EP0890873A1 - Kombination von radiographischen UV/blau Verstärkerschirm und Film - Google Patents

Kombination von radiographischen UV/blau Verstärkerschirm und Film Download PDF

Info

Publication number
EP0890873A1
EP0890873A1 EP98202000A EP98202000A EP0890873A1 EP 0890873 A1 EP0890873 A1 EP 0890873A1 EP 98202000 A EP98202000 A EP 98202000A EP 98202000 A EP98202000 A EP 98202000A EP 0890873 A1 EP0890873 A1 EP 0890873A1
Authority
EP
European Patent Office
Prior art keywords
film
substituted
silver
unsubstituted
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98202000A
Other languages
English (en)
French (fr)
Other versions
EP0890873B1 (de
Inventor
Ann Verbeeck
Peter Verrept
Paul Callant
Koenraad Caron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to EP98202000A priority Critical patent/EP0890873B1/de
Publication of EP0890873A1 publication Critical patent/EP0890873A1/de
Application granted granted Critical
Publication of EP0890873B1 publication Critical patent/EP0890873B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • G03C5/17X-ray, infrared, or ultraviolet ray processes using screens to intensify X-ray images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/0051Tabular grain emulsions
    • G03C1/0053Tabular grain emulsions with high content of silver chloride
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/122Azacyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/03111 crystal face

