EP0887700B1 - Sensibilisierungsfarbstoffe für erhöhte Lichtabsorption - Google Patents

Sensibilisierungsfarbstoffe für erhöhte Lichtabsorption Download PDF

Info

Publication number
EP0887700B1
EP0887700B1 EP19980201969 EP98201969A EP0887700B1 EP 0887700 B1 EP0887700 B1 EP 0887700B1 EP 19980201969 EP19980201969 EP 19980201969 EP 98201969 A EP98201969 A EP 98201969A EP 0887700 B1 EP0887700 B1 EP 0887700B1
Authority
EP
European Patent Office
Prior art keywords
substituted
dye
unsubstituted
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980201969
Other languages
English (en)
French (fr)
Other versions
EP0887700A1 (de
Inventor
Richard Lee Parton
Thomas Lorne Penner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP0887700A1 publication Critical patent/EP0887700A1/de
Application granted granted Critical
Publication of EP0887700B1 publication Critical patent/EP0887700B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes

Definitions

  • This invention relates to a silver halide photographic element containing at least one silver halide emulsion which has associated with it at least one sensitizing dye which contains two or more chromophores.
  • J-aggregating cyanine dyes are used in many photographic systems. It is believed that these dyes adsorb to a silver halide emulsion and pack together on their "edge" which allows the maximum number of dye molecules to be placed on the surface. However, a monolayer of dye, even one with as high an extinction coefficient as a J-aggregated cyanine dye, absorbs only a small fraction of the light impinging on it per unit area. The advent of tabular emulsions allowed more dye to be put on the grains due to increased surface area. However, in most photographic systems, it is still the case that not all the available light is being collected.
  • sensitizing dyes having two chromophores connected by a linking group which contains at least one hetero atom we can increase light collection and photographic sensitivity (speed). We can also obtain a broader sensitization envelope and decrease illuminance sensitivity in photographic elements which leads to better color reproduction.
  • This invention comprises a silver halide photographic element comprising at least one silver halide emulsion spectrally sensitized by a molecule of formula I: (Dye 1) - (L - [(Dye 2)] n ) m wherein Dye 1 comprises a first chromophore and Dye 2 comprises a second chromophore, wherein Dye 1 adsorbs to silver halide more strongly then Dye 2, and Dye 1 absorbs light at a longer wavelength then Dye 2; L is a hydrophilic organic linking group of the formula: ⁇ G 1 ⁇ (XG 2 ) t ⁇ G 3 ⁇ wherein each of G 1 , G 2 , G 3 independently represent one or more substituted or unsubstituted alkylene or substituted or unsubstituted alkenylene groups, which can have one or more intervening heteroatoms, containing 1 to 20 carbon atoms, X is a heteroatom and t is 1-8; said linking group containing
  • Dye 2 is a merocyanine dye which in a more preferred embodiment contains an acidic substituent.
  • Dye 1 is a cyanine dye.
  • the organic linking group also contains an amide group.
  • This sensitizing dye of formula I provides enhanced speed and/or better color reproduction and/or improved illuminent sensitivity compared to sensitizing the emulsion using (Dye I) and (Dye 2) as separate sensitizing dyes or sensitizing the emulsion with a binary dye of the prior art.
  • Figs. 1a and 1b show the light absorption profile and spectral sensitivity of Dye I-1 of the invention compared to comparative Dye C-1, as discussed more fully below.
  • Dye 1 is strongly to moderately adsorbed to the silver halide grain.
  • Dye 2 is not adsorbed or only weakly adsorbed to the silver halide grain.
  • the relative adsorption strengths of Dye 1 and Dye 2 can be determined by using model dyes and well-known techniques for measuring adsorption strength.
  • Useful analogs of Dye 1 and Dye 2 can be obtained by replacing the linking group (L) with an acidic substituent such as a sulfonic or carboxylic acid.
  • ((Dye 1 ) -SG) and ((Dye 2) -SG), where SG is a solubilizing group such as: -(CH 2 ) 3 SO 3 - or -(CH 2 ) 2 CO 2 - can be prepared.
  • the dye adsorption strength (K) and the area each dye molecule occupies on the silver halide surface can be determined by well-known techniques in a silver halide system (for example see W. West, B. H. Carrol, and D. H. Whitcomb, J. Phys. Chem, 56, 1054 (1962)).
  • the emulsion used to determine the adsorption strength should be as close as possible to the emulsion of practical interest.
  • the adsorption strength of ((Dye 2)-SG) is less than 30% that of ((Dye 1)-SG), more preferably the adsorption strength of ((Dye 2)-SG) is less than 10% that of ((Dye 1)-SG), more preferably the adsorption strength of ((Dye 2)-SG) is less than 5% that of ((Dye 1)-SG), more preferably the adsorption strength of ((Dye 2)-SG) is zero or close to zero.
  • the area each molecule of the invention dye, (Dye 1) - [L - (Dye 2) n ] m , occupies is no more then 150% of the area of the corresponding model dye, ((Dye 1)-SG) on the silver halide emulsion. More preferably the invention dye should take no more than 125% of the area of the corresponding ((Dye 1)-SG) model dye. More preferably the invention dyes should occupy no more than 110% of the area of the corresponding model dye. Most preferably the invention dyes should occupy approximately the same or less area on the silver halide emulsion as the corresponding model dye ((Dye 1)-SG).
  • Dye 1 and Dye 2 are light-absorbing molecules (chromophores) that adsorb light preferably in the visible wavelength of the spectrum.
  • Dye 2 acts like an antenna dye and absorbs light and transfers that energy to Dye 1 for example by a Förster-type energy transfer mechanism (see Th. Förster, Discuss. Faraday Soc., 27 , 7, 1959).
  • the extinction coefficient of Dye 1 and Dye 2 should be high. It is useful to use the extinction coefficients of the model dyes, ((Dye 1)-SG) and ((Dye 2)-SG), at their wavelengths of maximum light absorption to determine their light absorbing properties.
  • the extinction coefficient of the model dyes should be at least 1 x10 +4 cm -1 M -1 . More preferably their extinction coefficients should be at least 3 x10 +4 cm -1 M -1 .
