.The modules 15 are capable of receiving two types of messages: an order or information storable, this information can consist in particular in one of the specific parameters of module 15. Any receipt of storable information is preceded by the receipt of an appropriate order, so that the ignition module systematically knows what type information will be sent to him.

La console de tir 17 comprend quatre touches actionnables par un utilisateur pour activer respectivement quatre fonctions. Ces quatre touches déclenchent respectivement un test des modules d'allumage 15, un armement des détonateurs 1, une séquence de tir, et une annulation de la séquence de tir. Une cinquième fonction de la console de tir 17, automatiquement activée consiste en un transfert automatique des données vers la console de tir 17, depuis la console de programmation 18 ou un support informatique interne ou externe. Deux voyants, un vert et un rouge, sont également prévus pour servir de témoins lors d'un test des modules 15. Le voyant vert est destiné à s'allumer en situation normale, et le voyant rouge en cas de problème.The shooting console 17 includes four keys user-operable to activate respectively four functions. These four keys trigger respectively a test of the ignition modules 15, a arming detonators 1, a firing sequence, and a cancellation of the shooting sequence. A fifth function of the fire console 17, automatically activated, consists of a automatic transfer of data to the shooting console 17, from the programming console 18 or from a support internal or external IT. Two LEDs, one green and one red, are also intended to serve as witnesses during a test of the modules 15. The green LED is intended to light up normal situation, and the red light in case of problem.

La console de tir 17 est avantageusement munie d'une carte magnétique autorisant son utilisation.The shooting console 17 is advantageously provided with a magnetic card authorizing its use.

La console de programmation 18 comprend un clavier de 12 touches alphanumériques, permettant en particulier d'entrer les paramètres spécifiques des modules 15. Elle comprend également un bouton-poussoir permettant de basculer entre deux procédures de programmation. Dans une première de ces procédures, dite procédure manuelle, l'opérateur programme directement sur le clavier les temps de retard, tandis que dans la seconde procédure, dite procédure automatique ces temps sont stockés séparément sur le support informatique interne ou externe à la console de tir 17.The programming console 18 includes a keyboard 12 alphanumeric keys, allowing in particular enter the specific parameters of modules 15. It also includes a push button to switch between two programming procedures. In first of these procedures, called manual procedure, the operator programs the times of delay, while in the second procedure, called procedure automatic these times are stored separately on the IT support internal or external to the shooting console 17.

La console de programmation 18 dispose de six fonctions. La première de ces fonctions consiste en la programmation ou la reprogrammation d'un des modules d'allumage 15, par un enregistrement de ses paramètres d'identification, et éventuellement de son temps de retard, en mémoire de ce module 15. Une seconde fonction de la console de programmation 18 est le stockage des paramètres spécifiques dans sa propre mémoire. Une troisième fonction consiste en un test de l'un quelconque des modules d'allumage 15. Une quatrième fonction est un effacement de l'écran de la console de programmation 18. Une cinquième fonction consiste à lire le contenu de la mémoire de l'un quelconque des modules d'allumage 15 programmé. La sixième fonction est constituée par un transfert vers la console de tir 17 de l'ensemble des paramètres spécifiques enregistrés dans les modules 15.The programming console 18 has six functions. The first of these functions is the programming or reprogramming one of the modules ignition 15, by recording its parameters identification, and possibly its delay time, by memory of this module 15. A second function of the programming console 18 is the parameter storage specific in its own memory. A third function consists of a test of any of the modules 15. A fourth function is to delete the programming console screen 18. A fifth function is to read the contents of one's memory any of the ignition modules 15 programmed. The sixth function consists of a transfer to the shooting console 17 of the set of specific parameters saved in modules 15.

Les modules d'allumage 15 comprennent des circuits intégrés spécifiques, couramment dénommés ASIC (Application Specific Integrated Circuit). Chacun des modules d'allumage 15 comprend également une ou plusieurs capacités réservoirs, un transistor de puissance et un transil. Un module d'allumage 15, tel qu'il est représenté schématiquement sur la Figure 3, comprend quatre sous-systèmes: un circuit de gestion 300 de la charge pyrotechnique, une interface de communication 301, un circuit d'alimentation 302, et une unité logique 303 de gestion de l'ensemble du microsystème.The ignition modules 15 include circuits specific integrated devices, commonly referred to as ASICs (Application Specific Integrated Circuit). Each of the modules 15 also includes one or more tank capacities, a power transistor and a transil. An ignition module 15, as shown schematically in Figure 3, includes four subsystems: a load management circuit 300 pyrotechnic, a 301 communication interface, a circuit 302, and a logic management unit 303 for the whole microsystem.

Certaines caractéristiques des signaux transmis sur les lignes ont été précisées sur les Figures 4 à 6 en référence à ces lignes. Certain characteristics of the signals transmitted on the lines have been specified in Figures 4 to 6 with reference to these lines.

Le circuit d'alimentation 302, tel qu'il apparaít sur les Figures 4 et 5. comprend un pont redresseur 40 double alternance à diodes, qui fournit une tension continue Valim à partir de la tension continue provenant de la ligne de tir 50.The supply circuit 302, as it appears on the Figures 4 and 5. includes a double rectifier bridge 40 alternating diodes, which provides a DC voltage Valim to from the DC voltage coming from the firing line 50.

Une détection logique affranchit le module d'allumage 15 de toute polarisation. La tension Valim est nominalement comprise entre 8V et 15 V.Logical detection frees the ignition module 15 of any polarization. Valim voltage is nominally between 8V and 15 V.

Le circuit d'alimentation 302 comporte également une capacité batterie 41 de 100 µF ayant une tension nominale de 16 V, assurant le lissage de la tension continue et constituant un réservoir énergétique permettant à l'ensemble du microsystème de fonctionner pendant quelques secondes lorsqu'il n'est plus alimenté par la ligne de tir 50.The supply circuit 302 also includes a battery capacity 41 of 100 µF with a nominal voltage of 16 V, ensuring smoothing of the DC voltage and constituting an energy reservoir allowing the entire microsystem to operate for a few seconds when it is no longer supplied by the firing line 50.

Un régulateur 42 est prévu pour produire une tension de fonctionnement Vcc continue et égale à 3 V, destinée à alimenter l'ensemble des blocs basse tension du module d'allumage 15. Ce régulateur 42 est relié au pont redresseur 40 dont il reçoit une tension d'alimentation, ainsi qu'à la capacité batterie 41 Le régulateur 42 comporte une référence de tension et une boucle de réglage comprenant un amplificateur opérationnel. La référence de tension est de type à barrière de potentiel (band-gap voltage référence) et fournit une tension de référence stable à 1,20 V. L'amplificateur opérationnel reçoit la tension de référence par une entrée de consigne et la tension d'alimentation par une entrée d'alimentation, et compare une fraction de la tension d'alimentation à la tension de 3 V souhaitée.A regulator 42 is provided to produce a voltage of continuous Vcc operation and equal to 3 V, intended for supply all the low voltage modules of the module 15. This regulator 42 is connected to the rectifier bridge 40 from which it receives a supply voltage, as well as battery capacity 41 The regulator 42 has a reference tension and an adjustment loop including a operational amplifier. The voltage reference is potential barrier type (band-gap voltage reference) and provides a stable reference voltage at 1.20 V. The operational amplifier receives the reference voltage by a setpoint input and the supply voltage by a power input, and compare a fraction of the voltage power supply at the desired 3 V voltage.

Le circuit d'alimentation 302 comporte un circuit d'entrée 32 relié à l'unité logique 303 par une ligne d'entrée 58 et une ligne de commande 69.The supply circuit 302 includes a circuit input 32 connected to logic unit 303 by an input line 58 and a command line 69.

La ligne de tension Vcc est reliée à une capacité 53 de 100 nF.The voltage line Vcc is connected to a capacitor 53 100 nF.

L'interface de communication 301, visible sur la Figure 4, comprend le circuit d'entrée 32 qui joue le rôle de sous-ensemble récepteur, ainsi qu'un sous-ensemble émetteur 33. Ce dernier comprend essentiellement un transistor, dont la grille est reliée à l'unité logique 303 par une ligne de sortie 59, le drain au circuit de gestion 300 par une ligne de tête d'amorce 57, et la source à la terre.The communication interface 301, visible in the Figure 4, includes the input circuit 32 which acts as a sub-assembly receiver, as well as a transmitter sub-assembly 33. The latter essentially comprises a transistor, the grid is connected to logic unit 303 by an output line 59, the drain to the management circuit 300 by a head line primer 57, and the source to the ground.

Le circuit de gestion 300 de la charge pyrotechnique a été représenté plus particulièrement sur la Figure 6. Il gère la capacité de tir du module d'allumage 15, ainsi que la commande d'un transistor DMOS référencé 56, externe au circuit de gestion 300, et servant à déclencher une mise à feu.The pyrotechnic charge management circuit 300 has was shown more particularly in Figure 6. It manages the firing capacity of the ignition module 15, as well as the control of a DMOS transistor referenced 56, external to the management circuit 300, and used to trigger an update fire.