Definitions

  • This invention relates to a screen-film combination of a radiographic intensifying phosphor screen and a light-sensitive silver halide photographic material comprising tabular grains rich in silver chloride.
  • Combinations of intensifying screens provided with luminescent phosphors and light-sensitive silver halide photographic materials are conventionally used for medical diagnosis.
  • the luminescent phosphors in the screen panel or panels are converting X-rays into visible radiation, thereby exposing the film material in contact with the said panel (for single-side coated materials as e.g. in mammography) or panels (for duplitized materials as e.g. in chest imaging).
  • a solution therefore could be to provide screen-film combinations based on the absorption characteristics of non-spectrally sensitized silver halide emulsion crystals, wherein combination with dedicated luminescent phosphors emitting radiation covering the absorption spectrum from the said silver halide emulsions.
  • the fixer and especially the corresponding replenishers is advantageously attainable when in the light-sensitive silver halide photographic material use is made of emulsion crystals rich in silver chloride having a much higher solubility (and processability) than e.g. crystals rich in silver bromide (a factor of about 100). Moreover combination with the more "ecologically acceptable" ascorbic acid or derivatives thereof seems to offer an acceptable alternative.
  • the commercially available phosphors as e.g. CaWO 4 (see e.g. US-A 3,300,311) emitting at 410 nm and BaFBr and YTaO 4 .Nb (apart as in e.g.
  • radiographic screen/film combination or system comprising a duplitized film sandwiched between a pair of supported or self-supporting X-ray intensifying screens, characterized in that
  • Symmetrical and unsymmetrical quinoline azacyanine dyes can further be found in BE 812431 and in CS 1976695 respectively.
  • Pseudo-cyanine or azamethine dyes have more recently been disclosed in US-A 4,977,076.
  • each of the substituents R 1 -R 4 independently represents hydrogen, an unsubstituted or substituted alkyl, an unsubstituted or substituted aryl or an unsubstituted or substituted aralkyl; wherein R 1 and R 2 and/or R 3 and R 4 may form a substituted or unsubstituted benzoring, which, if substituted, has the same or different substituents as R 1 -R 4 ; wherein R represents a substituted or unsubstituted alkyl, aryl or aralkyl group; wherein R' represents hydrogen, a substituted or unsubstituted alkyl, aryl or aralkyl group; and wherein cations and/or anions are present as charge compensating ions.
  • R and R' independently represents
  • charge compensating cations are Li + , Na + , K + , HN + Et 3 , wherein Et represents ethyl, whereas preferred charge compensating anions are Cl - , Br - , I - , - OTos, - OMes, CF 3 SO 3 - , wherein - OTos represents tosylate and - OMes represents mesylate.
  • the light emitted imagewise by said X-ray intensifying screen irradiates a contacting photographic silver halide emulsion layer film which after exposure is developed to form therein a silver image in conformity with the X-ray image.
  • the X-ray film comprises a transparent film support, coated on both sides with a silver halide emulsion layer.
  • said film is arranged in a cassette between two X-ray intensifying screens each of them making contact with its corresponding silver halide emulsion layer.
  • Phosphors suitable for use in the conventional radiographic system must have a high prompt emission of fluorescent light on X-ray irradiation and low afterglow in favour of image sharpness.
  • the relationship between resolution and speed of X-ray intensifying screens is described e.g. in Med. Phys. 5(3), 205 (1978).
  • Typical blue-UV emitting phosphors therein are tantalates as described in PCT-Applications WO 93/1521 and 93/1522, hafnates as described in US-A 5,173,611 and fluorohalides (fluorobromides) of barium and strontium as in WO 91/1357 and US-P 5,629,125, doped with europium and codoped with samarium as in US-A's 5,422,220 and 5,547,807 and even mixtures of tantalates and fluorohalides as in US-A 5,077,145 and EP-A 0 533 234, replacing CaWO 4 as representative for an older well-known generation of luminescent phosphors.
  • EP-A 0 820 069 particles of niobium doped, monoclinic M, yttriumtantalate phosphor and particles of an europium doped bariumfluorohalide phosphor are composing the screen.
  • X-ray intensifying screens according the present invention can be self-supporting or supported.
  • X-ray intensifying screens in accordance with the present invention generally comprise in order: a support (also called substrate), at least one layer comprising phosphor particles dispersed in a suitable binder and a protective coating coated over the phosphor containing layer to protect said layer during use. Further, a primer layer is sometimes provided between the phosphor containing layer and the substrate to closely bond said layer thereto.
  • support materials include cardboard, plastic films such as films of cellulose acetate, polyvinyl chloride, polyvinyl acetate, polyacrylonitrile, polystyrene, polyester, polyethylene terephthalate, polyamide, polyimide, cellulose triacetate and polycarbonate; metal sheets such as aluminum foil and aluminum alloy foil; ordinary papers; baryta paper; resin-coated papers; pigment papers containing titanium dioxide or the like; and papers sized with polyvinyl alcohol or the like.
  • a plastic film is preferably employed as the support material.
  • supports characterized by their reflectance properties, expressed as % reflectance over the wavelength range from 350 to 600 nm are particularly used.