  • the excitation energy of Dye 1 should be less, or of longer absorption wavelength, than the excitation energy of Dye 2 when the inventive dye of formula I is incorporated into a photographic element containing silver halide emulsion.
  • the dye of formula I has a net charge of -1.
  • Dye 1 is preferably a cyanine dye, merocyanine dye, complex cyanine dye, complex merocyanine dye, homopolar cyanine dye, or hemicyanine dye, etc..
  • merocyanine dyes containing a group that adsorbs to silver halide, such as a thiocarbonyl group and cyanine dyes are particularly useful. Of these cyanine dyes are especially useful.
  • Dye 1 is a cyanine dye having structure Ia or a merocyanine dye having structure Ib; wherein:
  • cyanine dyes of the formula Ia where:
  • Dye 1 Particularly preferred as Dye 1, are cyanine dyes of the formula Id or Ie: wherein:
  • Dye 2 is preferably a cyanine dye, merocyanine dye, arylidene dye, complex cyanine dye, complex merocyanine dye, homopolar cyanine dye, hemicyanine dye, styryl dye, hemioxonol dye, oxonol dye, anthraquinone dye, triphenylmethane dye, azo dye type, azomethine dye, coumarin dye or others.
  • merocyanine dyes, coumarin dyes, arylidene dyes and oxonol dyes are particularly useful.
  • Merocyanine dyes are especially useful.
  • the merocyanine dyes that can be employed preferably contain 5- or 6-membered heterocyclic nuclei such as a barbituric acid nucleus, pyrazolin-5-one nucleus, a benzoylacetonitrile nucleus, or an isoxazolinone nucleus, etc.
  • Dye 2 does not contain a thiocarbonyl group.
  • Dye 2 Particularly preferred as Dye 2 are dyes of the structure IIa, IIb, IIc, IId, IIe, or IIf: wherein:
  • Dye 2 Especially preferred as Dye 2 are merocyanine dyes of the formula: wherein:
  • Dye 2 Especially preferred as Dye 2 are merocyanine dyes of the structure: wherein:
  • substituent group when reference in this application is made to a substituent "group”, this means that the substituent may itself be substituted or unsubstituted (for example "alkyl group” refers to a substituted or unsubstituted alkyl).
  • substituents on any “groups” referenced herein or where something is stated to be possibly substituted include the possibility of any groups, whether substituted or unsubstituted, which do not destroy properties necessary for the photographic utility. It will also be understood throughout this application that reference to a compound of a particular general formula includes those compounds of other more specific formula which specific formula falls within the general formula definition.
  • substituents on any of the mentioned groups can include known substituents, such as: halogen, for example, chloro, fluoro, bromo, iodo; alkoxy, particularly those with 1 to 6 carbon atoms (for example, methoxy, ethoxy); substituted or unsubstituted alkyl, particularly lower alkyl (for example, methyl, trifluoromethyl); alkenyl or thioalkyl (for example, methylthio or ethylthio), particularly either of those with 1 to 6 carbon atoms; substituted and unsubstituted aryl, particularly those having from 6 to 20 carbon atoms (for example, phenyl); and substituted or unsubstituted heteroaryl, particularly those having a 5 or 6-membered ring containing 1 to 3 heteroatoms selected from N, O, or S (for example, pyridyl, thienyl, furyl, pyrrolyl); and others known in the art.
  • Alkyl substituents may specifically include "lower alkyl", that is having from 1 to 6 carbon atoms, for example, methyl or ethyl. Further, with regard to any alkyl group, alkylene group or alkenyl group, it will be understood that these can be branched or unbranched and include ring structures.
  • any conventionally utilized nuclei for cyanine dyes are applicable to these dyes as basic heterocyclic nuclei. That is, a pyrroline nucleus, an oxazoline nucleus, a thiazoline nucleus, a pyrrole nucleus, an oxazole nucleus, a thiazole nucleus, a selenazole nucleus, an imidazole nucleus, a tetrazole nucleus, a pyridine nucleus, etc., and further, nuclei formed by condensing alicyclic hydrocarbon rings with these nuclei and nuclei formed by condensing aromatic hydrocarbon rings with these nuclei, that is, an indolenine nucleus, a benzindolenine nucleus, an indole nucleus, a benzoxazole nucleus, a naphthoxazole nucleus, a benzothiazole nucleus,
  • Z 1 and Z 2 each independently represents the atoms necessary to complete a substituted or unsubstituted 5- or 6-membered heterocyclic nucleus. These include a substituted or unsubstituted: thiazole nucleus, oxazole nucleus, selenazole nucleus, quinoline nucleus, tellurazole nucleus, pyridine nucleus, thiazoline nucleus, indoline nucleus, oxadiazole nucleus, thiadiazole nucleus, or imidazole nucleus.
  • This nucleus may be substituted with known substituents, such as halogen (e.g., chloro, fluoro, bromo), alkoxy (e.g., methoxy, ethoxy), substituted or unsubstituted alkyl (e.g., methyl, trifluoromethyl), substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, sulfonate, and others known in the art.
  • substituents such as halogen (e.g., chloro, fluoro, bromo), alkoxy (e.g., methoxy, ethoxy), substituted or unsubstituted alkyl (e.g., methyl, trifluoromethyl), substituted or unsubstituted aryl, substituted or unsubstituted aralkyl, sulfonate, and others known in the art.
  • Z 1 and Z 2 each independently represent the atoms necessary to complete a substituted or unsubstituted thiazole nucleus, a substituted or unsubstituted selenazole nucleus, a substituted or unsubstituted imidazole nucleus, or a substituted or unsubstituted oxazole nucleus.
