EP0888583A1 - Mikrokontroller mit selbstweckvorrichtung - Google Patents

Mikrokontroller mit selbstweckvorrichtung

Info

Publication number
EP0888583A1
EP0888583A1 EP97916349A EP97916349A EP0888583A1 EP 0888583 A1 EP0888583 A1 EP 0888583A1 EP 97916349 A EP97916349 A EP 97916349A EP 97916349 A EP97916349 A EP 97916349A EP 0888583 A1 EP0888583 A1 EP 0888583A1
Authority
EP
European Patent Office
Prior art keywords
microcontroller
frequency
oscillator
low
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP97916349A
Other languages
English (en)
French (fr)
Inventor
Volker Aab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0888583A1 publication Critical patent/EP0888583A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0315Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using multiplexing techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the invention relates to a microcontroller with a self-waking device, in particular for use in electrical actuators, of the type defined in the preamble of claim 1.
  • a known microcontroller with a self-waking device of this type (DE 43 02 232 AI), which is to be used in particular in electrical adjusting drives, it is provided with a control device for specifying an active and an inactive operating state in order to save supply energy, and with an oscillator for the delivery of a Wake-up signal.
  • This oscillator is provided outside the microcontroller and is of a relatively low clock frequency in nature.
  • waking up is also possible at regular, periodically recurring intervals by the external wake-up signal supplied by the external oscillator, which is fed to the control circuit. The wakeup is independent from the current operating state.
  • the period of this external wake-up signal should be such that the microcontroller remains inactive for as long as possible in order to achieve a low average energy consumption. On the other hand, the period should be short enough to be able to react quickly enough to a changed operating situation, which can be communicated via input lines. In this known microcontroller, if there is no internal wake-up signal in the meantime, it is always woken up to the rhythm of the external oscillator.
  • T he inventive microcontroller with Disweckvortechnische with the characterizing features of claim 1 has d emumbleannothe advantage of providing a complete device in which a low frequency oscillator with low S tromfact is co-integrated into the microcontroller, and advantageously in non properties under Betreib high frequency clock source, in is able to supply and operate the microcontroller core in this situation with few functions to be carried out with this low clock frequency.
  • a low frequency oscillator with low S tromfact is co-integrated into the microcontroller, and advantageously in non properties under Betreib high frequency clock source, in is able to supply and operate the microcontroller core in this situation with few functions to be carried out with this low clock frequency.
  • this is achieved in principle in that t he szillator O a low-frequency oscillator is that a circuit in the microcontroller is provided, the d a much higher clock frequency of the low frequency of this oscillator is generated microcontroller core that the O szillator as an original component is co-integrated into the microcontroller, and in that an undervoltage detection vorgese s h, the output signal is directly fed to the M ikrokontrollerkem.
  • the circuit for generating the high clock frequency of the microcontroller core is a phase locked loop that can be switched off.
  • the invention is a
  • microcontroller with a wake-up circuit which, after a specific time or when a specific event occurs, switches the microcontroller core from the inactive to the active operating state.
  • the microcontroller according to the invention is provided with a time switching logic which, after a time period which can be predetermined in different ways, acts on the wake-up circuit so that it switches the microcontroller core from the inactive to the active operating state.
  • the wake-up signal of the wake-up circuit activates the circuit which generates the substantially higher clock frequency of the microcontroller core from the low frequency of the low-frequency oscillator in order to switch it from the inactive to the active operating state.
  • the microcontroller according to the invention is provided with a multiplexer, via which the microcontroller core in certain
  • the microcontroller core can be put into the inactive operating state for a specific period of time that can be adapted to certain circumstances after processing certain functions.
  • the adaptable time period is programmable and can be stored in a time comparison register provided in the time switching logic.
  • the microcontroller according to the invention is expediently designed such that the frequency of the low-frequency oscillator is, for example, 100 kHz and the frequency of the microcontroller core generated therefrom is, for example, 10 MHz.
  • the microcontroller is used in electrical adjustment drives by
  • the invention is explained in more detail in the following description with reference to an embodiment shown in the drawing.
  • the single figure shows a block diagram of the microcontroller designed according to the invention with a self-alarm device.
  • the microcontroller 10 shown schematically in the figure as a block diagram contains a microcontroller core 11, an energy-saving low-frequency oscillator 12, a phase locked loop 13, a multiplexer 14, a wake-up circuit 15, a time switch logic 16, and an undervoltage detection 17 as essential components. Furthermore, a power supply 18 and an input / output circuit 19 are shown in the block diagram.