  • Such supports can be highly light reflecting as e.g. polyethyleneterephthalate comprising a white pigment, e.g. BaSO 4 , TiO 2 , etc., or it can be light absorbing supports, e.g. polyethylene terephthalate comprising a black pigment, e.g. carbon black.
  • Supports comprising dyes or pigments that absorb light of a specific wavelength can also be useful in the preparation of X-ray intensifying screens according to the present invention.
  • the phosphor layers contain sufficient binder to give structural coherence to the layer.
  • the binder of the phosphor containing layer is preferably soluble and remains soluble after coating.
  • Useful binders include proteinaceous binders, e.g. gelatin, polysaccharides such as dextran, gum arabic, and synthetic polymers such as polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride-vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride-vinyl acetate copolymer, polyurethane, cellulose acetate, cellulose acetate butyrate, polyvinyl alcohol, polystyrene, polyester, etc.
  • proteinaceous binders e.g. gelatin, polysaccharides such as dextran, gum arabic
  • synthetic polymers such as polyvinyl butyral, polyvinyl acetate, nitrocellulose, ethylcellulose, vinylidene chloride-vinyl chloride copolymer, polyalkyl (meth)acrylate, vinyl chloride-vinyl acetate copoly
  • a mixture of two or more of these binders may be used, e.g., a mixture of polyethyl acrylate and cellulose acetobutyrate.
  • the weight ratio of phosphor to binder is generally within the range of from 50:50 to 89:11, preferably from 80:20 to 89:11.
  • the screen according to the present invention may comprise a supported layer of phosphor particles dispersed in a binding medium comprising one or more rubbery and/or elastomeric polymers as described in EP-A's 0 647 258 and 0 648 254.
  • a ratio by weight of pigment to binding medium of more than 90:10 and more preferably of at least 93:7, e.g. 98:2 can be obtained providing besides an excellent image resolution a high ease of manipulation as a result of a good elasticity of the screen and good adhesion properties between the support and the phosphor layer.
  • the binder used in screens according to the present invention can beneficially be a polymer P having a T g £ 0 °C, an average molecular weight (MG avg ) between 5000 and 10 7 , being soluble in ethylacetate for at least 5 % by weight (% wt/wt).
  • Such polymers have been disclosed in EP-A 0 758 012 and the corresponding US-A 5,663,005.
  • the phosphor layer can be applied to the support by employing a method such as vapour deposition, sputtering and spraying but is usually applied by the following procedure.
  • Phosphor particles and a binder are added to an appropriate solvent as described hereinafter, and are then mixed in order to prepare a coating dispersion comprising the phosphor particles homogeneously dispersed in the binder solution.
  • Said coating dispersion may further comprise a dispersing agent and plasticizer and filler material as described hereinafter.
  • the coating dispersion containing the phosphor particles and the binder is applied uniformly onto the surface of the support to form a layer of the coating dispersion.
  • the coating procedure may proceed according to any conventional method such as doctor blade coating, dip-coating or roll coating.
  • the binder is cured. Curing of the binder may proceed photochemically by means of UV radiation or with electron beam (EB) as described e.g. in Research Disclosure December 1977, item 16435 or proceeds purely chemically as described e.g. in US-A 4,508,636. It may also be cured by moisture as described in EP-A 0 541 146. Curing may also be performed by heating.
  • EB electron beam
  • the primer layer is provided on the substrate beforehand, and then the phosphor dispersion is applied to the primer layer and dried to form the fluorescent layer.
  • the coating dispersion After applying the coating dispersion onto the support, the coating dispersion is then heated slowly to dryness in order to complete the formation of a phosphor layer.
  • the phosphor-binder layer (as described e.g. in US-A 4,059,768) can be calendered to improve the phosphor packing density in the dried layer.
  • Useful solvents for the binder of the phosphor containing layer, employable in the preparation of the phosphor coating dispersion include lower alcohols such as methanol, ethanol, n-propanol and n-butanol; chlorinated hydrocarbons such as methylene chloride and ethylene chloride; ketones such as acetone, butanone, methyl ethyl ketone and methyl isobutyl ketone; esters of lower alcohols with lower aliphatic acids such as methyl acetate, ethyl acetate and butyl acetate; ethers such as dioxane, ethylene glycol monoethylether; methyl glycol; and mixtures of the above-mentioned solvents.
  • lower alcohols such as methanol, ethanol, n-propanol and n-butanol
  • chlorinated hydrocarbons such as methylene chloride and ethylene chloride
  • ketones such as acetone, butanone,
  • Useful dispersing agents for the phosphor particles in the coating dispersion to improve the dispersibility of the phosphor particles therein may contain a variety of additives such as a plasticizer for increasing the bonding between the binder and the phosphor particles in the phosphor layer.
  • dispersing agent examples include ionic and nonionic well-known dispersing agents or combinations thereof, e.g., DISPERSE AYD (trade name of Daniel Products Company, New Jersey, USA) GAFAC RM 610 (a tradename a polyoxyethylene (20) sorbitan monopalmitate and monolaurate marketed by General Aniline and Film Company (GAF) New York, USA, polymeric surfactants such as the acrylic graft copolymer, PHOSPHOLIPON 90 (trade name) marketed by Nattermann-Phospholipid GmbH, GmbH, W. Germany, silane dispersing agents and surfactants e.g.