  • thiazole nucleus e.g., thiazole, 4-methylthiazole, 4-phenylthiazole, 5-methylthiazole, 5-phenylthiazole, 4,5-dimethyl-thiazole, 4,5-diphenylthiazole, 4-(2-thienyl)thiazole, benzothiazole, 4-chlorobenzothiazole, 5-chlorobenzothiazole, 6-chlorobenzothiazole, 4-methylbenzothiazole, 4-methylbenzothiazole, 5-methylbenzothiazole, 6-methylbenzothiazole, 5-bromobenzothiazole, 6-bromobenzothiazole, 5-phenylbenzothiazole, 6-phenylbenzothiazole, 4-methoxybenzothiazole, 5-methoxybenzothiazole, 6-methoxybenzothiazole, 4-ethoxybenzothiazole, 5-ethoxybenzothiazole, 5-ethoxybenzothiazole, 5-ethoxybenzo
  • R 9 and R 10 are independently each a cyano group, a tricyanopropene group, an ester group such as ethoxy carbonyl, methoxycarbonyl, etc., an acyl group such as benzoyl, carboxybenzoyl, etc., a carbamoyl group, or an alkylsulfonyl group such as ethylsulfonyl, methylsulfonyl, etc.
  • Examples of useful nuclei for Z 3 for Dye 1 structures include a 2-thio-2,4-oxazolidinedione nucleus (i.e., those of the 2-thio-2,4-(3H,5H)-oxaazolidinone series) (e.g., 3-ethyl-2-thio-2,4 oxazolidinedione, 3-(2-sulfoethyl)-2-thio-2,4 oxazolidinedione, 3-(4-sulfobutyl)-2-thio-2,4 oxazolidinedione, 3-(3-carboxypropyl)-2-thio-2,4 oxazolidinedione, etc, a 2-thio-2,5-thiazolidinedione nucleus (i.e., the 2-thio-2,5-(3H,4H)-thiazoledeione series) (e.g., 3-ethyl-2-thio-2,5-thia
  • Examples of useful nuclei for Z 4 , Z 5 and Z 6 for Dye 2 structures include a barbituric acid nucleus series (i.e., 1-carboxyethyl-3-methylbabituric acid, 1-carboxyethyl-3-butylbabituric acid, etc.); thianaphthenone nucleus (e.g., 2-(2H)-thianaphthenone, etc.); a 2,4-thiazolidinedione nucleus (e.g., 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione, 3-a-naphthyl-2,4-thiazolidinedione, etc.); a thiazolidinone nucleus (e.g., 4-thiazolidinone, 3-ethyl-4-thiazolidinone, 3-phenyl-4-thiazolidinone, 3-a-
  • R 11 represents a substituted or unsubstituted amino group (e.g., primary amino, anilino), or a substituted or unsubstituted aminoaryl group (e.g., dialkylaminophenyl).
  • each M represents a substituted or unsubstituted methine group.
  • substituents for the methine groups include alkyl (preferably of from 1 to 6 carbon atoms, e.g., methyl, ethyl, etc.) and aryl (e.g., phenyl). Additionally, substituents on the methine groups may form bridged linkages.
  • W 2 represents a counterion as necessary to balance the charge of the dye molecule.
  • Such counterions include cations and anions for example sodium, potassium, triethylammonium, tetramethylguanidinium, diisopropylammonium, tetrabutylammonium, chloride, bromide, iodide, or paratoluene sulfonate.
  • the binary dye of formula I will have a net -1 charge and will have a counterion with a net +1 charge.
  • R 1 and R 2 are each independently substituted or unsubstituted aryl (preferably of 6 to 15 carbon atoms), or more preferably, substituted or unsubstituted alkyl (preferably of from 1 to 6 carbon atoms).
  • aryl include phenyl, tolyl, p-chlorophenyl, and p-methoxyphenyl.
  • alkyl examples include methyl, ethyl, propyl, isopropyl, butyl, hexyl, cyclohexyl, decyl, dodecyl, etc., and substituted alkyl groups (preferably a substituted lower alkyl containing from 1 to 6 carbon atoms), such as a hydroxyalkyl group, e.g., 2-hydroxyethyl, 4-hydroxybutyl, etc., a carboxyalkyl group, e.g., 2-carboxyethyl, 4-carboxybutyl, etc., a sulfoalkyl group, e.g., 2-sulfoethyl, 3-sulfobutyl, 4-sulfobutyl, etc., a sulfatoalkyl group, etc., an acyloxyalkyl group, e.g., 2-acetoxyethyl, 3-acetoxypropyl, 4-butyroxy
  • Dye 1 and Dye 2 useful in this invention for preparing the binary dyes can be prepared by methods known in the art. Such methods are taught, for example in M. Hamer, Cyanine Dyes and Related Compounds , Wiley, New York, 1964.
  • Dye 1 and Dye 2 are linked together by an organic hydrophilic linking group containing at least one ether oxygen atom and which is represented by formula (IIIa): ⁇ G 1 ⁇ (XG 2 ) t ⁇ G 3 ⁇ wherein each of G 1 , G 2 , G 3 independently represent one or more substituted or unsubstituted alkylene or substituted or unsubstituted alkenylene groups (which can have one or more intervening heteroatoms) containing 1 to 20 carbon atoms, X is a heteroatom and t is 1-8.
  • X is preferably -O- or -N(R 22 )-, where R 22 is H, substituted or unsubstituted alkyl or substituted or unsubstituted aryl.
  • the linking group can contain saturated or unsaturated rings, which can also contain heteroatoms. The unsaturated ring can be aromatic.
  • linking groups are of the formula IIIa wherein at least one of G 1 or G 3 contains an amide, ester, sulfonamide, carbonate, urethane or carbamoyl group.
  • Preferred linking groups are of the formula (IIIb): ⁇ G 1 ⁇ (OG 2 ) t ⁇ G 3 ⁇ wherein each of G 1 , G 2 , G 3 independently represent one or more substituted or unsubstituted alkylene or substituted or unsubstituted alkenylene groups containing 1 to 20 carbon atoms and t is 1-8.
  • linking groups are of the formula IIIb wherein: at least one of G 1 or G 3 contains an amide or ester group
  • More preferred linking groups are of the formula IIIb wherein: at least one of G 1 or G 3 contains an amide group.
  • linking groups are of the formula (IIIc): ⁇ G 1 ⁇ (OG 2 ) t ⁇ NHCO ⁇ G 3 ⁇ wherein each of G 1 , G 2 , G 3 independently represent one or more substituted or unsubstituted alkylene or substituted or unsubstituted alkenylene groups containing 1 to 20 carbon atoms and t is 1-8.