  • the microcontroller core 11 serves to fulfill the tasks of the microcontroller 10 and is operated at a specific clock frequency. This clock frequency can be, for example, 10 MHz if the clock is supplied from the phase locked loop 13 via line 20. This high clock frequency is generated by the phase-locked loop 13 from low-frequency signals which are fed on line 21 from the low-frequency oscillator 12.
  • the frequency of the oscillator 12 can be 100 kHz, for example.
  • the phases of low-frequency and high-frequency clock frequency are in a fixed relationship to each other.
  • the entire PLL circuit is switched off in the inactive operating state since it requires a high operating current due to the high frequency.
  • the multiplexer 14 provided in the microcontroller 10 is acted upon via line 20 with the high clock frequency of the phase locked loop 13 or via line 21 with the low frequency of the low-frequency oscillator 12.
  • the timing switching logic 16 is controlled via an output line 23 and supplied with either the high or the low clock frequency.
  • the multiplexer 14 is supplied with a control signal from the microcontroller core 11 via a line 24.
  • the time switching logic 16 is in line with the microcontroller core 11 in a bilateral signal exchange and outputs a signal to the wake-up circuit 15 via an output line 26, which in turn applies the wake-up signal to the microcontroller core 11 via an output line 27 in order to switch the microcontroller core 11 from inactive to active Bring operating state. This takes place after a certain elapsed time period, which is determined in the active phase by the microcontroller core 11 and via line 25 in a
  • Register in the timing logic 16 is set. Provided with Clock signals via the multiplexer 14 and the line 23 monitors and compares the time switching logic 16 the set time specifications. At the right time, the wake-up circuit 15 is then driven via line 26.
  • the microcontroller core 11 is connected to the input / output circuit 19 via an input line 28 and an output line 29.
  • the Mikrokontrollerkem 11 is supplied with signals and applied, for example, the z. B. come from the keyboard detection, relay drivers, position signal transmitters and other units of interest and connected units and can be read in via the input line 28. Conversely, these units are supplied with control and other signals via the input / output circuit 19 via the output line 29.
  • the minimum on-board electrical system voltage at which the drives are still controlled is usually 9 V.
  • a voltage regulator must be connected to the reverse diode and the voltage drop approx. 1.2 V can be expected.
  • microcontrollers and Hall sensors are only switched on temporarily to scan the sensor levels.
  • the microcontroller 10 according to the invention fulfills the following
  • the microcontroller 10 has a power-saving inactive operating state (power down mode); the start-up time of the microcontroller 10 is significantly shorter than the expected sampling time interval; the microcontroller 10 contains an undervoltage detection 17, which is connected directly to the vehicle electrical system voltage, for example as a threshold value detection, and thus the
  • Microcontroller core 11 communicates via line 30; finally, after a certain time after entering the inactive operating state or when a certain event occurs, the microcontroller is activated by its
  • Self-wake-up device returned to the active operating state. If it is found in the undervoltage detection 17 in the microcontroller 10 designed according to the invention that the vehicle electrical system voltage has dropped below a minimum level, the following actions are carried out: the position signals of the Hall sensors are evaluated; the Hall sensors are switched off; the desired period of time for the inactive operating state is determined and this value is set in the register in the time switching logic as a comparison value; the system clock is switched from the phase locked loop 13 to the low-frequency oscillator 12; finally the microcontroller core 11 is stopped, ie the microcontroller 10 is put into the inactive operating state (stop mode).
  • the timer logic 16 In the inactive operating state, the timer logic 16 is supplied with the low-frequency clock. When calculating the value for the inactive period that is written into the register, this is taken into account so that the correct wake-up time can be achieved.
  • the wake-up circuit 15, initiated by a signal on line 26 of the time switching logic 16 will generate a wake-up signal for the microcontroller core 11 and supply it to the latter via line 27.
  • the wake-up signal causes the phase-locked loop 13 to be activated.
  • the microcontroller core 11 is expediently used by means of the correspondingly controlled multiplexer 14 only with the low-frequency clock on the output line 21 of the low-frequency Oscillator 12 supplied. In this case, the phase locked loop 13 does not have to be activated and the associated settling time is saved.
  • the microcontroller core 11 is ready for operation immediately after the wake-up signal arrives, but operates at the lower clock frequency.
  • the time period for the inactive operating state is determined again, set in the register of the time switching logic 16 and the microcontroller switches itself off for this time period.
  • the invention provides a specially designed microcontroller with a self-wake-up device in which the average power consumption is advantageously reduced in accordance with the ratio of running time to idle time by switching on the active operating state only briefly. This reduces the necessary buffer capacity in the event of an emergency shutdown in the event of undervoltage. It can be operated with both high and low frequency. In the inactive operating state, the clock is made available by the energy-saving, low-frequency oscillator, which is integrated in the microcontroller 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Power Sources (AREA)
  • Microcomputers (AREA)