  • DISPERSE AYD trade name of Daniel Products Company, New Jersey, USA
  • GAFAC RM 610 a tradename a polyoxyethylene (20) sorbitan monopalmitate and monolaurate marketed by General Aniline and Film Company (GAF) New York, USA
  • polymeric surfactants such as the acrylic graft copolymer,
  • DOW CORNING 190 (trade name) and SILANE Z6040 (trade name) marketed by Dow Corning Corporation, Midland, Michigan, USA or glymo-3-glycidyloxy-propylmethoxysilane or organosulfate polysilanes, unsaturated p-aminamide salts and high molecular acid esters such as ANTI TERRA U 80 (trade name) marketed by BYK-Chemie GmbH, Wesel, W. Germany, high molecular unsaturated polyesters, etc.
  • Dispersing agents are added in an amount of 0.05 to 10 % by weight based on the phosphor.
  • Useful plasticizers include phosphates such as triphenyl phosphate, tricresyl phosphate and diphenyl phosphate; phthalates such as diethyl phthalate and dimethoxyethyl phthalate; glycolates such as ethylphthalyl ethyl glycolate and butylphthalyl butyl glycolate; polymeric plastizers, e.g. and polyesters of polyethylene glycols with aliphatic dicarboxylic acids such as polyester of triethylene glycol with adipic acid and polyester of diethylene glycol with succinic acid.
  • phosphates such as triphenyl phosphate, tricresyl phosphate and diphenyl phosphate
  • phthalates such as diethyl phthalate and dimethoxyethyl phthalate
  • glycolates such as ethylphthalyl ethyl glycolate and butylphthalyl butyl glycolate
  • a protective layer is generally provided on top of the fluorescent layer.
  • the protective coating has a layer thickness d comprised between 1 and 50 ⁇ m and an embossed surface roughness is applied for high ease of manipulation, thereby avoiding sticking, friction and electrostatic attraction with maintenance of an excellent image resolution.
  • the embossed protective layer can be provided on the phosphor layer in order to protect it against mechanical and chemical damage by the steps of
  • an automatically operating apparatus is used provided with a system for automatic replenishment of the processing solutions.
  • the processing dry-to-dry within a short processing time of from 30 to 90 seconds and more preferably from 30 seconds to less than 60 seconds of materials coated from low amounts of silver is made possible by the steps of
  • a normally used configuration in the processing apparatus shows the following consecutive tank units corresponding with, as consecutive solutions: developer-fixer-rinse water.
  • the ecologically questionable "hydroquinone” (iso)ascorbic acid, 1-ascorbic acid and tetramethyl reductic acid are preferred as main developing agent in the developer.
  • Said developing agents have further been described in EPA's 0 461 783, 0 498 968, 0 690 343, 0 696 759, 0 704 756, 0 732 619, 0 731 381 and 0 731 382; in US-A's 5,474,879 and 5,498,511 and in Research Disclosure No 371052, published March 1, 1995, wherein a more general formula covering the formula of said developing agents has been represented.
  • a particularly suitable developer solution is the one comprising a reduced amount of sulphite and ascorbic acid which acts as a main developer and anti-oxidant as well and which is called low-sludge" developer.
  • a particularly suitable fixer solution comprises an amount of less than 25 g of potassium sulphite per liter without the presence of acetic acid wherein said fixer has a pH value of at least 4.5, in order to make the fixer solution quasi odourless.
  • fixer pH For hardened materials having a swelling degree of the hydrophilic layers of less than 250 % and more preferably of less than 200 % it is not required for the fixer pH to held constant in the pH range from 4.2 to 4.6 as mentioned hereinbefore: in order to reduce irritating smell from sulphite ions in aqueous acidic medium which lead to sulphur dioxide vapour it is recommended to enhance pH to a value of 4.65 up to 5.00.
  • a process whereby the quality of the fixer remains at an optimum level has been described in EP-Application No. 97201117, filed April 15, 1997.
  • processing apparatus In a conventional processing apparatus the sheet material is transported along a generally horizontal feed path, the sheet material passing from one vessel to another usually via a circuitous feed path passing under the surface of each treatment liquid and over dividing walls between the vessels.
  • processing machines having a substantially vertical orientation have also been proposed, in which a plurality of vessels are mounted one above the other, each vessel having an opening at the top acting as a sheet material inlet and an opening at the bottom acting as a sheet material outlet or vice versa.
  • substantially vertical is intended to mean that the sheet material moves along a path from the inlet to the outlet which is either exactly vertical, or which has a vertical component greater than any horizontal component.
  • the apparatus occupies only a fraction of the floor space which is occupied by a conventional horizontal arrangement.
  • the sheet transport path in a vertically oriented apparatus may be substantially straight, in contrast to the circuitous feed path which is usual in a horizontally oriented apparatus.
  • the straight path is independent of the stiffness of the sheet material and reduces the risk of scratching compared with a horizontally oriented apparatus.