Le transistor 56 a son drain relié à la tête d'amorce 13 et sa source à la terre. Sa grille est commandée par une ligne de mise à feu 62 provenant de l'unité logique 303, par l'intermédiaire de deux transistors 74 et 79. Le transistor 74 a sa grille reliée à la ligne 62, sa source à la terre et son drain à la grille du transistor 79, ainsi qu'à la tension Valim en parallèle, une résistance 77 de 4 MΩ étant interposée entre le drain et la tension Valim. Le transistor 79 a quant à lui son drain relié à la tension Valim, et sa source à la grille du transistor 56, ainsi qu'à la terre par l'intermédiaire d'une résistance 78 de 50 kΩ.The transistor 56 has its drain connected to the primer head 13 and its source to the earth. Its grid is controlled by a line firing 62 coming from logic unit 303, by through two transistors 74 and 79. Transistor 74 has its grid connected to line 62, its source to the ground and its drain to the gate of transistor 79, as well as to the Valim voltage in parallel, a resistor 77 of 4 MΩ being interposed between the drain and the voltage Valim. The transistor 79 has its drain connected to the Valim voltage, and its source to the gate of the transistor 56, as well as to earth via a resistor 78 of 50 kΩ.

Une diode 84 est disposée de la terre vers la grille du transistor 56, et une diode 83 de la terre vers la borne de la tête d'amorce 13 autre que celle reliée au transistor 56.A diode 84 is arranged from the earth to the grid of the transistor 56, and a diode 83 from earth to the terminal of the primer head 13 other than that connected to transistor 56.

De plus, une capacité de découplage 82 peut être connectée entre la grille et la source du transistor 56.In addition, a decoupling capacity 82 can be connected between the gate and the source of transistor 56.

Le circuit de gestion 300 permet de charger une capacité de tir 29 de 220 µF à sa tension nominale de 16 V.The management circuit 300 makes it possible to charge a firing capacity 29 of 220 µF at its nominal voltage of 16 V.

Il est alimentée par la ligne de tête d'amorce 57 recevant une tension redressée Vtam à partir de la ligne de tir 50. La tension Vtam a une valeur nominale comprise entre 11 V et 16 V.It is supplied by the primer head line 57 receiving a rectified voltage Vtam from the firing line 50. The voltage Vtam has a nominal value between 11 V and 16 V.

La capacité de tir 29 a une première armature 191 directement reliée à la terre, et sa seconde armature 192 est reliée à la terre par l'intermédiaire d'une résistance 20 de 400 Ω et d'un transistor MOS référencé 30. La grille du transistor 30 étant commandée par l'unité logique 303 au moyen d'un ligne de décharge 63, la capacité de tir 29 peut être déchargée rapidement à travers la résistance 20 lorsqu'une commande de décharge est envoyée au module d'allumage 15 ou lorsqu'une défaillance d'alimentation apparaít. Typiquement, cette décharge peut être effectuée en 300 ms. La seconde armature 192 est également reliée à la tête d'amorce 13.The firing capacity 29 has a first frame 191 directly connected to earth, and its second armature 192 is earthed via a resistor 20 of 400 Ω and a MOS transistor referenced 30. The gate of the transistor 30 being controlled by the logic unit 303 by means of a discharge line 63, firing capacity 29 can be rapidly discharged through resistor 20 when a discharge command is sent to the ignition module 15 or when a power failure occurs. Typically, this discharge can be carried out in 300 ms. The second frame 192 is also connected to the head primer 13.

L'armement du module d'allumage 15 est effectuée par l'intermédiaire d'une ligne de charge 64 provenant de l'unité logique 303. Cette ligne de charge 64 aboutit à la grille d'un transistor 70 du circuit de gestion 300, dont la source est reliée à la terre et le drain à la seconde armature 192 de la capacité de tir 29 à travers une résistance 71 de 193 kΩ et une résistance 22 de 1700 kΩ.The ignition module 15 is armed via a load line 64 coming from logic unit 303. This load line 64 ends at the gate a transistor 70 of the management circuit 300, the source of which is connected to earth and the drain to the second frame 192 of the firing capacity 29 through a resistance 71 of 193 kΩ and a resistance 22 of 1700 kΩ.

La seconde armature 192 de la capacité de tir 29 est aussi reliée à la terre par l'intermédiaire de la résistance 22 et d'une résistance 23 égale à 1700 kΩ. Quelle que soit la défaillance de l'ensemble du microsystème, la capacité de tir 29 est toujours autodéchargée lors d'une coupure de tension d'alimentation, cette sécurité étant assurée par les résistances 22 et 23.The second frame 192 of the firing capacity 29 is also connected to earth via resistor 22 and a resistance 23 equal to 1700 kΩ. Whatever whole microsystem failure, firing ability 29 is always self-discharged during a power failure this security being ensured by resistors 22 and 23.

Le circuit de gestion 300 comporte une boucle de réglage 24 comprenant un amplificateur opérationnel 26 et une référence de tension 27. La référence de tension 27, provenant d'un PTAT, fournit une tension de référence stable à 1,20 V. L'amplificateur opérationnel 26 a une entrée de consigne reliée à la référence de tension 27, et une entrée d'alimentation reliée à la seconde armature 192 de la capacité de tir 29, via la résistance 22.The management circuit 300 includes a loop of control 24 comprising an operational amplifier 26 and a voltage reference 27. The voltage reference 27, from a PTAT, provides a stable reference voltage at 1.20 V. The operational amplifier 26 has an input of setpoint linked to voltage reference 27, and an input supply connected to the second armature 192 of the capacity firing 29, via resistance 22.

La sortie de l'amplificateur opérationnel 26 est branchée à une ligne de comparaison 65 conduisant à l'unité logique 303. Elle est également connectée à une première entrée d'une porte NOR 72, comprenant deux autres entrées. La deuxième entrée de la porte NOR 72 reçoit des informations de la ligne de charge 64 via une porte NOR 73, cette porte ayant une seconde entrée reliée à une ligne 67 de test de charge. La troisième entrée reçoit des signaux d'horloge en provenance de l'unité logique 303 par une ligne de pompage de charge 66, à une fréquence de 64 kHz.The output of the operational amplifier 26 is connected to a comparison line 65 leading to the unit logic 303. It is also connected to a first entrance to a NOR 72 door, including two other entrances. The second entrance to door NOR 72 receives load line 64 information via a NOR 73 gate, this door having a second input connected to a line 67 of Charge test. The third input receives signals clock from logic unit 303 by a line charge pumping 66, at a frequency of 64 kHz.

La sortie de la porte NOR 72 conduit à un dispositif 25 à pompage de charges nécessitant, pour atteindre la pleine tension, de nombreuses impulsions d'horloge provenant de l'unité logique 303 par la ligne 66.The exit from the NOR 72 door leads to a device 25 pumping loads requiring, to reach full voltage, many clock pulses from logic unit 303 through line 66.

Ce dispositif 25 est alimenté par la ligne de tête d'amorce 57 à la tension Vtam et à deux sorties. La première de ces sorties est reliée à la seconde armature 192 de la capacité de tir 29, tandis que la seconde est reliée au drain d'un transistor 75 par une résistance 76 de 50 kΩ. Le transistor 75 a sa grille commandée par la ligne de décharge 63 et sa source reliée à la terre.This device 25 is supplied by the head line initiator 57 at Vtam voltage and two outputs. The first one of these outputs is connected to the second armature 192 of the firing capacity 29, while the second is connected to the drain of a transistor 75 by a resistor 76 of 50 kΩ. The transistor 75 has its gate controlled by the discharge line 63 and its source connected to the earth.

En fonctionnement, des signaux sont envoyés à la fréquence de 64 kHz à la porte NOR 72 par la ligne de pompage de charge 66. En l'absence d'un ordre de charge, la sortie de la porte NOR 72 vaut 0, si bien que la capacité de tir 29 n'est pas alimentée par la ligne de tête d'amorce 57. Lorsqu'un ordre de charge est donné au moyen de la ligne de charge 64, la sortie de la porte NOR 72 produit la valeur 1 à une fréquence de 64 kHz, tant que la sortie de l'amplificateur opérationnel 26 n'indique pas l'égalité entre la tension nominale imposée au moyen de la référence de tension 27, et la tension effective aux bornes de la capacité de tir 29. La grille du transistor 28 est ainsi activée, et la tension Vtam assure la charge de la capacité de tir 29. Une fois la tension nominale atteinte, la sortie de l'amplificateur opérationnel 26 vaut 0, de sorte que la sortie de la porte NOR 72 vaut 0 et que l'alimentation de la capacité de tir 29 est interrompue. In operation, signals are sent to the frequency of 64 kHz at NOR gate 72 by the line of charge pumping 66. In the absence of a charge order, the exit from door NOR 72 is worth 0, so that the firing capacity 29 is not supplied by the primer head line 57. When a charge order is given by means of the load 64, the output of the NOR 72 gate produces the value 1 to a frequency of 64 kHz, as long as the amplifier output operational 26 does not indicate equality between voltage nominal imposed by means of the voltage reference 27, and the effective voltage across the firing capacity 29. The gate of transistor 28 is thus activated, and voltage Vtam takes charge of the firing capacity 29. Once the tension nominal reached, the output of the operational amplifier 26 is 0, so the output from NOR gate 72 is 0 and that the supply of the firing capacity 29 is interrupted.