Abstract

Ein Mikrokontroller (10) mit Selbstweckvorrichtung, insbesondere zur Verwendung in elektrischen Verstellantrieben, mit einer Steuervorrichtung zur Vorgabe eines aktiven und eines inaktiven Betriebszustands, um Versorgungsenergie einzusparen, enthält einen Oszillator für die Abgabe eines Aufwecksignals bzw. einer Taktfrequenz. Dieser Oszillator (12) ist ein niederfrequenter, stromsparender Oszillator. Im Mikrokontroller ist eine Schaltung (13), vorzugsweise ein abschaltbarer Phasenregelkreis, vorgesehen, die aus der niedrigen Frequenz des Oszillators (12) eine wesentlich höhere Taktfrequenz für den Mikrokontrollerkern (11) generiert. Der niederfrequente Oszillator (12) ist als originäres Bauelement in den Mikrokontroller mitintegriert. Eine Unterspannungserkennung (17), deren Ausgangssignal unmittelbar dem Mikrokontrollerkern (11) zuführbar ist, zeigt Unterspannungsbedingungen unmittelbar an. Über eine Zeitschaltlogik (16), die eine Ruhenszeit des Mikrokontrollerkerns (11) überwacht, wird über eine Weckschaltung (15) dieser wieder aktiviert. Bei bestimmten Funktionen kann auch allein mit der niedrigen Frequenz stromsparend gearbeitet werden. Eine notwendige Pufferkapazität kann somit kleiner sein.