  • it is important to avoid, or at least minimize leakage of treatment liquid from one vessel to another and carry-over as the sheet material passes through the apparatus.
  • the treatment liquid in one vessel is not contaminated by contents of the adjacent vessels, that is neither by the treatment liquid of the next higher vessel nor by vapours escaping from the next lower vessel.
  • the developing cell of the apparatus is a closed cell and the developing liquid contains an ascorbic acid developing agent as has been described in EP-Application No. 96201753, filed June 24, 1996.
  • a method of processing photographic sheet material by use of an apparatus comprising a plurality of processing cells so arranged to define a sheet material path through the apparatus, at least one of the cells constituting a developing cell containing a developing liquid, characterized in that the developing cell is a closed cell and the developing liquid contains an ascorbic acid developing agent.
  • EP-A 0 819 992 With respect to further characteristics of the processing apparatus we refer to EP-A 0 819 992, wherein it was an object to provide an apparatus in which operating components can easily be replaced without the need for substantial re-programming of the CPU. This could be achieved when information concerning characteristics of each operating component is stored in separate memory means.
  • a multi-component apparatus comprising a plurality of operating components selected from output operating components, input operating components and combinations thereof, and a central processing unit operatively linked to said operating components, said central processing unit containing information concerning at least one desired operating sequence for said apparatus, characterized in that information concerning characteristics of each said operating component is stored in separate memory means.
  • the programme which is typically carried in the CPU is now seen as comprising two separable elements.
  • Information concerning the desired function of the apparatus i.e. logical data, such as the speed of sheet material through the apparatus, or the volume of liquid being pumped to vessels of the apparatus per unit time, continues to be stored in the CPU.
  • Information concerning the characteristics of the operating components and their location is separately stored for each operating component.
  • the separate memory means is removable: when the service engineer removes a given operating component, he also removes the store of characteristics information pertaining to that operating component. As he replaces the removed operating component with a new one, he also provides a new information store, containing the characteristics information pertaining to the new operating component. The need for re-programming of the CPU is therefore avoided.
  • the new information store is created off-site, for example as the new operating component is manufactured.
  • the separate memory means is not removable, but is arranged to be by-passed or even re-programmed by the service engineer. Re-programming of the separate memory means is simpler than re-programming of the CPU. Improvements of that invention lie not only in the improved servicing characteristics but also in the quality assurance of replacement components.
  • a processing apparatus for photographic sheet material comprises several treatment cells, most or all of which are in the form of vessels containing a treatment liquid, such as a developer, a fixer or a rinse liquid.
  • a treatment liquid such as a developer, a fixer or a rinse liquid.
  • sheet material includes not only photographic material in the form of cut sheets, but also in the form of a web unwound from a roll.
  • transport means such as one or more pairs of path-defining drive rollers, and thereafter optionally to a drying unit.
  • the time spent by the sheet material in each vessel is determined by the transport speed and the dimensions of the vessel in the sheet feed path direction.
  • a sheet material processing apparatus comprising at least one treatment cell, a pair of rotatable path-defining rollers defining a sheet material path through the cell, the path-defining rollers having a closed position in which the path-defining rollers are biased into contact with each other to form a nip through which the sheet material path extends and an open position in which the path-defining rollers are spaced from each other, characterized in that the path-defining rollers are supported by bearings carried by eccentric sleeves which are stationary in the closed position, and means are provided for partly rotating the sleeves thereby to withdraw the path-defining rollers from each other into the open position.
  • any screen/film combination may be used, wherein said screen comprises at least luminescent monoclinic yttrium tantalate phosphors e.g. doped with niobium and gadolinium, optionally in combination with other suitable UV/blue light emitting phosphors and wherein said film comprises [111) tabular silver halide crystals rich in silver chloride spectrally sensitized with at least one or more azacyanine dyes in combination with a processing unit, the proviso that with minimum amounts of silver coated (total amount, expressed as an equivalent amount of silver nitrate of less than 7.5 g /m 2 ) a sufficient covering power is attained in the film in rapid ecological processing (with e.g.
  • Pairs of screens were arranged in the same type of cassette and between the screens and in contact therewith a duplitized (double-side silver halide emulsion coated) film was inserted.
  • the X-ray exposure proceeded according to ISO/DP9236 with 77 median kVp X-rays.