La boucle de réglage 24 assure ainsi la stabilité de la tension nominale de la capacité de tir 29, quelle que soit la valeur de la tension Vtam comprise entre 11 V et 16 V.The adjustment loop 24 thus ensures the stability of the nominal voltage of the firing capacity 29, whatever the value of the voltage Vtam between 11 V and 16 V.

Lors d'un ordre de décharge envoyé par la ligne de décharge 63, la grille du transistor 75 est activée et la capacité de tir 29 se décharge à travers le circuit de décharge.During a discharge order sent by the discharge 63, the gate of transistor 75 is activated and the firing capacity 29 discharges through the circuit of dump.

Un mode test est prévu pour charger la capacité de tir 29 à une tension nominale de 2,4 V. L'entrée dans ce mode s'effectue par activation d'une variable charge test dans l'unité logique 303 Le processeur peut alors, en testant la sortie de l'amplificateur opérationnel 26, vérifier que la durée de charge de la capacité de tir 29 est comprise dans une fourchette acceptableA test mode is provided to charge the firing capacity 29 at a nominal voltage of 2.4 V. Entry into this mode is performed by activating a test load variable in logic unit 303 The processor can then, by testing the output of operational amplifier 26, check that the duration charge of the firing capacity 29 is included in a acceptable range

L'unité logique 303 qui assure la gestion de chaque module d'allumage 15, détaillée sur le schéma bloc de la Figure 5, gère les communications avec la ligne de tir 50 ainsi que les commandes de la charge pyrotechnique. Elle comprend en particulier une unité de commande 45 essentiellement digitale ou CPU (central processing unit), composée d'un microprocesseur 48 à quatre bits, d'une mémoire ROM référencée 43 de 2048 mots de 16 bits contenant le programme d'application, d'un registre à décalage 44 de test. et de différents blocs périphériques. Chacun de ces périphériques est en relation avec l'un des blocs analogiques du module d'allumage 15, dont il assure le fonctionnement sous contrôle du logiciel.Logic unit 303 which manages each ignition module 15, detailed on the block diagram of the Figure 5, manages communications with firing line 50 as well than the pyrotechnic charge controls. She includes in particular a control unit 45 essentially digital or CPU (central processing unit), composed of a four-bit microprocessor 48, a ROM memory referenced 43 of 2048 words of 16 bits containing the application program, from a register to test offset 44. and different peripheral blocks. Each of these devices is related to one of the analog blocks of the ignition module 15, which it ensures software controlled operation.

L'unité logique 303 comprend également un ensemble 46 de registres ou register bank, destiné à des stockages provisoires d'informations numérisées, et une horloge interne 49.Logic unit 303 also includes a set 46 of registers or register bank, intended for storage temporary digitized information, and an internal clock 49.

Toutes les informations non volatiles nécessaires au fonctionnement du module d'allumage 15 sont stockées dans une mémoire EEPROM référencée 47 organisée en huit mots de 4 bits, cette mémoire EEPROM étant gérée par l'unité de commande 45 au moyen d'un microcontrôleur de mémoire 35. La mémoire 47 est destinée en particulier à recevoir les paramètres d'identification du module d'allumage 15 dans la ligne de tir 50, un mot de réglage de l'horloge interne 49 de l'unité logique 303, et un délai de mise à feu.All non-volatile information necessary for ignition module 15 are stored in an EEPROM memory referenced 47 organized in eight words of 4 bits, this EEPROM memory being managed by the unit of command 45 by means of a memory microcontroller 35. The memory 47 is intended in particular to receive the ignition module identification parameters 15 in the firing line 50, an internal clock setting word 49 of logic unit 303, and a firing delay.

Le microprocesseur 48 de l'unité de commande 45 est respectivement raccordé au circuit de gestion 300, à l'horloge interne 49 et aux sous-ensembles récepteur 32 et émetteur 33 de l'interface de communication 301, par des microcontrôleurs 36, 37 et 38.The microprocessor 48 of the control unit 45 is respectively connected to the management circuit 300, to the clock internal 49 and receiver 32 and transmitter 33 sub-assemblies of the communication interface 301, by microcontrollers 36, 37 and 38.

L'horloge interne 49 de l'unité logique 303 comporte un oscillateur double rampe fournissant un signal de valeur nominale 1 MHz, mais qui peut en pratique avoir une fréquence située entre 500 kHz et 2 MHz à cause de dispersions technologiques. Afin de se placer dans des conditions industrielles optimales, l'oscillateur de l'horloge interne 49 est composé d'un simple circuit RC en technologie ASIC.The internal clock 49 of the logic unit 303 comprises a double ramp oscillator providing a value signal nominal 1 MHz, but which can in practice have a frequency between 500 kHz and 2 MHz due to technological dispersions. In order to be placed in optimal industrial conditions, the clock oscillator internal 49 is composed of a simple RC circuit in technology ASIC.

L'horloge interne 49 comporte également un dispositif logique divisant la fréquence produite par l'oscillateur par un coefficient de réglage, de façon à générer une première fréquence de sortie d'environ 64 kHz à 20% près. Cette première fréquence de sortie, qui est la fréquence locale de l'horloge interne 49, est envoyée à l'unité de commande 45 par une ligne 68 de fréquence locale. L'ajustage du coefficient s'effectue une fois pour toute au montage du module d'allumage 15 par une commande écrivant dans la mémoire EEPROM 47 le coefficient de réglage. Des fluctuations de température entre - 10°C et 40°C font dériver cette première fréquence de sortie de 10% au maximum par rapport à une valeur fixée à 20°C.The internal clock 49 also includes a device logic dividing the frequency produced by the oscillator by a adjustment coefficient, so as to generate a first output frequency of approximately 64 kHz to within 20%. This first output frequency, which is the local frequency of the internal clock 49 is sent to the control unit 45 by a local frequency line 68. Adjustment of coefficient is carried out once and for all when mounting the ignition module 15 by a command writing in the EEPROM memory 47 the adjustment coefficient. Of temperature fluctuations between - 10 ° C and 40 ° C cause drift this first output frequency of 10% maximum by compared to a value fixed at 20 ° C.

La ligne 68 de fréquence locale parvient au microprocesseur 48 par le biais d'un comparateur de fréquence 81, dont une première entrée est la ligne 68, une seconde entrée est une ligne 61 d'horloge extérieure, et la sortie est connectée au microprocesseur 48. Le comparateur 81 est destiné à permettre un calibrage de l'horloge interne 49, la ligne 61 étant reliée à la base de temps de référence de la console de tir 17.Local frequency line 68 reaches the microprocessor 48 through a comparator of frequency 81, of which a first entry is line 68, a second input is an external clock line 61, and the output is connected to microprocessor 48. The comparator 81 is intended to allow calibration of the internal clock 49, line 61 being connected to the reference time base console 17.

L'horloge interne 49 permet également de produire une deuxième fréquence de sortie de 500 kHz pour travailler avec la mémoire EEPROM 47, par le biais d'un diviseur de fréquence 54. Cette deuxième fréquence de sortie est destinée à être envoyée à un tripleur de tension 55, relié au circuit d'alimentation 302.The internal clock 49 also makes it possible to produce a second output frequency of 500 kHz to work with EEPROM memory 47, via a divider of frequency 54. This second output frequency is intended to be sent to a voltage tripler 55, connected to the supply circuit 302.

L'horloge interne 49 fournit aussi une troisième fréquence de sortie de 16 kHz au circuit de gestion 300.The internal clock 49 also provides a third 16 kHz output frequency to management circuit 300.

Les tolérances sur les valeurs RC étant de plus ou moins 10%, on peut admettre que les fréquences locales des horloges internes des modules 15 présentent typiquement des incertitudes de l'ordre de plus ou moins 20%. Cette plage d'incertitude est centrée sur la valeur souhaitée, de 64 kHz, lors d'un ajustement en usine.The tolerances on the RC values being more or minus 10%, it can be assumed that the local frequencies of internal clocks of the modules 15 typically have uncertainties on the order of plus or minus 20%. This beach of uncertainty is centered on the desired value, of 64 kHz, during a factory adjustment.

Cependant, un calibrage individualisé des horloges internes avant une séquence de tir par rapport à la base de temps de la console de tir 17, permet de remédier à ces incertitudes.However, individual calibration of the clocks internal before a firing sequence with respect to the base of time of the shooting console 17, overcomes these uncertainties.