  • linking groups are of the formula IIId or IIIe: - (CH 2 ) a (OCH 2 CH 2 ) b NHCO(CH 2 ) c -, - (CH 2 ) a CONH(OCH 2 CH 2 ) b NHCO(CH 2 ) c -, wherein: a, b and c are independently integers of 1 to 4.
  • Examples of preferred linking groups are of the formula: -(CH 2 ) 2 (OCH 2 CH 2 ) 2 NHCO(CH 2 )- -(CH 2 ) 2 (OCH 2 CH 2 ) 3 CH 2 NHCO(CH 2 )- -(CH 2 ) 2 (OCH 2 CH 2 ) 4 CH 2 NHCO(CH 2 )- - (CH 2 ) 2 (OCH 2 CH 2 ) 2 NHCO(CH 2 ) 2 - - (CH 2 ) 3 (OCH 2 CH 2 ) 2 NHCO(CH 2 ) 3 - -(CH 2 ) 2 (OCH 2 CH 2 ) 2 CONH(CH 2 )- -(CH 2 ) 2 (OCH 2 CH 2 ) 2 CONH(CH 2 ) 2 - - (CH 2 ) 3 (OCH 2 CH 2 ) 2 CONH(CH 2 ) 3 - or -(CH 2 ) 3 CONH(OCH 2 CH 2 ) 2 CONH(CH 2 )
  • dyes of formula I are of structures: wherein:
  • dyes of formula I are of structures: wherein:
  • the dyes of formula I are of the structure wherein:
  • Dye 1 and Dye 2 can be prepared according to techniques that are well-known in the art, such as described in Hamer, Cyanine Dyes and Related Compounds , 1964 (publisher John Wiley & Sons, New York, NY) and T.H. James, editor, The Theory of the Photographic Process , 4th Edition, Macmillan, New York, 1977.
  • the binary dyes of this invention can be prepared by linking Dye 1 with Dye 2. This can be accomplished by various methods. For example, if one dye contains a hydrophilic chain with an amino functional group and the other dye contains a carboxylic acid group then the dyes can be linked by forming an amide group. The formation of amide groups has been examined extensively by peptide chemists and many methods have been developed for this type of reaction (see J. March, Advanced Organic Chemistry , John Wiley and Sons, Inc., New York, 1985 and references cited therein.)
  • a dye substituted with a hydrophilic linking group containing a terminal amino functional group can be prepared as shown below. Reaction of 2-[2-(2-chloroethoxy)ethoxy]ethanol, 1 , with potassium phthalimide, 2 , affords alcohol 3 (H. Maeda, S. Furuyoshi, Y. Nakatsuji, and M. Okahara, Tetrehedron, 38, 3359 (1982)).
  • the brosylate 5 can be prepared by standard methods by reacting 3 with p-bromobenzenesulfonyl chloride 4, (for example see L. F. Fieser and M.
  • Compound 5 is an alkylating agent and reaction with a base such as 6 affords a quaternary salt, 7.
  • This type of quaternary salt can be used to make a variety of dyes, such as described in Hamer, Cyanine Dyes and Related Compounds , 1964 (publisher John Wiley & Sons, New York, NY).
  • Dye 8 can be prepared readily. Removal of the phthalimide protecting group affords Dye A (for the use and removal of phthalimide protecting groups see J. March, Advanced Organic Chemistry , John Wiley and Sons, Inc., New York, 1985 and references cited therein.)
  • Dyes such as Dye B can be prepared according to techniques that are well-known in the art, such as described in Hamer, Cyanine Dyes and Related Compounds , 1964 (publisher John Wiley & Sons, New York, NY) and T.H. James, editor, The Theory of the Photographic Process, 4th Edition, Macmillan, New York, 1977.
  • Dye A (4.5 g, 6.6 mmol), Dye B (3.8 g, 7.1 mmol) and 1-hydroxy-benzotriazole (0.93 g, 6.9 mmol) were combined with 150 mL of dimethylsulfoxide in a 250 mL 3-necked round-bottomed flask equipped with a thermometer, nitrogen inlet, and magnetic stirring. The reaction mixture was placed in an oil bath at 60°C. When internal temperature reached 55°C a yellow solution had formed. O-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium tetrafluoroborate (2.6 g, 6.9 mmol) was added and the mixture was stirred for 5 min.
  • the silver halide may be sensitized by additional sensitizing dyes such as described in Research Disclosure , December 1989, Item 308119, published by Kenneth Mason Publications, Ltd., Dudley Annex, 12a North Street, Emsworth, Hampshire P010 7DQ, ENGLAND; The Theory of the Photographic Process. T.H. James, editor, 4th Edition, Macmillan, New York, 1977, Chapter 8; and in F. M. Hamer, Cyanine Dyes and Related Compounds , Wiley, New York, 1964.
  • the sensitizing dyes may be present in the emulsion together with dyes which themselves do not give rise to spectrally sensitizing effects but exhibit a supersensitizing effect or materials which do not substantially absorb visible light but exhibit a supersensitizing effect
  • aminostilbene compounds substituted with a nitrogen-containing heterocyclic group e.g., those described in U.S. Patent Nos. 2,933,390 and 3,635,721
  • aromatic organic acid-formaldehyde condensates e.g., those described in U.S. Patent No, 3,743,510
  • cadmium salts e.g., those described in U.S. Patent No, 3,743,510
  • the dye may be added to an emulsion of the silver halide grains and a hydrophilic colloid at any time prior to (e.g., during or after chemical sensitization) or simultaneous with the coating of the emulsion on a photographic element).
  • the dye/silver halide emulsion may be mixed with a dispersion of color image-forming coupler immediately before coating or in advance of coating (for example, 2 hours).
  • the above-described sensitizing dyes can be used individually, or may be used in combination, e.g. to also provide the silver halide with additional sensitivity to wavelengths of light outside that provided by one dye or to supersensitize the silver halide.
  • the emulsion layer of the photographic element of the invention can comprise any one or more of the light sensitive layers of the photographic element.
  • the photographic elements made in accordance with the present invention can be black and white elements, single color elements or multicolor elements.
  • Multicolor elements contain dye image-forming units sensitive to each of the three primary regions of the spectrum. Each unit can be comprised of a single emulsion layer or of multiple emulsion layers sensitive to a given region of the spectrum.