  • the phosphor coating compositions were prepared by intimately mixing the following components : YTaO 4 :Gd:Nb 200 g cellulose acetobutyrate (30 % in 2-butanone) 1.72 g polyethyl acrylate (30 % in ethyl acetate) 15.46 g ethyl acetate 10.70 g methyl glycol 8.72 g methoxypropanol 26.7 g dispersing agent DISPERSE AYD (trade name) 1.02 g
  • compositions were doctor blade coated onto a subbed 200 ⁇ m thick pigmented polyethylene terephthalate supports.
  • a cellulose acetobutyrate layer having a dry thickness of 10 ⁇ m was applied as protective layer.
  • the total amount of phosphor coated was 50 mg/cm 2 .
  • the screen/film(s) combination(s) were used in a cassette, wherein the cassette was the same for each experimental film.
  • Film materials comprising tabular (111) grains rich in chloride were the following.
  • the thus obtained silver chloride tabular emulsion showed the following grain characteristics:
  • the diameter of the grain was defined as the diameter of the circle having an area equal to the projected area of the grain as viewed in the said photographs.
  • the mV-value of the emulsion was adjusted at +158 mV (against a silver/silver chloride reference electrode) with sodium chloride and the pH-value at 5.5 with sodium hydroxide.
  • Chemical ripening agents were adapted to the crystal size of the emulsions.
  • Chemical ripening agents were gold thiocyanate, sodium thiosulphate as a source of sulphur and toluene thiosulphonic acid was used as predigestion agent.
  • the amounts of each chemical ripening agent were optimized in order to obtain an optimal fog-sensitivity relationship after 2 hours at 70°C, without the presence of bromide ions, opposite to the required use thereof at a temperature of greater than 80°C as in US-A 5,494,788.
  • each emulsion was stabilized with 1-p-carboxy-phenyl-5-mercaptotetrazole and after addition of the normal coating additives the solutions were coated simultaneously together with a protective layer containing 1.3 g gelatine per m 2 per side on both sides of a polyethylene terephthalate film support having a thickness of 175 ⁇ m.
  • the resulting photographic material contained per side an amount of silver halide corresponding to 3.5 grams of AgNO 3 per m 2 and an amount of gelatin corresponding to 2.8 g/m 2 .
  • Film materials comprising cubic (100) silver chloride grains having an average grain size of 0.45 ⁇ m were prepared as follows:
  • a silver chloride emulsion was prepared by a double jet technique. Therefore an amount of 880 ml of demineralized water was used as starting volume in the vessel, containing further 46 g of inert gelatin and 7 mmoles of sodium chloride at 60°C. The mixture was rotated at a rate of 500 r.p.m..
  • the flocculation procedure could begin: pH was adjusted at a value of 3.3 with sulphuric acid, 3 M, and 4.5 g of polystyrene sulphonic acid was added slowly in 2 minutes. The washing procedure was performed in a discontinous way, adding 3 l of demineralized water, containing up to 8 mmole of sodium chloride pro liter, until pAg was reaching a value of about 100 mV.
  • the emulsion was peptized and was chemically ripened to an optimal fog-sensitivity relationship at 52°C, pAg having a value of about 125 mV.
  • Chemical ripening agents besides gold (in an amount of 0.019 mmole) and sulphur (tetramethyl thiodithiocarboxylic acid diamide in an amount of 0.061 mmole), were toluene thiosulphonic acid and iodide ions, both being predigestion agents in amounts of 4 mg and 8.6 mmoles respectively.
  • a photographic material was prepared having on a subbed polyester base the gelatinous cubic silver chloride emulsion having an average grain size of 0.45 mm the preparation of which has been described above.
  • the emulsion was further stabilized with 0.22 mmole of compound (V) and 0.68 mmole of compound (VI) per mole of silver nitrate.
  • the sodium salts of 7-sulpho-naphto-[2,3-D]-oxazoline-2-thion and 1-phenyl-5-mercaptotetrazole were added as stabilizers in amounts of 40, respectively 30 mg per 100 g of AgNO 3 .
  • a coated amount of silver expressed as the equivalent amount of silver nitrate of 4.0 g per square meter and a gelatin to silver chloride ratio (expressed in equivalent amount of silver nitrate) of 0.35 was provided with a gelatin covering layer (antistress layer) of 1.30 g of gelatin per m 2 .
  • the processing was run in the developing liquid INVDEV, followed by fixing in fixing liquid INVFIX and rinsing at the indicated temperature of 35°C for a total processing time of 45 seconds.
  • the composition of the said fixer was as follows: Fixer INVFIX -Ammonium thiosulphate (60 % solution, wherein 1 ml comprises 0.778 g) 710 ml -Sodium metabisulphite 80 g -Sodium acetate 130 g -Acetic acid 31 ml pH ready-for-use (after dilution 1+3) 4.90
  • the minimal dose (log E) needed to obtain a density of 0.5 above fog was determined for the front layer (log E front) and the back layer (log E back) separately.
  • Said comparative screens in combination with film materials rich in silver chloride don't provide the desired speed, opposite to screens having M YTa:Gd:Nb phosphors.
EP98202000A 1997-07-11 1998-06-12 Kombination von radiographischen UV/blau Verstärkerschirm und Film Expired - Lifetime EP0890873B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98202000A EP0890873B1 (de) 1997-07-11 1998-06-12 Kombination von radiographischen UV/blau Verstärkerschirm und Film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97202169 1997-07-11
EP97202169 1997-07-11
EP98202000A EP0890873B1 (de) 1997-07-11 1998-06-12 Kombination von radiographischen UV/blau Verstärkerschirm und Film