L'unité logique 303 comporte également un circuit POR (Power-on Reset) référencé 51, relié au microprocesseur 48 par l'intermédiaire du microcontrôleur 37. Le circuit POR 51 produit lors d'une mise sous tension du module d'allumage 15 une impulsion d'initialisation permettant de générer un signal d'initialisation de l'unité de commande 45 et de diverses variables de commande. Cette impulsion d'initialisation apparaít lors d'une montée ou d'une descente de la tension d'alimentation normalement égale à 3 V. De ce fait, le module d'allumage 15 produit également un signal d'initialisation lorsque la tension d'alimentation tombe au-dessous d'un seuil de fonctionnement correct. Lors d'une initialisation, la capacité de tir 29 est automatiquement déchargée. Cette propriété garantit l'absence de mise à feu intempestive en cas de coupure accidentelle d'alimentation.Logic unit 303 also has a circuit POR (Power-on Reset) referenced 51, connected to the microprocessor 48 via the microcontroller 37. The POR circuit 51 produced when switching on the ignition module 15 an initialization pulse making it possible to generate a initialization signal from the control unit 45 and from various control variables. This impulse initialization appears during an ascent or descent of the supply voltage normally equal to 3 V. From this done, the ignition module 15 also produces a signal initialization when the supply voltage drops below a correct operating threshold. During a initialization, the firing capacity 29 is automatically discharged. This property guarantees the absence of ignition untimely in case of accidental power cut.

En ce qui concerne ses relations, schématisées sur la Figure 4, avec les éléments extérieurs, l'unité logique 303 est reliée au circuit d'entrée 32 par la ligne d'entrée 58 et la ligne de commande 69.With regard to its relations, schematized on the Figure 4, with the external elements, the logical unit 303 is connected to the input circuit 32 by the input line 58 and the line 69.

Les connexions entre l'unité logique 303 et le circuit de gestion 300 comprennent les lignes de mise à feu 62, de décharge 63, de charge 64, de comparaison 65 et de pompage de charge 66.Connections between logic unit 303 and the circuit management 300 include the firing lines 62, discharge 63, charge 64, comparison 65 and charge pumping 66.

L'unité logique est également reliée à une plage de connexions de test 80 (test pads), qui font office de points de contrôle du circuit lors de sa fabrication.The logic unit is also connected to a range of test connections 80 (test pads), which act as test points control of the circuit during its manufacture.

L'ensemble de ces liaisons sont effectuées avec l'unité de commande 45.All of these connections are made with the control unit 45.

En fonctionnement, on distinguera les deux procédures manuelle et automatique.In operation, we will distinguish the two manual and automatic procedures.

En procédure manuelle, l'opérateur programme sur le clavier de la console de programmation 18 les temps de retard désirés, en millisecondes. Ces temps de retard sont compris entre 1 et 3000 millisecondes, voire davantage, et définis avec un pas de 1 milliseconde. Les temps de retard peuvent être choisis librement par l'opérateur et peuvent être par exemple identiques pour deux ou plus de deux modules 15.In manual procedure, the operator programs on the programming console keyboard 18 the times of desired delay, in milliseconds. These delay times are between 1 and 3000 milliseconds or more, and defined with a step of 1 millisecond. Late times can be freely chosen by the operator and can be for example identical for two or more than two modules 15.

Successivement, pour chacun des modules 15, l'ensemble des opérations suivantes est effectué. La console 18 est connectée au module 15, comme ceci apparaít sur la Figure 2A. L'opérateur entre alors le temps de retard correspondant, puis le valide en appuyant sur une touche de validation du clavier alphanumérique. La console 18 envoie alors au module d'allumage 15 un ordre de programmation.Successively, for each of the modules 15, all of the following operations are performed. Console 18 is connected to module 15, as it appears on the Figure 2A. The operator then enters the delay time correspondent, then validates it by pressing a key validation of the alphanumeric keyboard. Console 18 sends then to the ignition module 15 a programming order.

Cet ordre de programmation se décompose en deux temps: le premier consiste en un test des fonctionnalités des parties électronique et pyrotechnique du détonateur 1 associé, et le deuxième temps consiste en une écriture effective des paramètres d'identification dans la mémoire non volatile du module 15, et des paramètres spécifiques dans des mémoires EEPROM de la console de programmation 18.This programming order is broken down into two time: the first consists of a test of the functionality of the electronic and pyrotechnic parts of the detonator 1 partner, and the second step consists of writing effective identification parameters in memory no volatile of module 15, and specific parameters in EEPROM memories of the programming console 18.

Les deux paramètres d'identification, numéro de carte de tir et numéro d'ordre, sont déterminés automatiquement par la console de programmation 18 en fonction du numéro de carte de tir courant et de l'ordre de programmation effectué. Avantageusement, la console de programmation 18 incrémente automatiquement le numéro d'ordre après chaque programmation, et le numéro de carte de tir après chaque séquence de tir.The two identification parameters, card number and number, are determined automatically by the programming console 18 according to the number of current firing card and the programming order carried out. Advantageously, the programming console 18 automatically increments the serial number after each programming, and the firing card number after each shooting sequence.

En variante, l'opérateur a la possibilité de choisir lui-même les deux paramètres d'identification.Alternatively, the operator can choose for himself the two identification parameters.

La fonction effacement de la console de programmation 18 est utilisée si l'opérateur s'est trompé dans l'opération de saisie du temps de retard.The erase function of the console programming 18 is used if the operator made a mistake in the delay time entry operation.

L'écriture effective des paramètres est assujettie à la réussite du test effectué.The actual writing of the parameters is subject to the successful completion of the test.

Après que l'ensemble des modules 15 utilisés dans la séquence de tir a été programmé, la console de programmation 18 est connectée à la console de tir 17, comme représentée sur la Figure 2B.After all of the modules 15 used in the firing sequence has been programmed, the console programming 18 is connected to the shooting console 17, as shown in Figure 2B.

Le raccordement des consoles de tir 17 et de programmation 18 n'est autorisé qu'après introduction de la carte magnétique appropriée. Tout autre organe de sécurité peut également être employé pour autoriser ce raccordement.The connection of the shooting consoles 17 and programming 18 is only authorized after introduction of the appropriate magnetic card. Any other security organ can also be used to authorize this connection.

Les paramètres spécifiques des modules 15, stockés dans la console de programmation 18 sont alors automatiquement transférés à la console de tir 17 lors de la connexion entre les deux consoles 17 et 18, par la fonction transfert prévue sur la console de programmation 18. Ce transfert est réalisé au moyen de la communication de type RS 232. Les paramètres spécifiques sont stockés dans des mémoires EEPROM de la console de tir 17. The specific parameters of the modules 15, stored in the programming console 18 are then automatically transferred to the shooting console 17 during the connection between the two consoles 17 and 18, by the function transfer planned on the programming console 18. This transfer is achieved by type communication RS 232. The specific parameters are stored in EEPROM memories of the firing console 17.

Une fois l'ensemble des paramètres spécifiques transférés dans la console de tir 17, la ligne de tir 50 reliant la console de tir 17 aux détonateurs 1 est activée, comme ceci apparaít sur la Figure 2C. La console de tir 17 effectue alors automatiquement un test des modules d'allumage 15 en ligne. Elle attend ensuite le temps nécessaire à la réalisation de cet ordre de test par tous les modules 15, puis interroge individuellement chacun des modules 15 par ses paramètres d'identification. Chaque module 15 envoie successivement le résultat du test sous forme d'une information binaire relative à son état de fonctionnement: informations du type "module correct" ou "module incorrect". Cette information peut être éventuellement plus compliquée.Once the set of specific parameters transferred to the firing console 17, the firing line 50 connecting the firing console 17 to the detonators 1 is activated, as this appears in Figure 2C. The shooting console 17 performs then automatically a test of the ignition modules 15 in line. It then waits for the time necessary to complete of this test order by all modules 15, then interrogates individually each of the modules 15 by its parameters identification. Each module 15 successively sends the test result in the form of binary information relating to its operating state: information of the "module" type correct "or" module incorrect ". This information can be possibly more complicated.

Après ce test effectué par la console de tir 17, pour chacun des modules 15, la fréquence locale de l'horloge interne 49 du module 15 est mesurée et comparée à la base de temps de référence de la console de tir 17. La console de tir 17 calcule alors une valeur de correction algorithmique qu'elle enregistre dans une mémoire EEPROM du module 15. Le temps de retard associé au module 15 est ensuite également envoyé à ce module 15 par la console de tir 17. Le module 15 en déduit une valeur de décompte permettant d'obtenir le temps réel de retard voulu.After this test carried out by the shooting console 17, to each of the modules 15, the local frequency of the clock internal 49 of module 15 is measured and compared to the base of the firing console reference time 17. The firing console shot 17 then calculates an algorithmic correction value that it saves in an EEPROM memory of the module 15. The delay time associated with module 15 is then also sent to this module 15 by the shooting console 17. The module 15 deduces a count value allowing to obtain the desired real delay time.

Dans une variante, les temps réels de retard sont calculés par la console de tir 17 et directement envoyés aux modules 15.In a variant, the real delay times are calculated by the shooting console 17 and directly sent to modules 15.