  • the layers of the element, including the layers of the image-forming units, can be arranged in various orders as known in the art.
  • the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
  • a typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler.
  • the element can contain additional layers, such as filter layers, interlayers, overcoat layers, subbing layers. All of these can be coated on a support which can be transparent or reflective (for example, a paper support).
  • Photographic elements of the present invention may also usefully include a magnetic recording material as described in Research Disclosure, Item 34390, November 1992, or a transparent magnetic recording layer such as a layer containing magnetic particles on the underside of a transparent support as in US 4,279,945 and US 4,302,523.
  • the element typically will have a total thickness (excluding the support) of from 5 to 30 microns. While the order of the color sensitive layers can be varied, they will normally be red-sensitive, green-sensitive and blue-sensitive, in that order on a transparent support, (that is, blue sensitive furthest from the support) and the reverse order on a reflective support being typical.
  • the present invention also contemplates the use of photographic elements of the present invention in what are often referred to as single use cameras (or "film with lens” units). These cameras are sold with film preloaded in them and the entire camera is returned to a processor with the exposed film remaining inside the camera. Such cameras may have glass or plastic lenses through which the photographic element is exposed.
  • the silver halide emulsions employed in the photographic elements of the present invention may be negative-working, such as surface-sensitive emulsions or unfogged internal latent image forming emulsions, or positive working emulsions of the internal latent image forming type (that are fogged during processing).
  • negative-working such as surface-sensitive emulsions or unfogged internal latent image forming emulsions, or positive working emulsions of the internal latent image forming type (that are fogged during processing).
  • Suitable emulsions and their preparation as well as methods of chemical and spectral sensitization are described in Sections I through V.
  • Color materials and development modifiers are described in Sections V through XX.
  • Vehicles which can be used in the photographic elements are described in Section II, and various additives such as brighteners, antifoggants, stabilizers, light absorbing and scattering materials, hardeners, coating aids, plasticizers, lubricants and matting agents are described, for example, in Sections VI through XIII. Manufacturing methods are described in all of the sections, layer arrangements particularly in Section XI, exposure alternatives in Section XVI, and processing methods and agents in Sections XIX and XX.
  • a negative image can be formed.
  • a positive (or reversal) image can be formed although a negative image is typically first formed.
  • the photographic elements of the present invention may also use colored couplers (e.g. to adjust levels of interlayer correction) and masking couplers such as those described in EP 213 490; Japanese Published Application 58-172.647: U.S. Patent 2,983,608; German Application DE 2,706,117C; U.K. Patent 1,530,272; Japanese Application A-113935; U.S. Patent 4,070,191 and German Application DE 2,643,965.
  • the masking couplers may be shifted or blocked.
  • the photographic elements may also contain materials that accelerate or otherwise modify the processing steps of bleaching or fixing to improve the quality of the image.
  • Bleach accelerators described in EP 193 389; EP 301477; U.S. 4,163,669; U.S. 4,865,956; and U.S. 4,923,784 are particularly useful.
  • nucleating agents, development accelerators or their precursors UK Patent 2,097,140; U.K. Patent 2,131,188
  • development inhibitors and their precursors U.S. Patent No. 5,460,932; U.S. Patent No. 5,478,711
  • electron transfer agents U.S. 4,859,578; U.S.
  • antifogging and anti color-mixing agents such as derivatives of hydroquinones, aminophenols, amines, gallic acid; catechol; ascorbic acid; hydrazides; sulfonamidophenols; and non color-forming couplers.
  • the elements may also contain filter dye layers comprising colloidal silver sol or yellow and/or magenta filter dyes and/or antihalation dyes (particularly in an undercoat beneath all light sensitive layers or in the side of the support opposite that on which all light sensitive layers are located) either as oil-in-water dispersions, latex dispersions or as solid particle dispersions. Additionally, they may be used with "smearing" couplers (e.g. as described in U.S. 4,366,237; EP 096 570; U.S. 4,420,556; and U.S. 4,543,323.) Also, the couplers may be blocked or coated in protected form as described, for example, in Japanese Application 61/258,249 or U.S. 5,019,492.
  • the photographic elements may further contain other image-modifying compounds such as "Development Inhibitor-Releasing” compounds (DIR's).
  • DIR's Development Inhibitor-Releasing compounds
  • DIR compounds are also disclosed in "Developer-Inhibitor-Releasing (DIR) Couplers for Color Photography," C.R. Barr, J.R. Thirtle and P.W. Vittum in Photographic Science and Engineering , Vol. 13, p. 174 (1969).
  • the concepts of the present invention may be employed to obtain reflection color prints as described in Research Disclosure , November 1979, Item 18716, available from Kenneth Mason Publications, Ltd, Dudley Annex, 12a North Street, Emsworth, Hampshire P0101 7DQ, England.
  • the emulsions and materials to form elements of the present invention may be coated on pH adjusted support as described in U.S. 4,917,994; with epoxy solvents (EP 0164 961); with additional stabilizers (as described, for example, in U.S. 4,346,165; U.S. 4,540,653 and U.S. 4,906,559); with ballasted chelating agents such as those in U.S.
  • the silver halide used in the photographic elements may be, for example, silver iodobromide, silver bromide, silver chloride, silver chlorobromide, or silver chloroiodobromide.
  • the type of silver halide grains preferably include polymorphic, cubic, and octahedral.
  • the grain size of the silver halide may have any distribution known to be useful in photographic compositions, and may be either polydipersed or monodispersed.
  • Tabular grain silver halide emulsions may also be used.
  • Tabular grains are those with two parallel major faces each clearly larger than any remaining grain face and tabular grain emulsions are those in which the tabular grains account for at least 30 percent, more typically at least 50 percent, preferably >70 percent and optimally >90 percent of total grain projected area.
  • the tabular grains can account for substantially all (>97 percent) of total grain projected area.
  • the emulsions typically exhibit high tabularity (T), where T (i.e., ECD/t 2 ) > 25 and ECD and t are both measured in micrometers ( ⁇ m).
  • the tabular grains can be of any thickness compatible with achieving an aim average aspect ratio and/or average tabularity of the tabular grain emulsion.