Description

Mikrokontroller mit Selbstweckvorrichtunq
Stand der Technik
Die Erfindung geht aus von einem Mikrokontroller mit Selbstweckvorrichtung, insbesondere zur Verwendung in elektrischen VerStellantrieben, der im Oberbegriff des Anspruchs 1 definierten Gattung.
Bei einem bekannten Mikrokontroller mit Selbstweckvorrichtung dieser Art (DE 43 02 232 AI), der insbesondere in elektrischen Versteilantrieben Verwendung finden soll, ist er zur Einsparung von Versorgungsenergie mit einer Steuervorrichtung zur Vorgabe eines aktiven und eines inaktiven Betriebszustandsversehen sowie mit einem Oszillator für die Abgabe eines Aufwecksignals. Dieser Oszillator ist außerhalb des Mikrokontrollers vorgesehen und von seiner Art nach von relativ niedriger Taktfrequenz. Neben dem Aufwecken des Mikrokontrollers durch ein internes, vom Wachhund abgebenen Signals, ist das Aufwecken auch in regelmäßigen, periodisch wiederkehrenden Zeitabständen durch das vom externen Oszillator zugeführte externe Aufwecksignal möglich, welches der Steuerschaltung zugeführt wird. Das Aufwecken erfolgt unabhängig vom gerade vorliegenden Betriebszustand. Die Periodendauer dieses externen Aufwecksignals sollte derart bemessen sein, daß der Mikrokontroller möglichst lange im inaktiven Zustand verbleibt, um eine niedrige mittlere Energieaufnahme zu erzielen. Andererseits sollte die Periodendauer kurz genug sein, um genügend schnell auf eine geänderte Betriebssituation reagieren zu können, wobei diese über Eingangsleitungen mitgeteilt werden kann. Bei diesem bekannten Mikrokontroller wird dieser demnach, wenn zwischzeitlich kein internes Wecksignal auftritt, immer im Rythmus des externen Oszillators aufgeweckt.
Vorteile der Erfindung
Der erfindungsgemäße Mikrokontroller mit Selbstweckvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil der Zurverfügungstellung eines kompletten Bauteils, bei dem ein niederfrequenter Oszillator mit geringer Stromaufnahme mitintegriert ist in den Mikrokontroller, und der vorteilhafterweise bei nicht im Betreib befindlicher Hochfrequenztaktquelle, in der Lage ist, den Mikrokontrollerkem in dieser Situation bei wenig auszuführenden Funktionen mit dieser niedrigen Taktfrequenz zu versorgen und zu betreiben. Damit ist eine wesentliche Voraussetzung dafür geschaffen, daß der Mikrokontroller energiesparend betrieben werden kann und ein für Notfälle vorzusehender Pufferkondensator in der
Steuerelektronik erheblich kleiner gewählt und damit in diese mit eingebaut werden kann.
Gemäß der Erfindung wird dies prinzipiell dadurch erreicht, daß der Oszillator ein niederfrequenter Oszillator ist, daß im Mikrokontroller eine Schaltung vorgesehen ist, die aus der niedrigen Frequenz dieses Oszillators eine wesentlich höhere Taktfrequenz des Mikrokontrollerkerns generiert, daß der Oszillator als originäres Bauelement in den Mikrokontroller mitintegriert ist, und daß eine Unterspannungserkennung vorgesehen ist, deren Ausgangssignal unmittelbar dem Mikrokontrollerkem zuführbar ist. Durch die in den weiteren Ansprüchen niedergelegten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Mikrokontrollers möglich.
Entsprechend einer besonders vorteilhaften Ausführungsform der Erfindung ist die Schaltung zur Generierung der hohen Taktfrequenz des Mikrokontrollerkerns ein abschaltbarer Phasenregelkreis.
In zweckmäßiger Weiterbildung ist der erfindungsgemaße
Mikrokontroller mit einer Weckschaltung versehen, welche nach Ablauf einer bestimmten Zeit oder bei Eintritt eines bestimmten Ereignisses den Mikrokontrollerkem von dem inaktiven in den aktiven Betriebszustand versetzt.
In weiterer vorteilhafter Ausgestaltung ist der erfindungsgemaße Mikrokontroller mit einer Zeitschaltlogik versehen, welche nach Ablauf einer verschieden vorgebbaren Zeitspanne die Weckschaltung beaufschlagt, damit diese den Mikrokontrollerkem von dem inaktiven in den aktiven Betriebszustand versetzt.
In vorteilhafter Weiterbildung der Erfindung aktiviert das Wecksignal der Weckschaltung diejenige Schaltung, welche aus der niedrigen Frequenz des niederfrequenten Oszillators die wesentlich höhere Taktfrequenz des Mikrokontrollerkerns generiert, um diesen von dem inaktiven in den aktiven Betriebszustand zu versetzen.
Gemäß einer besonders zweckmäßigen Ausgestaltung ist der erfindungsgemaße Mikrokontroller mit einem Multiplexer versehen, über den der Mikrokontrollerkem in bestimmten
Betriebssituationen direkt mit der Frequenz des niederfrequenten Oszillators als seiner Taktfrequenz versorgbar ist. In vorteilhafter Weise ist der Mikrokontrollerkem nach Abarbeiten bestimmter Funktionen für eine bestimmte, an gewisse Umstände anpaßbare Zeitspanne in den inaktiven Betriebszustand versetzbar. In zweckmäßiger Ausgestaltung der Erfindung ist die anpaßbare Zeitspanne programmierbar und in ein in der Zeitschaltlogik vorgesehenes Zeitvergleichsregister einspeicherbar ist.