Après le test et le calibrage des modules 15, et l'enregistrement des temps de retard, l'opérateur donne un ordre d'armement avec la touche correspondante. Les capacités de tir 29 des modules d'allumage 15 sont alors chargées. Un message valide la réalisation de cette opération.After testing and calibrating the modules 15, and recording of delay times, the operator gives a arming order with the corresponding key. The firing capacities 29 of the ignition modules 15 are then loaded. A message confirms the completion of this surgery.

A tout moment, l'opérateur a la possibilité d'annuler le tir en donnant l'ordre aux modules d'allumage 15 de décharger leurs capacités de tir 29, par l'utilisation de la touche annulation de la console de tir 17.At any time, the operator can cancel the firing by giving the order to the ignition modules 15 of discharge their shooting capabilities 29, by the use of the cancel button on the firing console 17.

Après armement, l'opérateur peut ordonner une mise à feu avec la touche de tir. L'activation de cette touche provoque les opérations suivantes.After arming, the operator can order an update fire with the fire key. Activation of this key causes the following operations.

Tout d'abord, il est avantageux qu'un test soit prévu pour que les modules 15 répondent individuellement à la console de tir 17 pour confirmer qu'ils sont prêts à une mise à feu.First of all, it is advantageous that a test is planned so that the modules 15 respond individually to the firing console 17 to confirm that they are ready for an update fire.

Une fois cette validation faite, la ligne de tir 50 peut être coupée, la batterie autonome de chaque module 15, sous forme de la capacité batterie 41, se mettant en route.Once this validation has been made, the firing line 50 can be disconnected, the autonomous battery of each module 15, under form of the battery capacity 41, getting started.

L'unité logique 303 peut alors commander avantageusement une réinitialisation de l'horloge interne 49, qui la reconfigure à son état calibré précédemment par la console de tir 17 au moyen de la base de temps de référence. Aussitôt après, elle déclenche le décompte du temps de retard corrigé, déterminant l'instant de la mise à feu. La séquence de tir est ainsi mise en route pour l'ensemble des modules 15.Logic unit 303 can then control advantageously a reset of the internal clock 49, which reconfigures it to its previously calibrated state by the firing console 17 using the reference time base. Immediately afterwards, it starts counting down the time of corrected delay, determining the moment of ignition. The shooting sequence is thus set in motion for all of the modules 15.

A titre purement illustratif, pour 200 modules 15, les étapes de test, calibrage et programmation durent une dizaine de minutes, et le chargement des capacités de tir 29, environ 5 minutes. Une séquence de tir est par exemple déclenchée une demi-heure après la programmation des modules 15, cette séquence de tir s'étalant sur une dizaine de secondes.By way of illustration, for 200 modules 15, the test, calibration and programming steps last ten of minutes, and the loading of the firing capacities 29, approximately 5 minutes. A shooting sequence is for example triggered half an hour after programming the modules 15, this shooting sequence spanning ten seconds.

Les horloges internes 49 rudimentaires sont parfaitement adaptées à ces opérations, même sans réinitialisation. En effet, les circuits ASIC bénéficient d'une bonne protection thermique, qui les rend peu sensibles à la demi-heure écoulée entre la programmation et la séquence de tir. Les fréquences locales des horloges internes ont ainsi la propriété d'être stables au cours du temps.The rudimentary 49 internal clocks are perfectly suited to these operations, even without reset. Indeed, ASIC circuits benefit from a good thermal protection, which makes them not very sensitive to half hour between programming and sequence shoot. The local frequencies of the internal clocks thus have the property of being stable over time.

Dans le mode optionnel de mise en oeuvre avec réinitialisation, les horloges internes 49 sont de plus reconfigurées précisément à l'état calibré. Les oscillateurs employés sont alors très stables pendant la dizaine de secondes séparant, au maximum, la réinitialisation et la mise à feu.In the optional mode of implementation with reset, the internal clocks 49 are more precisely reconfigured in the calibrated state. Oscillators employees are then very stable during the ten seconds between, maximum, reset and reset fire.

Dans la procédure automatique, l'opérateur ne programme pas les temps de retard mais se contente d'appuyer sur la touche de validation de la console de programmation 18. Pour chaque module 15, la console de programmation 18 effectue un test du module 15, puis stocke dans la mémoire de ce dernier ses paramètres d'identification en cas d'informations satisfaisantes au test, comme dans la procédure manuelle.In the automatic procedure, the operator does not program not the delay times but is content press the validation key on the console programming 18. For each module 15, the console programming 18 performs a test of module 15, then stores in the memory of the latter its identification parameters in case of satisfactory test information, as in the manual procedure.

La procédure automatique diffère de la procédure manuelle en ce que les paramètres spécifiques des modules 15 sont transférés à la console de tir 17 non pas par la console de programmation 18, mais par le support informatique interne ou externe à la console de tir 17. Ce support informatique peut typiquement être une disquette ou une cassette, la console de tir 17 étant alors pourvue d'un lecteur correspondant. Il peut aussi consister en une mémoire interne à la console de tir 17. La suite de la procédure automatique est identique à celle manuelle.The automatic procedure differs from the procedure manual in that the specific parameters of the modules 15 are transferred to the firing console 17 not by the programming console 18 but by support internal or external computer to the shooting console 17. This computer medium can typically be a floppy disk or a cassette, the shooting console 17 then being provided with a corresponding reader. It can also consist of a memory internal to the firing console 17. The rest of the procedure automatic is the same as manual.

En variante, en procédure manuelle ou automatique, la console de tir 17 est apte à détecter la présence sur la ligne de tir 50 de tout module d'allumage 15 non programmé par la console de programmation 18. Dans une autre variante, la console de tir 17 est apte à traiter des informations provenant simultanément de plusieurs consoles de programmation 18.Alternatively, in manual or automatic procedure, the shooting console 17 is able to detect the presence on the firing line 50 of any ignition module 15 not programmed by the programming console 18. In another variant, the shooting console 17 is capable of processing information coming simultaneously from several consoles of programming 18.

De nombreuses procédures de sécurité sont prévues. L'accès aux consoles de tir 17 et de programmation 18 suppose que l'opérateur soit muni de codes de reconnaissance. Les consoles 17 et 18 et les modules 15 peuvent être personnalisés avant la sortie d'usine. Many security procedures are planned. Access to the 17 and programming 18 consoles supposes that the operator is provided with recognition. Consoles 17 and 18 and modules 15 can be customized before leaving the factory.

Avantageusement, la console de tir 17 ne peut exécuter une mise à feu que si elle est physiquement connectée, au moment d'un tir, à la ou les consoles de programmation 18 utilisées pour programmer les modules d'allumage 15 concernés par la séquence de tir. Cette mesure accroít la sécurité du dispositif.Advantageously, the shooting console 17 cannot execute a firing only if it is physically connected, at the time of a shot, to the console (s) of programming 18 used to program the modules 15 affected by the firing sequence. This measure increases the security of the device.

Il peut ainsi être prévu une reconnaissance entre les consoles de tir 17 et de programmation 18. En cas de vol notamment, un opérateur n'a alors la possibilité d'utiliser une console de tir 17 pour mettre à feu des modules 15 que si cette console de tir 17 correspond à la console de programmation 18 ayant servi à programmer les modules 15. Une reconnaissance par un code interne de la console de programmation 18 par la console de tir 17 est prévu à cet effet. Si le code n'est pas reconnu, la console de tir 17 n'enregistre pas les informations relatives aux temps de retard mémorisés dans la console de programmation 18 et le tir est bloqué.Recognition may therefore be provided between the 17 and programming 18 consoles. In case of theft in particular, an operator then has the possibility of using a firing console 17 to fire modules 15 only if this shooting console 17 corresponds to the console of programming 18 having been used to program the modules 15. Recognition by an internal code of the console programming 18 by the shooting console 17 is provided for this effect. If the code is not recognized, the shooting console 17 does not record information relating to delay stored in the programming console 18 and the shot is blocked.

On aura également noté que, bien que l'ensemble de tir ait été prévu pour une programmation sur site, une programmation en usine est également possible.It will also have been noted that, although the set of shooting was planned for on-site programming, a factory programming is also possible.