  • the tabular grains satisfying projected area requirements are those having thicknesses of ⁇ 0.3 ⁇ m, thin ( ⁇ 0.2 ⁇ m) tabular grains being specifically preferred and ultrathin ( ⁇ 0.07 ⁇ m) tabular grains being contemplated for maximum tabular grain performance enhancements.
  • thicker tabular grains typically up to 0.5 ⁇ m in thickness, are contemplated.
  • High iodide tabular grain emulsions are illustrated by House U.S. Patent 4,490,458, Maskasky U.S. Patent 4,459,353 and Yagi et al EPO 0 410 410.
  • Tabular grains formed of silver halide(s) that form a face centered cubic (rock salt type) crystal lattice structure can have either ⁇ 100 ⁇ or ⁇ 111 ⁇ ⁇ major faces.
  • Emulsions containing ⁇ 111 ⁇ major face tabular grains, including those with controlled grain dispersities, halide distributions, twin plane spacing, edge structures and grain dislocations as well as adsorbed ⁇ 111 ⁇ grain face stabilizers, are illustrated in those references cited in Research Disclosure I , Section I.B.(3) (page 503).
  • the silver halide grains to be used in the invention may be prepared according to methods known in the art, such as those described in Research Disclosure I and James, The Theory of the Photographic Process. These include methods such as ammoniacal emulsion making, neutral or acidic emulsion making, and others known in the art. These methods generally involve mixing a water soluble silver salt with a water soluble halide salt in the presence of a protective colloid, and controlling the temperature, pAg, pH values, etc, at suitable values during formation of the silver halide by precipitation.
  • one or more dopants can be introduced to modify grain properties.
  • any of the various conventional dopants disclosed in Research Disclosure , Item 38957, Section I. Emulsion grains and their preparation, sub-section G. Grain modifying conditions and adjustments, paragraphs (3), (4) and (5), can be present in the emulsions of the invention.
  • a dopant capable of increasing imaging speed by forming a shallow electron trap (hereinafter also referred to as a SET) as discussed in Research Discolosure Item 36736 published November 1994, here incorporated by reference.
  • the SET dopants are effective at any location within the grains. Generally better results are obtained when the SET dopant is incorporated in the exterior 50 percent of the grain, based on silver. An optimum grain region for SET incorporation is that formed by silver ranging from 50 to 85 percent of total silver forming the grains.
  • the SET can be introduced all at once or run into the reaction vessel over a period of time while grain precipitation is continuing. Generally SET forming dopants are contemplated to be incorporated in concentrations of at least 1 X 10 -7 mole per silver mole up to their solubility limit, typically up to about 5 X 10 -4 mole per silver mole.
  • SET dopants are known to be effective to reduce reciprocity failure.
  • the use of iridium hexacoordination complexes or Ir +4 complexes as SET dopants is advantageous.
  • Iridium dopants that are ineffective to provide shallow electron traps can also be incorporated into the grains of the silver halide grain emulsions to reduce reciprocity failure.
  • the Ir can be present at any location within the grain structure.
  • a preferred location within the grain structure for Ir dopants to produce reciprocity improvement is in the region of the grains formed after the first 60 percent and before the final 1 percent (most preferably before the final 3 percent) of total silver forming the grains has been precipitated.
  • the dopant can be introduced all at once or run into the reaction vessel over a period of time while grain precipitation is continuing.
  • reciprocity improving non-SET Ir dopants are contemplated to be incorporated at their lowest effective concentrations.
  • the contrast of the photographic element can be further increased by doping the grains with a hexacoordination complex containing a nitrosyl or thionitrosyl ligand (NZ dopants) as disclosed in McDugle et al U.S. Patent 4,933,272.
  • the contrast increasing dopants can be incorporated in the grain structure at any convenient location. However, if the NZ dopant is present at the surface of the grain, it can reduce the sensitivity of the grains. It is therefore preferred that the NZ dopants be located in the grain so that they are separated from the grain surface by at least 1 percent (most preferably at least 3 percent) of the total silver precipitated in forming the silver iodochloride grains.
  • Preferred contrast enhancing concentrations of the NZ dopants range from 1 X 10 -11 to 4 X 10 -8 mole per silver mole, with specifically preferred concentrations being in the range from 10 -10 to 10 -8 mole per silver mole.
  • concentration ranges for the various SET, non-SET Ir and NZ dopants have been set out above, it is recognized that specific optimum concentration ranges within these general ranges can be identified for specific applications by routine testing. It is specifically contemplated to employ the SET, non-SET Ir and NZ dopants singly or in combination. For example, grains containing a combination of an SET dopant and a non-SET Ir dopant are specifically contemplated. Similarly SET and NZ dopants can be employed in combination. Also NZ and Ir dopants that are not SET dopants can be employed in combination. Finally, the combination of a non-SET Ir dopant with a SET dopant and an NZ dopant. For this latter three-way combination of dopants it is generally most convenient in terms of precipitation to incorporate the NZ dopant first, followed by the SET dopant, with the non-SET Ir dopant incorporated last.
  • Photographic emulsions generally include a vehicle for coating the emulsion as a layer of a photographic element.
  • Useful vehicles include both naturally occurring substances such as proteins, protein derivatives, cellulose derivatives (e.g., cellulose esters), gelatin (e.g., alkali-treated gelatin such as cattle bone or hide gelatin, or acid treated gelatin such as pigskin gelatin), deionized gelatin, gelatin derivatives (e.g., acetylated gelatin, phthalated gelatin), and others as described in Research Disclosure L
  • Also useful as vehicles or vehicle extenders are hydrophilic water-permeable colloids.
  • the vehicle can be present in the emulsion in any amount useful in photographic emulsions.
  • the emulsion can also include any of the addenda known to be useful in photographic emulsions.
  • the silver halide to be used in the invention may be advantageously subjected to chemical sensitization.
  • Compounds and techniques useful for chemical sensitization of silver halide are known in the art and described in Research Disclosure I and the references cited therein.
  • Compounds useful as chemical sensitizers include, for example, active gelatin, sulfur, selenium, tellurium, gold, platinum, palladium, iridium, osmium, rhenium, phosphorous, or combinations thereof.