In zweckmäßiger Weise ist der erfindungsgemäße Mikrokontroller so ausgestaltet, daß die Frequenz des niederfrequenten Oszillators beispielsweise 100 kHz und die daraus generierte Frequenz des Mikrokontrollerkerns beispielsweise 10 MHz beträgt.
Gemäß einem bevorzugten Einsatzgebiet der Erfindung wird der Mikrokontroller bei elektrischen Versteilantrieben von
Kraftfahrzeugen verwendet, und die Unterspannungserkennung unmittelbar an die Bordnetzspannung angeschlossen, um Unterspannungsbedingungen ohne Zeitverzug zu erkennen.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Die einzige Figur zeigt ein Blockschaltbild des erfindungsgemäß gestalteten Mikrokontrollers mit Selbsweckvorrichtung.
Beschreibung des Ausführungsbeispiels
Der in der Figur schematisch als Blockschaltbild dargestellte Mikrokontroller 10 enthält einen Mikrokontrollerkem 11, einen stromsparenden niederfrequenten Oszillator 12, einen Phasenregelkreis 13, einen Multiplexer 14, eine Weckschaltung 15, eine Zeitschaltlogik 16, sowie eine Unterspannungserkennung 17 als wesentliche Bestandteile. Weiterhin ist im Blockschaltbild noch eine Stromversorgung 18 und eine Ein-/Ausgangsschaltung 19 dargestellt. Der Mikrokontrollerkem 11 dient zur Erfüllung der Aufgaben des Mikrokontrollers 10 und wird mit einer bestimmten Taktfrequenz betrieben. Diese Taktfrequenz kann beispielsweise 10 MHz betragen, wenn der Takt von dem Phasenregelkreis 13 über Leitung 20 zugeführt wird. Diese hohe Taktfrequenz generiert der Phasenregelkreis 13 aus niederfrequenten Signalen, die auf Leitung 21 vom niederfrequenten Oszillator 12 zugeführt werden. Die Frequenz des Oszillators 12 kann beispielsweise 100 kHz betragen. Der Phasenregelkreis 13, für den bevorzugt ein PLL- Schaltkreis (phase-locked loop Schaltung) verwendet wird, stellt also eine Schaltung dar, die aus der niedrigen Frequenz des Oszillators 12 eine wesentlich höhere Taktfrequenz für den Mikrokontrollerkem 11 generiert. Dabei stehen die Phasen von niederfrequenter- und hochfrequenter Taktfrequenz in zueinander geregelter fester Beziehung. Der komplette PLL-Schaltkreis wird im inaktiven Betriebszustand abgeschaltet, da er aufgrund der hohen Frequenz einen hohen Betriebsstrom benötigt.
Der im Mikrokontroller 10 vorgesehene Multiplexer 14 wird über Leitung 20 mit der hohen Taktfrequenz des Phasenregelkreises 13 oder über Leitung 21 mit der niedrigen Frequenz des niederfrequenten Oszillators 12 beaufschlagt. Über eine Ausgangsleitung 23 wird die Zeitschaltlogik 16 angesteuert und entweder mit der hohen oder der niedrigen Taktfrequenz versorgt. Weiterhin wird dem Multiplexer 14 über eine Leitung 24 ein Steuersignal vom Mikrokontrollerkem 11 zugeführt. Die Zeitschaltlogik 16 steht über Leitung 25 mit dem Mikrokontrollerkem 11 in zweiseitigem Signalaustausch und gibt über eine Ausgangsleitung 26 ein Signal an die Weckschaltung 15. Diese ihrerseits beaufschlagt über eine Ausgangsleitung 27 den Mikrokontrollerkem 11 mit ihrem Wecksignal, um den Mikrokontrollerkem 11 vom inaktiven in den aktiven Betriebszustand zu bringen. Dies erfolgt nach einer bestimmten abgelaufenen Zeitspanne, welche in der aktiven Phase vom Mikrokontrollerkem 11 bestimmt wird und über Leitung 25 in ein
Register in der Zeitschaltlogik 16 eingestellt wird. Versorgt mit Taktsignalen über den Multiplexer 14 und die Leitung 23 überwacht und vergleicht die Zeitschaltlogik 16 die eingestellten Zeitvorgaben. Zum rechten Zeitpunkt wird dann die Weckschaltung 15 über Leitung 26 angesteuert.
Der Mikrokontrollerkem 11 steht über eine Eingangsleitung 28 und eine Ausgangsleitung 29 mit der Ein-/Ausgangsschaltung 19 in Verbindung. Über diese Schaltung wird der Mikrokontrollerkem 11 beispielsweise mit Signale versorgt und beaufschlagt, die z. B. von der Tastaturerfassung, Relaistreibern, Positionssignalgebern und anderen interessierenden und angeschlossenen Baueinheiten stammen und über die Eingangsleitung 28 eingelesen werden. Umgekehrt werden über die Ausgangsleitung 29 diese Baueinheiten mit Steuer- und sonstigen Signalen über die Ein-/Ausgabeschaltung 19 versorgt.
Anhand eines bevorzugten Anwendungsbeispiels werden wesentliche Funktionen des erfindungsgemäßen Mikrokontrollers 10 anschließend erläutert. Bei elektrischen Versteilantrieben in Kraftfahrzeugen wird eine Positionserfassung mittels Inkrementalgebern eingesetzt. Dazu können z.B. Hallsensoren diesen. Solche Antriebe mit Positionserfassung sind beispielsweise bei elektrischen Fensterhebern mit Einklemmschutz, Schiebedächern und Sitzverstellungen mit Memory-Funktion im Einsatz. Für derartige Systeme soll die Positionserfassung auch nach einer
Notabschaltung infolge von Unterspannung, insbesondere durch Abklemmen der Batterie oder Ansprechen einer Fahrzeugsicherung während des Verstellvorgangs, noch realisierbar sein. Die Nachlaufzeit eines typischen Verstellmotors kann bis zu 100 ms betragen. Da anschließend noch die Positionsdaten in einen nicht flüchtigen Speicher geschrieben werden müssen, muß das System Mikrokontroller plus Sensorik für Pufferzeiten von ca 120 ms aus einer Kapazität gespeist werden.