Claims (13)

  1. Method of controlling detonators (1) with electronic ignition module (15), each ignition module (15) being associated with specific parameters comprising at least one identification parameter and one explosion delay time for the associated detonator (1), the said ignition module (15) comprising :
    a firing capacitance (29) intended, after charging, to discharge into a primer head (13) of the said detonator (1) so as to produce a blast,
    a battery capacitance (41) ensuring momentary autonomy of operation,
    a rudimentary internal clock (49) having a local frequency,
    a non-volatile identification memory (47) intended for storing the said identification parameters, the said modules (15) being able to communicate with a firing control unit (17) provided with a reference timebase, and intended for transmitting to them in particular a command for charging their firing capacitances (29), as well as a firing command and for receiving from the said modules (15) one or more information items relating to their state, in which method :
    the said specific parameters are stored in at least one computer medium,
    at least one programming unit (18) is made to acquire the identification parameters,
    the identification parameters are stored with the programming unit (18) in the modules (15),
    the specific parameters are stored with the computer medium in the firing control unit (17),
    the modules (15) with the firing control unit (17) are commanded to charge the firing capacitances (29),
    a firing command triggering a firing sequence synchronized by means of the said local frequencies is sent to the modules (15) with the firing control unit (17), characterized
    in that after the storage of the specific parameters in the firing control unit (17) and before the charging of the firing capacitances (29), the following are performed with the firing control unit (17) for each successive module (15) : a measurement of the local frequency of the internal clock (49) of the said module (15) by means of the reference timebase, a determination of an algorithmic correction value of the said local frequency, and a sending to the said module (15) of the associated delay time.
  2. Control method according to Claim 1, characterized in that after the firing command, the internal clocks (49) of the assembly of modules (15) are reinitialized.
  3. Control method according to either of Claims 1 or 2, characterized in that during the calibration of the internal clock (49) of each module (15), a corrected delay time is calculated with the firing control unit (17), the said delay time being sent to the said module (15).
  4. Control method according to either of Claims 1 or 2, characterized in that each module (15) comprising a processing unit (303) during the calibration of the internal clock (49) of the module, the value for algorithmic correction of the local frequency of its internal clock (49) is sent to the said module (15) with the firing control unit (17), then a corrected delay time is calculated with the processing unit (303) of the said module (15).
  5. Control method according to any one of the preceding claims, characterized in that the computer medium is separate from the programming unit (18).
  6. Control method according to any one of the preceding claims, characterized in that after the storage of the specific parameters in the firing control unit (17) and before the measurement of the local frequencies, the said modules (15) are tested with the firing control unit (17), by simultaneously requesting at least one information item from them and by individually addressing each module (15) through its identification parameters so as to gather the said information item.
  7. Control method according to any one of the preceding claims, characterized in that before storing the identification parameters in each module (15), the electronic and pyrotechnic functionalities of the associated detonator (1) are tested with the programming unit (18).
  8. Coded assembly for firing control comprising detonators (1) with electronic ignition module (15), each ignition module (15) being associated with specific parameters comprising at least one identification parameter and an explosion delay time for the corresponding detonator (1) during a firing sequence, said ignition module (15) comprising :
    a firing capacitance (29) intended, after charging, to discharge into a primer head (13) of the said detonator (1) so as to produce a blast,
    a battery capacitance (41) ensuring momentary autonomy of operation,
    a rudimentary internal clock (49) having a local frequency,
    a non-volatile identification memory (47) intended for storing the said identification parameters, the coded assembly also comprising :
    a programming unit (18) able to acquire the specific parameters of the modules (15) and to store the identification parameters in the corresponding modules (15),
    a firing control unit (17) provided with a reference timebase and with a memory capable of receiving the specific parameters of the modules (15), it being possible for the said firing control unit (17) to be electrically linked in line to the said modules (15) and to communicate with them, in particular by sending to the said modules (15) having received their identification parameters from the programming unit (18), the associated delay times, by measuring the local frequencies of their internal clocks (49) by means of the reference timebase, by calibrating the said internal clocks (49), and by sending a firing command triggering a firing sequence to the said modules (15),
    characterized in that the internal clock (49) of each module (15) is a rudimental clock comprising a simple RC circuit and that the firing control unit (17) and the modules (15) comprise calibration means making it possible to determinate an algorithmic correction value of local frequency of each of the internal clocks (49) with respect to the reference timebase after storage of the specific parameters in the firing control unit.
  9. Coded assembly according to Claim 8, characterized in that the modules (15) comprise means for reinitializing their internal clocks (49) following a firing command sent by the firing control unit (17).
  10. Coded assembly according to one of Claims 8 or 9, characterized in that, the said assembly comprising an electrical link between each module (15) and the primer head (13) of the associated detonator (1), and the said module (15) being capable of sending into the said primer head (13) through the said electrical link a current causing a blast, the primer heads (13) comprise conducting or semiconducting bridges.
  11. Ignition module (15) for the detonator (1) with pyrotechnic charge comprising a supply circuit (302) including in particular a battery capacitance (41) ensuring momentary autonomy of operation, a communication interface (301), a management circuit (300) for the pyrotechnic charge comprising in particular a firing capacitance (29) intended, after charging, to discharge into a primer head (13) of the detonator (1), as well as a logic unit (303) for managing the assembly of the module (15), the said logic unit (303) comprising a non-volatile identification memory (47) intended for receiving at least one identification parameter of the said module (15) and a rudimentary internal clock (49) having a local frequency,
    characterized in that the module (15) comprises a calibration memory making it possible to receive a value for algorithmic correction of the local frequency of the internal clock (49) with respect to a reference timebase, originating from a firing control unit (17) able to send a firing command to the module (15).
  12. Module according to Claim 11, characterized in that it comprises means for reinitializing the internal clock (49) to a calibrated state and the logic unit (303) comprises a reinitialization control activating the reinitializing means during a firing command.
  13. Module according to either of Claims 11 or 12, characterized in that it comprises a customized integrated circuit of the ASIC type, the firing capacitance (29), the battery capacitance (41), a power transistor (56) and a means of protection against electrostatic discharges.
EP97925114A 1996-05-24 1997-05-21 Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation Expired - Lifetime EP0900354B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9606509 1996-05-24
FR9606509A FR2749073B1 (en) 1996-05-24 1996-05-24 PROCEDURE FOR ORDERING DETONATORS OF THE TYPE WITH ELECTRONIC IGNITION MODULE, FIRE CONTROL CODE ASSEMBLY AND IGNITION MODULE FOR ITS IMPLEMENTATION
PCT/FR1997/000891 WO1997045696A1 (en) 1996-05-24 1997-05-21 Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation.

Publications (2)

Publication Number Publication Date
EP0900354A1 EP0900354A1 (en) 1999-03-10
EP0900354B1 true EP0900354B1 (en) 2000-11-15

Family

ID=9492449

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97925114A Expired - Lifetime EP0900354B1 (en) 1996-05-24 1997-05-21 Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation

Country Status (11)