  • Chemical sensitization is generally carried out at pAg levels of from 5 to 10, pH levels of from 4 to 8, and temperatures of from 30 to 80°C, as described in Research Disclosure I, Section IV (pages 510-511) and the references cited therein.
  • the silver halide may be sensitized by sensitizing dyes by any method known in the art, such as described in Research Disclosure I .
  • the dye may be added to an emulsion of the silver halide grains and a hydrophilic colloid at any time prior to (e.g., during or after chemical sensitization) or simultaneous with the coating of the emulsion on a photographic element.
  • the dyes may, for example, be added as a solution in water or an alcohol.
  • the dye/silver halide emulsion may be mixed with a dispersion of color image-forming coupler immediately before coating or in advance of coating (for example, 2 hours).
  • Photographic elements of the present invention are preferably imagewise exposed using any of the known techniques, including those described in Research Disclosure I , section XVI. This typically involves exposure to light in the visible region of the spectrum, and typically such exposure is of a live image through a lens, although exposure can also be exposure to a stored image (such as a computer stored image) by means of light emitting devices (such as light emitting diodes and CRTs).
  • a stored image such as a computer stored image
  • Photographic elements comprising the composition of the invention can be processed in any of a number of well-known photographic processes utilizing any of a number of well-known processing compositions, described, for example, in Research Disclosure I , or in T.H. James, editor, The Theory of the Photographic Process, 4th Edition, Macmillan, New York, 1977.
  • a negative working element the element is treated with a color developer (that is one which will form the colored image dyes with the color couplers), and then with a oxidizer and a solvent to remove silver and silver halide.
  • the element is first treated with a black and white developer (that is, a developer which does not form colored dyes with the coupler compounds) followed by a treatment to fog silver halide (usually chemical fogging or light fogging), followed by treatment with a color developer.
  • a black and white developer that is, a developer which does not form colored dyes with the coupler compounds
  • a treatment to fog silver halide usually chemical fogging or light fogging
  • a color developer usually chemical fogging or light fogging
  • Dye images can be formed or amplified by processes which employ in combination with a dye-image-generating reducing agent an inert transition metal-ion complex oxidizing agent, as illustrated by Bissonette U.S. Patents 3,748,138, 3,826,652, 3,862,842 and 3,989,526 and Travis U.S. Patent 3,765,891, and/or a peroxide oxidizing agent as illustrated by Matejec U.S. Patent 3,674,490, Research Disclosure, Vol. 116, December, 1973, Item 11660, and Bissonette Research Disclosure, Vol. 148, August, 1976, Items 14836, 14846 and 14847.
  • the photographic elements can be particularly adapted to form dye images by such processes as illustrated by Dunn et al U.S.
  • Patent 3,822,129, Bissonette U.S. Patents 3,834,907 and 3,902,905 Bissonette et al U.S. Patent 3,847,619, Mowrey U.S. Patent 3,904,413, Hirai et al U.S. Patent 4,880,725, Iwano U.S. Patent 4,954,425, Marsden et al U.S. Patent 4,983,504, Evans et al U.S. Patent 5,246,822, Twist U.S. Patent No.
  • Film coating evaluations were carried out in a color format on a sulfur-and-gold sensitized 0.54 ⁇ m silver bromoiodide emulsion (see Table III for results). Dyes were added at 0.6 mmole dye/Ag mole before the chemical finish. The emulsion was combined with a coupler dispersion containing 2-(2,4-bis(1,1-dimethylpropyl)phenoxy)-N-(4-((((4-cyanophenyl)amino)carbonyl)amino)-3-hydroxyphenyl)-hexanamide just prior to coating. Single-layer coatings were made on remjet-backed acetate support.
  • Sensitometric exposures (0.1 sec) were done using 365 nm Hg-line exposure or a tungsten exposure with filtration to simulate a daylight exposure.
  • the described elements were processed in the known C-41 color process as described in Brit. J. Photog. Annual of 1988, p191-198 with the exception that the composition of the bleach solution was changed to comprise propylenediaminetetraacetic acid.
  • Unprocessed coatings were examined spectroscopically to determine light absorption properties. To determine the spectral photographic sensitivity distribution, the coatings were given a 0.1 sec exposure on a wedge spectrographic instrument covering a wavelength range from 350 to 750 nm. The instrument contains a tungsten light source and a step tablet ranging in density from 0 to 3 density units in 0.3 density steps. Correction for the instrument's variation in spectral irradiance with wavelength was done via computer. After processing, a plot of log relative spectral sensitivity vs. wavelength can be obtained. The results are reported in Table III.
  • Film coating evaluations were carried out in a color format as described in Example 1, except the emulsion was a sulfur-and-gold sensitized 2.6 x 0.06 pm AgBrI tabular emulsion and the exposure time was 0.02 sec. Dyes were added at 1.7 mmole dye/Ag mole before the chemical finish (see Table IV for results).
  • the dyes of the invention give higher speed then the comparison dyes.
  • the dyes of the invention also give a broader sensitization envelope.
  • Fig. 1a shows the light absorption profile
  • Fig 1b shows the spectral sensitivity of Dye I-1 compared to Dye C-1.
  • This broad sensitivity is highly desirable for color reproduction because it makes the photographic element less susceptible variations in the light source.
  • photographic elements containing the dyes of the invention will be able to reproduce scenes illuminated with either daylight or fluorescent light whereas photographic elements containing the comparison dyes will have relatively poor sensitivity to scenes illuminated with fluorescent light.

Claims (7)

  1. Fotografisches Silberhalogenidelement mit mindestens einer Silberhalogenidemulsion, die spektral durch ein Molekül nach Formel I sensibilisiert ist: (Farbstoff 1) - (L - [(Farbstoff 2)]n)m worin Farbstoff 1 ein erstes Chromophor und Farbstoff 2 ein zweites Chromophor umfasst, worin Farbstoff 1 von Silberhalogenid stärker als Farbstoff 2 aufgenommen wird, und worin Farbstoff 1 Licht bei einer längeren Wellenlänge als Farbstoff 2 absorbiert; L eine hydrophile organische Brückengruppe von folgender Formel ist: ―G1―(XG2)t―G3 worin jeweils G1, G2, G3 unabhängig voneinander für ein oder mehrere substituierte oder nicht substituierte Alkylen- oder substituierte oder nicht substituierte Alkenylengruppen steht, die ein oder mehrere eingreifende Heteroatome aufweisen können, die 1 bis 20 Kohlenstoffatome enthalten, wobei X für ein Heteroatom steht und t für 1-8, wobei die Brückengruppe mindestens ein Ethersauerstoffatom enthält; m und n jeweils für 1 stehen und worin Farbstoff 2 keine Thiocarbonylgruppe enthält.