Die minimale Bordnetzspannung, bei welcher die Antriebe noch angesteuert werden, beträgt üblicherweise 9 V. Für die Verpoldiode und den Spannungsabfall an einen Spannungsregler muß mit ca. 1,2 V gerechnet werden. Die minimale Funktionsspannung für Hallsensoren, die zur Positionserfassung dienen, und Mikrokontroller liegt bei ca. 3,8 V. Daraus resultiert ein zulässiger Spannungabfall an der Pufferkapazität von ΔU = 9 V -1,2 V - 3,8 V = 4 V.
Bei Annahme von 30 mA Gesamtstromverbrauch für dieses System ergibt sich damit eine Mindestgröße für die Pufferkapazität von
I. Δt 30 mA . 120 ms c = = = 900 μF.
ΔU 4 V
Kondensatoren dieser Kapazität sind aufgrund ihrer großen Abmessungen nur sehr schwer in den üblichen Motorsteuerelektroniken zu intergrieren.
Um die mittlere Stromaufnahme des Systems zu reduzieren, werden Mikrokontroller und Hallsensoren nur noch zeitweise eingeschaltet, um die Sensorpegel abzutasten. Zu diesem Zweck erfüllt der erfindungsgemäße Mikrokontroller 10 die folgenden
Anforderungen: er besitzt einen stromsparenden inaktiven Betriebszustand (power down mode) ; die Anlaufzeit des Mikrokontrollers 10 ist deutlich kleiner als das zu erwartende Abtastzeitintervall; der Mikrokontroller 10 enthält eine Unterspannungserkennung 17, die beispielsweise als Schwellwerterfassung unmittelbar an die Bordnetzspannung angeschlossen ist, und damit die
Unterspannungsbedingung ohne Zeitverzug feststellt und dem
Mikrokontrollerkem 11 über Leitung 30 mitteilt; schließlich wird nach Ablauf einer bestimmten Zeit nach Eintritt in den inaktiven Betriebszustand oder bei Eintritt eines bestimmten Ereignisses der Mikrokontroller durch seine
Selbsweckvorrichtung wieder in den aktiven Betriebszustand versetzt. Wird bei dem erfindungsgemäß gestalteten Mikrokontroller 10 in der Unterspannungserkennung 17 festgestellt, daß die Bordnetzspannung unter einen Minimalpegel abgesunken ist, werden folgende Aktionen ausgeführt: die Positionssignale der Hallsensoren werden ausgewertet; die Hallsensoren werden abgeschaltet; es erfolgt die Bestimmung der gewünschten Zeitspanne für den inaktiven Betriebszustand und die Einstellung dieses Wertes in das Register in der Zeitschaltlogik als Vergleichswert; der Systemtakt wird vom Phasenregelkreis 13 auf den niederfrequenten Oszillator 12 umgeschaltet; schließlich wird der Mikrokontrollerkem 11 angehalten, d.h. der Mikrokontroller 10 in den inaktiven Betriebszustand (stop mode) versetzt.
In dem inaktiven Betriebszustand wird die Zeitschaltlogik 16 mit dem niederfrequenten Takt versorgt. Bei der Berechnung des Wertes für die inaktive Zeitspanne, die in das Register eingeschrieben wird, wird dies berücksichtigt, damit die richtige Aufweckzeit erreicht werden kann. Wenn die Zeitspanne für den inaktiven Betriebszustand abgelaufen ist, wird die Weckschaltung 15, eingeleitet von einem Signal auf Leitung 26 der Zeitschaltlogik 16, ein Aufwecksignal für den Mikrokontrollerkem 11 generieren und diesem über Leitung 27 zuführen. Das Aufwecksignal bewirkt, daß der Phasenregelkreis 13 aktiviert wird. Nach Ablauf der
Einschwingzeit des Phasenregelkreises 13 von beispielsweise ca. 200 μs ist der Mikrokontrollerkem 11 voll funktionsfähig.
Wenn innerhalb des aktiven Betriebszustandes, der Laufphase des Mikrokontrollers 10 nur wenige Funktionen ausgeführt werden, z.B. das Auswerten der Positionssignale von Hallsensoren, so wird in sinnvoller Weise der Mikrokontrollerkem 11 mittels des entsprechend gesteuerten Multiplexers 14 nur mit dem niederfrequenten Takt auf der Ausgangsleitung 21 des niederfrequenten Oszillators 12 versorgt. In diesem Fall muß der Phasenregelkreis 13 nicht aktiviert werden und die zugehörige Einschwingzeit wird eingespart. Der Mikrokontrollerkem 11 ist sofort nach Eintreffen des Wecksignals funktionsbereit, arbeitet allerdings mit der niedrigeren Taktfrequenz. Wenn die Aufgaben abgearbeitet sind, wird erneut die Zeitspanne für den inaktiven Betriebszustand ermittelt, in das Register der Zeitschaltlogik 16 eingestellt und der Mikrokontroller schaltet sich selbst für diese Zeitspanne ab.
Die Erfindung stellt einen besonders gestalteten Mikrokontroller mit Selbstweckvorrichtung zur Verfügung, bei dem durch nur kurzzeitiges Einschalten in den aktiven Betriebszustand die mittlere Stromaufnahme entsprechend dem Verhältnis von Lauf- zu Ruhenszeit vorteilhaft reduziert wird. Damit ist die notwendige Pufferkapazität für den Fall der Notabschaltung bei Unterspannung reduziert. Er kann sowohl mit hoher als auch mit niedriger Frequenz betrieben werden. In dem inaktiven Betriebszustand wird der Takt von dem stromsparenden niederfrequenten Oszillator, der in den Mikrokontroller 10 mitintegriert ist, zur Verfügung gestellt.