Country Link
US (1) US6173651B1 (en)
EP (1) EP0900354B1 (en)
JP (1) JP2000510943A (en)
AT (1) ATE197644T1 (en)
AU (1) AU717346B2 (en)
DE (2) DE69703542T2 (en)
ES (1) ES2132048T3 (en)
FR (1) FR2749073B1 (en)
PT (1) PT900354E (en)
WO (1) WO1997045696A1 (en)
ZA (1) ZA974469B (en)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975932A1 (en) * 1997-04-15 2000-02-02 Dynamit Nobel GmbH Explosivstoff- und Systemtechnik Electronic igniter
AUPP021697A0 (en) * 1997-11-06 1997-11-27 Rocktek Limited Radio detonation system
US6263989B1 (en) * 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
US20060086277A1 (en) 1998-03-30 2006-04-27 George Bossarte Precision pyrotechnic display system and method having increased safety and timing accuracy
AU5202099A (en) * 1998-03-30 1999-11-08 Magicfire, Inc. Precision pyrotechnic display system and method having increased safety and timing accuracy
US7383882B2 (en) * 1998-10-27 2008-06-10 Schlumberger Technology Corporation Interactive and/or secure activation of a tool
US6283227B1 (en) * 1998-10-27 2001-09-04 Schlumberger Technology Corporation Downhole activation system that assigns and retrieves identifiers
US7347278B2 (en) 1998-10-27 2008-03-25 Schlumberger Technology Corporation Secure activation of a downhole device
FR2787568B1 (en) * 1998-12-16 2001-02-02 France Etat DEVICE FOR FIREING A PRIMER
US6166452A (en) * 1999-01-20 2000-12-26 Breed Automotive Technology, Inc. Igniter
FR2790077B1 (en) * 1999-02-18 2001-12-28 Livbag Snc ELECTRO-PYROTECHNIC IGNITER WITH INTEGRATED ELECTRONICS
GB9907547D0 (en) * 1999-04-01 1999-05-26 Hatorex Ag Logging of detonator usage
SE515382C2 (en) * 1999-12-07 2001-07-23 Dyno Nobel Sweden Ab Electronic detonator system, method of controlling the system and associated electronic detonators
US6546873B1 (en) * 2000-04-03 2003-04-15 The United States Of America As Represented By The Secretary Of The Army Apparatus for remote activation of equipment and demolition charges
US7644661B1 (en) * 2000-09-06 2010-01-12 Ps/Emc West, Llc Networked electronic ordnance system
US7752970B2 (en) 2000-09-06 2010-07-13 Ps/Emc West, Llc Networked electronic ordnance system
WO2002085818A2 (en) * 2001-04-24 2002-10-31 The Ensign-Bickford Company Non-electric detonator
US6490976B1 (en) 2001-08-22 2002-12-10 Breed Automotive Technology, Inc. Smart igniter communications repeater
US6588342B2 (en) * 2001-09-20 2003-07-08 Breed Automotive Technology, Inc. Frequency addressable ignitor control device
US8091477B2 (en) * 2001-11-27 2012-01-10 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
US6860206B1 (en) * 2001-12-14 2005-03-01 Irobot Corporation Remote digital firing system
US8375838B2 (en) * 2001-12-14 2013-02-19 Irobot Corporation Remote digital firing system
US7559269B2 (en) 2001-12-14 2009-07-14 Irobot Corporation Remote digital firing system
US6820557B2 (en) * 2002-01-25 2004-11-23 Daicel Chemical Industries, Ltd. Igniter for air bag system
US6992877B2 (en) * 2002-03-13 2006-01-31 Alliant Techsystems Inc. Electronic switching system for a detonation device
US20030221576A1 (en) 2002-05-29 2003-12-04 Forman David M. Detonator with an ignition element having a transistor-type sealed feedthrough
KR20050069973A (en) * 2002-07-24 2005-07-05 인사인 빅포드 에어로스페이스 & 디펜스 컴파니 Timer-controlled clamp for initiation elements
US7107908B2 (en) * 2003-07-15 2006-09-19 Special Devices, Inc. Firing-readiness diagnostic of a pyrotechnic device such as an electronic detonator
US7577756B2 (en) 2003-07-15 2009-08-18 Special Devices, Inc. Dynamically-and continuously-variable rate, asynchronous data transfer
US6966262B2 (en) * 2003-07-15 2005-11-22 Special Devices, Inc. Current modulation-based communication from slave device
US7054131B1 (en) 2003-07-15 2006-05-30 Special Devices, Inc. Pre-fire countdown in an electronic detonator and electronic blasting system
US7870825B2 (en) * 2003-07-15 2011-01-18 Special Devices, Incorporated Enhanced method, device, and system for identifying an unknown or unmarked slave device such as in an electronic blasting system
US7617775B2 (en) * 2003-07-15 2009-11-17 Special Devices, Inc. Multiple slave logging device
US7086334B2 (en) * 2003-07-15 2006-08-08 Special Devices, Inc. Staggered charging of slave devices such as in an electronic blasting system
US20050190525A1 (en) * 2003-07-15 2005-09-01 Special Devices, Inc. Status flags in a system of electronic pyrotechnic devices such as electronic detonators
US6789483B1 (en) * 2003-07-15 2004-09-14 Special Devices, Inc. Detonator utilizing selection of logger mode or blaster mode based on sensed voltages
US6988449B2 (en) * 2003-07-15 2006-01-24 Special Devices, Inc. Dynamic baselining in current modulation-based communication
US7017494B2 (en) * 2003-07-15 2006-03-28 Special Devices, Inc. Method of identifying an unknown or unmarked slave device such as in an electronic blasting system
US6941870B2 (en) * 2003-11-04 2005-09-13 Advanced Initiation Systems, Inc. Positional blasting system
WO2005071348A1 (en) * 2004-01-16 2005-08-04 Rothenbuhler Engineering Company Remote firing system
US8474379B2 (en) * 2004-01-16 2013-07-02 Rothenbuhler Engineering Co. Remote firing device with diverse initiators
DE102004033153B4 (en) * 2004-06-11 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Glow plug and method for its production
GB2417339A (en) * 2004-08-09 2006-02-22 Peter Shann Electric stock control and auditing of detonator use
US20090145321A1 (en) * 2004-08-30 2009-06-11 David Wayne Russell System and method for zero latency distributed processing of timed pyrotechnic events
US7493859B2 (en) * 2004-08-30 2009-02-24 David Wayne Russell System and method for zero latency distributed processing of timed pyrotechnic events
FR2880110B1 (en) * 2004-12-23 2007-03-30 Davey Bickford Snc PYRO-ELECTRONIC PRIMER HAVING AN ELECTROTHERMAL BRIDGE SHUNT CIRCUIT
EP1859225B1 (en) * 2005-01-24 2015-04-29 Orica Explosives Technology Pty Ltd Wireless detonator assemblies, and corresponding networks
PE20061261A1 (en) 2005-03-09 2006-12-16 Orica Explosives Tech Pty Ltd ELECTRONIC BLASTING SYSTEM
US7606103B2 (en) * 2005-09-29 2009-10-20 Hynix Semiconductor Inc. Semiconductor memory device for controlling reservoir capacitor
US8079307B2 (en) * 2005-10-05 2011-12-20 Mckinley Paul Electric match assembly with isolated lift and burst function for a pyrotechnic device
US8374721B2 (en) * 2005-12-02 2013-02-12 Irobot Corporation Robot system
ES2378138T3 (en) 2005-12-02 2012-04-09 Irobot Corporation Robot covering mobility
ES2423296T3 (en) 2005-12-02 2013-09-19 Irobot Corporation Modular robot
ES2706729T3 (en) 2005-12-02 2019-04-01 Irobot Corp Robot system
US20080098921A1 (en) * 2006-10-26 2008-05-01 Albertus Abraham Labuschagne Blasting system and method
US20080174448A1 (en) * 2006-10-31 2008-07-24 Edison Hudson Modular Controller
CA2677828C (en) * 2007-02-16 2015-07-21 Orica Explosives Technology Pty Ltd Method of communication at a blast site, and corresponding blasting apparatus
PE20090252A1 (en) * 2007-05-15 2009-03-19 Orica Explosives Tech Pty Ltd HIGH PRECISION ELECTRONIC DETONATION
CN101324413B (en) * 2008-07-28 2011-08-10 颜景龙 Detonating device and main control process flow thereof
CN101338998B (en) * 2008-07-30 2011-08-10 北京铱钵隆芯科技有限责任公司 Detonating device and applications flow path
CN101338997B (en) * 2008-08-18 2011-08-10 北京铱钵隆芯科技有限责任公司 Detonating device and its information handling flow path
CA2741091C (en) 2008-10-24 2017-01-17 Battelle Memorial Institute Electronic detonator system
CN101464113B (en) * 2008-11-10 2011-08-10 北京北方邦杰科技发展有限公司 Detonating device and its information transmission process
CN101586931B (en) * 2008-11-10 2013-01-23 北京铱钵隆芯科技有限责任公司 Adjustable electronic detonator control chip and flow for controlling same
WO2010051776A1 (en) * 2008-11-10 2010-05-14 北京铱钵隆芯科技有限责任公司 Setting flow for delay time of a blasting device and controlling flow for an electronic detonator in an electronic detonator blasting system
US8213151B2 (en) * 2008-12-31 2012-07-03 Pacific Scientific Energetic Materials Company (California), LLC Methods and systems for defining addresses for pyrotechnic devices networked in an electronic ordnance system
AU2010207873B2 (en) * 2009-01-28 2014-04-24 Orica Australia Pty Ltd Selective control of wireless initiation devices at a blast site
US8477049B2 (en) * 2009-06-05 2013-07-02 Apple Inc. Efficiently embedding information onto a keyboard membrane
FR2955933B1 (en) * 2010-02-02 2012-03-09 Davey Bickford SYSTEM FOR PROGRAMMING AND FIREFIGHTING ELECTRONIC DETONATORS, ASSOCIATED METHOD
CN102121810B (en) * 2010-12-30 2014-02-12 四川久安芯电子科技有限公司 Initiation device for electronic detonator and control flow thereof
CN102735120B (en) * 2011-04-06 2014-08-06 傲杰得公司 Detonator network detonation control method
CN102840800B (en) * 2011-06-22 2017-09-22 北京铱钵隆芯科技有限责任公司 electronic detonator encoder
FR2984484B1 (en) 2011-12-19 2018-06-15 Davey Bickford FIRING SYSTEM OF SEVERAL ELECTRONIC DETONATOR ASSEMBLIES
RU2499976C2 (en) * 2011-12-30 2013-11-27 Открытое акционерное общество Новосибирский механический завод "Искра" High-accuracy relay for delay of explosive processes
US20220258103A1 (en) 2013-07-18 2022-08-18 DynaEnergetics Europe GmbH Detonator positioning device
US10188990B2 (en) 2014-03-07 2019-01-29 Dynaenergetics Gmbh & Co. Kg Device and method for positioning a detonator within a perforating gun assembly
CA2943893C (en) * 2014-03-27 2022-08-02 Orica International Pte Ltd Apparatus, system and method for blasting using magnetic communication signal
WO2016183600A1 (en) * 2015-05-12 2016-11-17 Detnet South Africa (Pty) Ltd Detonator information system
CA3033657C (en) 2016-08-11 2023-09-19 Austin Star Detonator Company Improved electronic detonator, electronic ignition module (eim) and firing circuit for enhanced blasting safety
CN108120352A (en) * 2016-11-30 2018-06-05 北京航天计量测试技术研究所 A kind of ignition system and method for dynamic test priming system electrical parameter
US9810515B1 (en) 2017-02-03 2017-11-07 Pacific Scientific Energetic Materials Company (California) LLC Multi-level networked ordnance system
US11307011B2 (en) 2017-02-05 2022-04-19 DynaEnergetics Europe GmbH Electronic initiation simulator
US9915513B1 (en) 2017-02-05 2018-03-13 Dynaenergetics Gmbh & Co. Kg Electronic ignition circuit and method for use
US11053782B2 (en) 2018-04-06 2021-07-06 DynaEnergetics Europe GmbH Perforating gun system and method of use
US11661824B2 (en) 2018-05-31 2023-05-30 DynaEnergetics Europe GmbH Autonomous perforating drone
US11408279B2 (en) 2018-08-21 2022-08-09 DynaEnergetics Europe GmbH System and method for navigating a wellbore and determining location in a wellbore
US11808093B2 (en) 2018-07-17 2023-11-07 DynaEnergetics Europe GmbH Oriented perforating system
KR102129304B1 (en) * 2018-12-19 2020-07-02 주식회사 한화 Wireless blasting system and operating method of the same
CZ2022303A3 (en) 2019-12-10 2022-08-24 DynaEnergetics Europe GmbH Incendiary head
AU2020474620A1 (en) 2020-10-29 2023-06-15 Comercializadora Exoblast Chile Spa Non-explosive programmable electronic initiation system for rock blasting
WO2023075615A1 (en) * 2021-10-27 2023-05-04 Arancibia Vasquez Arnaldo Ignacio Electronic adapter with remotely programmable delay for initiating the explosion of blasting caps or other explosive accessories
US20230280141A1 (en) * 2022-03-07 2023-09-07 Trignetra, LLC Remote firing module and method thereof
CN114646242B (en) * 2022-03-28 2023-06-30 上海芯飏科技有限公司 High-reliability storage system, method, medium and equipment for electronic detonator chip