Publications (2)

Publication Number Publication Date
EP0890873A1 true EP0890873A1 (de) 1999-01-13
EP0890873B1 EP0890873B1 (de) 2003-10-15

Family

ID=26146694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98202000A Expired - Lifetime EP0890873B1 (de) 1997-07-11 1998-06-12 Kombination von radiographischen UV/blau Verstärkerschirm und Film

Country Status (1)

Country Link
EP (1) EP0890873B1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026544A1 (de) * 1999-02-02 2000-08-09 Agfa-Gevaert N.V. Emulsion, Material und Schirm/Filmsystem zur Erzeugung von Röntgenbildern
EP1045282A1 (de) * 1999-04-16 2000-10-18 Agfa-Gevaert N.V. UV/Blauempfindlicher Röntgenfilm und Kombination eines Verstärkungsschirms mit einem Film
EP1045283A1 (de) * 1999-04-16 2000-10-18 Agfa-Gevaert N.V. Strahlungsempfindliche Emulsion, lichtempfindlicher photographischer Silberhalogenidfilm und Kombination eines radiographischen Verstärkungsschirms mit einem Film
US6200743B1 (en) 1999-04-16 2001-03-13 Agfa-Gevaert, N.V. Radiation-sensitive emulsion, light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination
EP1103848A1 (de) * 1999-11-26 2001-05-30 Agfa-Gevaert Lichtempfindliches photographisches Silberhalogenidfilmmaterial und eine Kombination eines radiographischen Verstärkungsschirms mit diesem Film
US6277551B1 (en) 1999-02-02 2001-08-21 Agfa-Gevaert Emulsion, material and screen/film system for radiological image formation
US6403276B1 (en) 1999-04-16 2002-06-11 Agfa-Gevaert Radiographic UV/blue film material and intensifying screen-film combination
US6472137B1 (en) 1999-11-26 2002-10-29 Agfa-Gevaert Light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2080050A (en) * 1934-08-03 1937-05-11 Ilford Ltd Sensitization of photographic emulsions
US4225653A (en) * 1979-03-26 1980-09-30 E. I. Du Pont De Nemours And Company X-ray intensifying screen based on rare earth tantalate
WO1993011458A1 (en) * 1991-11-27 1993-06-10 E.I. Du Pont De Nemours And Company Arylidene sensitizing dyes for tabular grains
EP0770909A1 (de) * 1995-10-25 1997-05-02 Agfa-Gevaert N.V. Photographisches Silberhalogenidmehrschichtmaterial und Verfahren zu dessen Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2080050A (en) * 1934-08-03 1937-05-11 Ilford Ltd Sensitization of photographic emulsions
US4225653A (en) * 1979-03-26 1980-09-30 E. I. Du Pont De Nemours And Company X-ray intensifying screen based on rare earth tantalate
WO1993011458A1 (en) * 1991-11-27 1993-06-10 E.I. Du Pont De Nemours And Company Arylidene sensitizing dyes for tabular grains
EP0770909A1 (de) * 1995-10-25 1997-05-02 Agfa-Gevaert N.V. Photographisches Silberhalogenidmehrschichtmaterial und Verfahren zu dessen Herstellung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026544A1 (de) * 1999-02-02 2000-08-09 Agfa-Gevaert N.V. Emulsion, Material und Schirm/Filmsystem zur Erzeugung von Röntgenbildern
US6277551B1 (en) 1999-02-02 2001-08-21 Agfa-Gevaert Emulsion, material and screen/film system for radiological image formation
EP1045282A1 (de) * 1999-04-16 2000-10-18 Agfa-Gevaert N.V. UV/Blauempfindlicher Röntgenfilm und Kombination eines Verstärkungsschirms mit einem Film
EP1045283A1 (de) * 1999-04-16 2000-10-18 Agfa-Gevaert N.V. Strahlungsempfindliche Emulsion, lichtempfindlicher photographischer Silberhalogenidfilm und Kombination eines radiographischen Verstärkungsschirms mit einem Film
US6200743B1 (en) 1999-04-16 2001-03-13 Agfa-Gevaert, N.V. Radiation-sensitive emulsion, light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination
US6403276B1 (en) 1999-04-16 2002-06-11 Agfa-Gevaert Radiographic UV/blue film material and intensifying screen-film combination
EP1103848A1 (de) * 1999-11-26 2001-05-30 Agfa-Gevaert Lichtempfindliches photographisches Silberhalogenidfilmmaterial und eine Kombination eines radiographischen Verstärkungsschirms mit diesem Film
US6472137B1 (en) 1999-11-26 2002-10-29 Agfa-Gevaert Light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination

Also Published As

Publication number Publication date
EP0890873B1 (de) 2003-10-15

Similar Documents

Publication Publication Date Title
US5989799A (en) Radiographic UV/blue intensifying screen-film combination
EP0890873B1 (de) Kombination von radiographischen UV/blau Verstärkerschirm und Film
US6348293B1 (en) Radiographic film material exhibiting increased covering power and “colder” blue-black image tone
US5998083A (en) System and method for radiological image formation
US6403276B1 (en) Radiographic UV/blue film material and intensifying screen-film combination
JP3365830B2 (ja) 改良された速度/像品質関係を有するx線増感スクリーン
US6607876B2 (en) Radiographic film material and intensifying screen-film combination
EP0930527A1 (de) Kombination eines radiographischen Verstärkungsschirms mit einem Film
EP1045282B1 (de) UV/Blauempfindlicher Röntgenfilm und Kombination eines Verstärkungsschirms mit einem Film
US6346360B1 (en) Radiographic film material exhibiting increased covering power and “colder” blue-black image tone
EP1103848B1 (de) Lichtempfindliches photographisches Silberhalogenidfilmmaterial und eine Kombination eines radiographischen Verstärkungsschirms mit diesem Film
EP0862083B1 (de) System und Verfahren zur Röntgenbild Herstellung
US6472137B1 (en) Light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination
US6277551B1 (en) Emulsion, material and screen/film system for radiological image formation
EP1217428A1 (de) Radiographisches Filmmaterial und Verstärkerfolien-Röntgenfilm-Kombination
US6238853B1 (en) Processing method of light-sensitive silver halide photographic materials showing less tendency to sludge formation
EP1026544B1 (de) Emulsion, Material und Schirm/Filmsystem zur Erzeugung von Röntgenbildern
EP1422561A1 (de) Radiographische Bildaufzeichnungskombination für die Mammographie
EP1104893B1 (de) Verarbeitungsverfahren, das einen kalten blauschwarzen Bildton in Schwarzweisssilberhalogenidmaterialien liefert
EP1103850B1 (de) Radiographisches Filmmaterial mit verbesserter Deckkraft und blauschwarzem Bildton
US6048096A (en) System and method for radiological image formation
US6066441A (en) Processing of radiographic materials having emulsion grains rich in silver chloride
JP2000321705A (ja) 放射線写真uv/青フィルム材料及び増感スクリーン−フィルム組合せ
US5912108A (en) Processing of a light-sensitive silver halide photographic material
US20040240622A1 (en) Radiographic imaging assembly for mammography

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990713

AKX Designation fees paid

Free format text: BE DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69818918

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040716

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20040921

EN Fr: translation not filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070608

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080612