Claims

Ansprüche
1. Mikrokontroller mit Selbstweckvorrichtung, insbesondere zur Verwendung in elektrischen Verstellantrieben, mit einer Steuervorrichtung zur Vorgabe eines aktiven und eines inaktiven Betriebszustands, um Versorgungsenergie einzusparen, und einem Oszillator für die Abgabe eines Aufwecksignals, dadurch gekennzeichnet, daß der Oszillator (12) ein niederfrequenter Oszillator ist, daß im Mikrokontroller (10) eine Schaltung (13) vorgesehen ist, die aus der niedrigen Frequenz dieses Oszillators (12) eine wesentlich höhere Taktfrequenz des Mikrokontrollerkerns (11) generiert, daß der Oszillator (12) als originäres Bauelement in den Mikrokontroller (10) mitintegriert ist, und daß eine Unterspannungserkennung (17) vorgesehen ist, deren
Ausgangssignal (30) unmittelbar dem Mikrokontrollerkem (11) zuführbar ist.
2. Mikrokontroller nach Anspruch 1, dadurch gekennzeichnet, daß die Schaltung zur Generierung der hohen Taktfrequenz des
Mikrokontrollerkerns (11) ein abschaltbarer Phasenregelkreis (13) ist.
3. Mikrokontroller nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er mit einer Weckschaltung (15) versehen ist, welche nach Ablauf einer bestimmten Zeit oder bei Eintritt eines bestimmten Ereignisses den Mikrokontrollerkem (11) von dem inaktiven in den aktiven Betriebszustand versetzt.
4. Mikrokontroller nach Anspruch 3, dadurch gekennzeichnet, daß er mit einer Zeitschaltlogik (16) versehen ist, welche nach Ablauf einer verschieden vorgebbaren Zeitspanne die Weckschaltung (15) beaufschlagt, damit diese den Mikrokontrollerkem (11) von dem inaktiven in den aktiven Betriebszustand versetzt.
5. Mikrokontroller nach Anspruch 4, dadurch gekennzeichnet, daß das Wecksignal (27) der Weckschaltung (15) diejenige Schaltung (13) aktiviert, welche aus der niedrigen Frequenz des niederfrequenten Oszillators (12) wesentlich höhere Taktfrequenz des Mikrokontrollerkerns (11) generiert, um diesen von dem inaktiven in den aktiven Betriebszustand zu versetzen.
6. Mikrokontroller nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß er mit einem Multiplexer (14) versehen ist, über den der Mikrokontrollerkem (11) in bestimmten Betriebssituationen direkt mit der Frequenz des niederfrequenten Oszillators (12) als seiner Taktfrequenz versorgbar ist.
7. Mikrokontroller nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß der Mikrokontrollerkem (11) nach Abarbeiten bestimmter Funktionen für eine bestimmte, an gewisse Umstände anpaßbare Zeitspanne in den inaktiven Betriebszustand versetzbar ist.
8. Mikrokontroller nach Anspruch 4 und 7, dadurch gekennzeichnet, daß die anpaßbare Zeitspanne programmierbar und in ein in der Zeitschaltlogik (16) vorgesehenes Zeitvergleichsregister einspeicherbar ist.
9. Mikrokontroller nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß die Frequenz des niederfrequenten Oszillators (12) beispielsweise 100 kHz und die daraus generierte Frequenz des Mikrokontrollerkerns (11) beispielsweise 10 MHz beträgt.
10. Mikrokontroller nach einem der vorigen Ansprüche, dadurch gekennzeichnet, daß er bei elektrischen Verstellantrieben von Kraftfahrzeugen verwendet wird, und daß die Unterspannungserkennung (17) unmittelbar an die Bordnetzspannung angeschlossen ist, um Unterspannungsbedingungen ohne Zeitverzug zu erkennen.
EP97916349A 1996-03-19 1997-03-19 Mikrokontroller mit selbstweckvorrichtung Ceased EP0888583A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19610627 1996-03-19
DE19610627A DE19610627A1 (de) 1996-03-19 1996-03-19 Mikrokontroller mit Selbstweckvorrichtung
PCT/DE1997/000553 WO1997035246A1 (de) 1996-03-19 1997-03-19 Mikrokontroller mit selbstweckvorrichtung

Publications (1)

Publication Number Publication Date
EP0888583A1 true EP0888583A1 (de) 1999-01-07

Family

ID=7788652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97916349A Ceased EP0888583A1 (de) 1996-03-19 1997-03-19 Mikrokontroller mit selbstweckvorrichtung

Country Status (5)