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3336534A1 (en) * 1983-10-07 1985-04-25 Diehl GmbH & Co, 8500 Nürnberg ELECTRONIC IGNITION CONTROL
US4674047A (en) * 1984-01-31 1987-06-16 The Curators Of The University Of Missouri Integrated detonator delay circuits and firing console
US4712477A (en) * 1985-06-10 1987-12-15 Asahi Kasei Kogyo Kabushiki Kaisha Electronic delay detonator
US4860653A (en) * 1985-06-28 1989-08-29 D. J. Moorhouse Detonator actuator
US5214236A (en) * 1988-09-12 1993-05-25 Plessey South Africa Limited Timing of a multi-shot blast
US5117756A (en) * 1989-02-03 1992-06-02 Atlas Powder Company Method and apparatus for a calibrated electronic timing circuit
US5189246A (en) * 1989-09-28 1993-02-23 Csir Timing apparatus
US4986183A (en) * 1989-10-24 1991-01-22 Atlas Powder Company Method and apparatus for calibration of electronic delay detonation circuits
US5063846A (en) * 1989-12-21 1991-11-12 Hughes Aircraft Company Modular, electronic safe-arm device
DE3942842A1 (en) * 1989-12-23 1991-06-27 Dynamit Nobel Ag ELECTRONIC REAL-TIME DELAY IGNITION
FR2672675B1 (en) * 1991-02-12 1993-06-04 Davey Bickford IGNITION MODULE FOR DETONATOR WITH INTEGRATED ELECTRONIC DELAY, SHOOTING ASSEMBLY COMPRISING DETONATORS ASSOCIATED WITH SUCH IGNITION MODULES AND METHOD FOR LOADING A SET OF MODULES OF THIS TYPE.
AU657013B2 (en) * 1991-12-03 1995-02-23 Smi Technology (Proprietary) Limited Single initiate command system and method for a multi-shot blast
FR2695719B1 (en) * 1992-09-17 1994-12-02 Davey Bickford Method for controlling detonators of the type with integrated electronic delay ignition module, coded firing control assembly and coded ignition module for its implementation.
US5460093A (en) * 1993-08-02 1995-10-24 Thiokol Corporation Programmable electronic time delay initiator

Also Published As

Publication number Publication date
EP0900354A1 (en) 1999-03-10
ES2132048T3 (en) 2001-02-16
ATE197644T1 (en) 2000-12-15
US6173651B1 (en) 2001-01-16
AU3036497A (en) 1998-01-05
FR2749073A1 (en) 1997-11-28
PT900354E (en) 2001-05-31
WO1997045696A1 (en) 1997-12-04
ES2132048T1 (en) 1999-08-16
FR2749073B1 (en) 1998-08-14
AU717346B2 (en) 2000-03-23
DE69703542T2 (en) 2001-07-05
JP2000510943A (en) 2000-08-22
ZA974469B (en) 1998-11-17
DE900354T1 (en) 1999-12-09
DE69703542D1 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
EP0900354B1 (en) Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation
EP0588685B1 (en) Programmable integrated detonator delay circuit
ES2335101T3 (en) PROCEDURE FOR IDENTIFYING AN UNKNOWN OR UNMARKED SLAVE DEVICE AS IN AN ELECTRONIC FLYING SYSTEM.
FR2467740A1 (en) SYSTEM FOR DETECTING COLLISIONS AND CONTROLLING A SAFETY DEVICE
CA2858793C (en) System for triggering a plurality of electronic detonator assemblies
EP0991161A1 (en) Portable electronic device with battery discharge control circiut and associated method
WO2011095730A1 (en) System for programming and lighting electronic detonators and associated method
EP3394559B1 (en) Peripheral power supply module for electronic detonator
FR2726921A1 (en) METHOD OF ADJUSTING AN ELECTRICAL PARAMETER OF AN ELECTRONIC DEVICE, IN PARTICULAR OF A PACEMAKER OR A HEART DEFIBRILLATOR, AND DEVICE IMPLEMENTING IT
CA2256037C (en) Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation.
EP1083645B1 (en) Electronic trip device comprising initializing apparatus
EP1493126A2 (en) Secure electronic device
FR3006793A1 (en) DEVICE, SENSOR AND METHOD FOR DETECTING THE PRESENCE OF A USER FOR OPENING ACCESS TO A MOTOR VEHICLE
EP1862785A1 (en) Electronic circuit indicating weather and temperature intended to be fitted to a monitoring product
EP3257028B1 (en) Semi-automatic display unit for gas cylinders and associated method
EP0009606B1 (en) Apparatus for controlling the charging of a battery
FR2672675A1 (en) Igniter module for detonator with built-in electronic delay, firing assembly including detonators combined with such igniter modules and method of charging a set of modules of this type
FR2710404A1 (en) Method of control of detonators of the type with an electronic initiation module with integrated delay, coded assembly for control of firing and coded initiation module for implementing it
FR2658010A1 (en) Emergency lighting system for installations powered by electric mains
FR2589292A1 (en) Method and system for recharging a storage battery, in particular a power supply backup battery
EP0388449A1 (en) Device for arming and timing a rocket for ammunition to be fired by a launcher, particularly an automatic launcher
WO2023170369A1 (en) Single-capacitor electronic detonator and system for firing such single-capacitor electronic detonators
CA1243383A (en) Alarm device for code driven electromechanical control device
FR2760777A1 (en) Rechargeable control key for Cars
EP4081455A1 (en) Device and method for automatically checking the service state of a parachute system of a flying drone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

ITCL It: translation for ep claims filed

Representative=s name: STUDIO TORTA SOCIETA' SEMPLICE

17Q First examination report despatched

Effective date: 19990611

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2132048

Country of ref document: ES

Kind code of ref document: T1

TCAT At: translation of patent claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
DET De: translation of patent claims
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD OF DETONATOR CONTROL WITH ELECTRONIC IGNITION MODULE, CODED BLAST CONTROLLING UNIT AND IGNITION MODULE FOR ITS IMPLEMENTATION

17Q First examination report despatched

Effective date: 19990611

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20001115

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

REF Corresponds to:

Ref document number: 197644

Country of ref document: AT

Date of ref document: 20001215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FIVAZ, ERIC

Inventor name: CLOT, PHILIPPE

Inventor name: TROUSSELLE, RAPHAEL

Inventor name: PATHE, CLAUDE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69703542

Country of ref document: DE

Date of ref document: 20001221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2132048

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010214

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20010214

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: LE MOULIN GASPARD, 89550 HERY (FR)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20130123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69703542

Country of ref document: DE

Representative=s name: PATENTANWAELTE VOLLMANN & HEMMER, DE

Effective date: 20130227

Ref country code: DE

Ref legal event code: R081

Ref document number: 69703542

Country of ref document: DE

Owner name: DAVEY BICKFORD, FR

Free format text: FORMER OWNER: DAVEY BICKFORD, ROUEN, FR

Effective date: 20130227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160531

Year of fee payment: 20

Ref country code: DE

Payment date: 20160516

Year of fee payment: 20

Ref country code: ES

Payment date: 20160421

Year of fee payment: 20

Ref country code: GB

Payment date: 20160518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160519

Year of fee payment: 20

Ref country code: FR

Payment date: 20160527

Year of fee payment: 20

Ref country code: PT

Payment date: 20160420

Year of fee payment: 20

Ref country code: BE

Payment date: 20160427

Year of fee payment: 20

Ref country code: SE

Payment date: 20160506

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69703542

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170520

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 197644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170530

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170522