Country Link
US (1) US6357012B1 (de)
EP (1) EP0888583A1 (de)
BR (1) BR9708222A (de)
DE (1) DE19610627A1 (de)
WO (1) WO1997035246A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424616C (zh) * 2002-11-26 2008-10-08 精英电脑股份有限公司 可携式计算机电源管理的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892315B1 (en) * 2000-05-24 2005-05-10 Cypress Semiconductor Corp. Adjustable microcontroller wake-up scheme that calibrates a programmable delay value based on a measured delay
EP1503269A1 (de) * 2003-07-31 2005-02-02 Freescale Semiconductor, Inc. Steuerungsvorrichtung für einen Kommunikationsbus
CN100470656C (zh) * 2003-10-31 2009-03-18 宇田控股有限公司 摆动时钟信号的产生方法和产生装置
US20090251005A1 (en) * 2008-04-07 2009-10-08 Liebert Corporation Undervoltage transfer detection
DE102012206340A1 (de) 2012-04-18 2013-10-24 Robert Bosch Gmbh Mikrocontroller
DE102014119138B3 (de) * 2014-12-19 2015-11-19 LOEWE Technologies GmbH Aufwachschaltung und Aufwachverfahren für ein elektronisches Gerät mit einer Selbstweckfunktion
DE102021213187A1 (de) 2021-11-23 2023-05-25 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Verfahren zum Betrieb eines Steuergeräts eines Kraftfahrzeugs
CN114261354B (zh) * 2021-12-24 2023-07-04 南京英锐创电子科技有限公司 低频时钟电路及控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941989A (en) * 1974-12-13 1976-03-02 Mos Technology, Inc. Reducing power consumption in calculators
WO1985002275A1 (en) * 1983-11-07 1985-05-23 Motorola, Inc. Synthesized clock microcomputer with power saving
US4670837A (en) * 1984-06-25 1987-06-02 American Telephone And Telegraph Company Electrical system having variable-frequency clock
US4722059A (en) * 1985-04-19 1988-01-26 Westinghouse Electric Corp. Programmed overcurrent protection control apparatus and method of operating the same
US4908523A (en) * 1988-04-04 1990-03-13 Motorola, Inc. Electronic circuit with power drain control
US4965738A (en) * 1988-05-03 1990-10-23 Anton/Bauer, Inc. Intelligent battery system
US5073943A (en) * 1988-12-27 1991-12-17 Ford Motor Company Automotive audio system having active controls in reduced power state
JPH0496810A (ja) * 1990-08-13 1992-03-30 Matsushita Electric Ind Co Ltd 情報端末装置
US5239652A (en) * 1991-02-04 1993-08-24 Apple Computer, Inc. Arrangement for reducing computer power consumption by turning off the microprocessor when inactive
US5428252A (en) * 1992-01-03 1995-06-27 Zilog, Inc. Power supply interruption detection and response system for a microcontroller
US5355502A (en) * 1992-09-02 1994-10-11 Maxtor Corporation Low power disk drive clock generator circuit
DE4302232A1 (de) * 1993-01-28 1994-08-04 Bosch Gmbh Robert Vorrichtung zum Betreiben eines Mikroprozessors
JP3264139B2 (ja) * 1994-07-07 2002-03-11 株式会社デンソー マイクロコンピュータの駆動装置
US5633573A (en) * 1994-11-10 1997-05-27 Duracell, Inc. Battery pack having a processor controlled battery operating system
JP2885112B2 (ja) * 1995-01-27 1999-04-19 株式会社デンソー 半導体集積回路
US5746697A (en) * 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9735246A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424616C (zh) * 2002-11-26 2008-10-08 精英电脑股份有限公司 可携式计算机电源管理的方法

Also Published As

Publication number Publication date
WO1997035246A1 (de) 1997-09-25
BR9708222A (pt) 1999-07-27
DE19610627A1 (de) 1997-09-25
US6357012B1 (en) 2002-03-12

Similar Documents

Publication Publication Date Title
DE10250616C1 (de) Bordnetz
EP1368730A2 (de) Schaltung und verfahren zur vorgabe eines startsignals für einen controller
WO2011003813A1 (de) Abgestufte schlafbetriebsmodi in einem kraftfahrzeug und entsprechendes steuergerät
DE10160266A1 (de) Verfahren und Anordnung zur Ruhestromversorgung eines Fahrzeugs mit einem Mehrspannungsbordnetz
DE19610626C2 (de) Nachlauferfassung von elektrischen Verstellmotoren
DE3926178A1 (de) Aufweck-schaltungsanordnung fuer einen mikroprozessor
DE10330451B3 (de) Vorrichtung zum Wecken eines Steuergerätes
EP0888583A1 (de) Mikrokontroller mit selbstweckvorrichtung
DE112019000760T5 (de) Schaltsteuerschaltung
EP0908822A2 (de) Steuerschaltung für einen Microcontroller
DE19618094C2 (de) Steuerschaltung mit nachstimmbarem Standby-Oszillator
DE112008001221B4 (de) Leistungssteuerungsanordnung für ein Kraftfahrzeug, gesteuerter Abschaltvorgang für eine solche sowie Karftfahrzeug
DE4226704A1 (de) Verfahren zum Betreiben einer Anlage mit mehreren an ein Bus-System angeschlossenen Komponenten und Schnittstellen-Schaltungsanordnung zur Durchführung des Verfahrens
EP1565349B1 (de) Vorrichtung zum wecken eines steuergerätes
DE112012004280T5 (de) Fahrzeugeigenes ECU
DE102014110797A1 (de) Schaltung und Verfahren für die Betätigung eines elektronischen Schalters
WO2007045307A2 (de) Kraftfahrzeugsteuersystem
WO2000004517A1 (de) Verfahren zum einschalten eines elektrisch betriebenen, stromverbrauchenden bauelements sowie elektronische schaltungsanordnung
DE102010000522B4 (de) Elektrisches Leistungsversorgungssystem für Fahrzeuge
EP0608524B1 (de) Vorrichtung zum Betreiben eines Mikroprozessors
DE102010040785A1 (de) Datenübertragungsverfahren und Vorrichtung
DE102016218161A1 (de) Elektronische steuereinheit
EP0852764B1 (de) Vorrichtung zum übertragen von daten
DE10330446B4 (de) Vorrichtung zur Steuerung der Betriebszustände bei Steuergeräten
DE102011112742A1 (de) Verfahren zum Betreiben eines Kraftwagens, Schaltungsanordnung für einen Kraftwagen sowie Kraftwagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19990108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091117