  2. Fotografisches Silberhalogenidelement nach Anspruch 1, worin Farbstoff 1 ein Cyaninfarbstoff, ein Merocyaninfarbstoff, ein komplexer Cyaninfarbstoff, ein komplexer Merocyaninfarbstoff, ein homopolarer Cyaninfarbstoff oder ein Hemicyaninfarbstoff ist.
  3. Fotografisches Silberhalogenidelement nach Anspruch 1, worin Farbstoff 1 folgender Formel Ia entspricht:
    Figure 00640001
    worin:
    Z1 und Z2 gleich oder unterschiedlich sein können und für die Atome stehen, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kern ist;
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p und r jeweils unabhängig voneinander für 0 oder 1 stehen,
    R1 und R2 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl oder ein substituiertes oder nicht substituiertes Aryl stehen, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist;
    oder Formel Ib:
    Figure 00640002
    worin:
    Z, für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kern ist;
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p und r jeweils unabhängig voneinander für 0 oder 1 stehen,
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist.
    R1 und R2 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl stehen, und
    Z3 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten heterozyklischen sauren Kern zu bilden;
    oder Formel Ic:
    Figure 00650001
    worin:
    q für 1 oder 2 steht,
    X1 und X2 unabhängig voneinander für S, O, Se, oder N stehen,
    R3 und R4 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl stehen,
    R5 und R6 für einen oder mehrere Substituenten stehen, die mögliche kondensierte aromatische Ringe enthalten, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist;
    oder Formel Id oder Ie:
    Figure 00660001
    Figure 00660002
    worin:
    X1 und X2 der vorausgehenden Definition entsprechen,
    R3 und R4 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl stehen,
    R5 und R6 für einen oder mehrere Substituenten stehen, die mögliche kondensierte aromatische Ringe enthalten,
    R7 für Wasserstoff oder substituiertes oder nicht substituiertes Alkyl steht, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist.
  4. Fotografisches Silberhalogenidelement nach einem der vorausgehenden Ansprüche, worin Farbstoff 2 ein Cyaninfarbstoff, ein Merocyaninfarbstoff, ein Arylidenfarbstoff, ein komplexer Cyaninfarbstoff, ein komplexer Merocyaninfarbstoff, ein homopolarer Cyaninfarbstoff, ein Hemicyaninfarbstoff, ein Styrolfarbstoff, ein Hemioxonolfarbstoff, ein Oxonolfarbstoff, ein Anthrachinonfarbstoff, ein Triphenylmethanfarbstoff, ein Azofarbstofftyp, ein Azomethinfarbstoff oder ein Coumarinfarbstoff ist.
  5. Fotografisches Silberhalogenidelement nach Anspruch 1, worin Farbstoff 2 folgender Formel IIa entspricht:
    Figure 00670001
    worin:
    Z1 für die Atome steht, die notwendig sind, um einen substituierten oder nicl substituierten Heteroring zu bilden, der ein basischer Kern ist;
    R1 für ein substituiertes oder nicht substituiertes Alkyl steht,
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingru steht;
    p für 0 oder 1 steht,
    q für eine positive ganze Zahl von 1 bis 4 steht;
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist und
    R8 steht für:
    Figure 00670002
    worin:
    Z4 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten heterozyklischen sauren Kern zu bilden; und
    R9 und R10 jeweils unabhängig voneinander für eine Cyanogruppe, eine Estergruppe, eine Acylgruppe, eine Carbamoylgruppe oder eine Alkylsulfonylgruppe stehen;
    oder Formel IIb:
    Figure 00680001
    worin:
    Z1 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kern ist;
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p für 0 oder 1 steht,
    R1 für ein substituiertes oder nicht substituiertes Alkyl steht,
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist, und
    R11 für eine substituierte oder nicht substituierte Aminogruppe oder für eine substituierte oder nicht substituierte Aminoarylgruppe steht;
    oder Formel IIc:
    Figure 00680002
    worin:
    Z1 und Z2 gleich oder unterschiedlich sein können und für die Atome stehen, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kem ist;
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p und r jeweils unabhängig voneinander für 0 oder 1 stehen,
    R1 und R2 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl oder ein nicht substituiertes Aryl stehen, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; und
    Z4 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten heterozyklischen sauren Kern zu bilden;
    oder nach Formel IId:
    Figure 00690001
    worin:
    Z1 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kern ist;
    R1 für ein substituiertes oder nicht substituiertes Alkyl steht,
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht;
    p für 0 oder 1 steht,
    q für eine positive ganze Zahl von 1 bis 4 steht;
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; und
    R8 steht für:
    Figure 00690002
    worin:
    Z4 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten heterozyklischen sauren Kern zu bilden; und
    R9 und R10 jeweils unabhängig voneinander für eine Cyanogruppe, eine Estergruppe, eine Acylgruppe, eine Carbamoylgruppe oder eine Alkylsulfonylgruppe stehen;
    oder nach Formel IIe:
    Figure 00700001
    worin:
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht;
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; und
    q für 2, 3 oder 4 steht, und
    Z5 und Z6 für die Atome stehen, die notwendig sind, um einen substituierten oder nicht substituierten sauren heterozyklischen Kern zu bilden;
    oder Formel IIf:
    Figure 00700002
    worin:
    X1 für eine Carbonylgruppe, eine Sulfonylgruppe oder ein substituiertes Stickstoffatom steht, und
    R12 bis R15 jeweils unabhängig voneinander für eine substituierte oder nicht substituierte Alkyl- oder eine substituierte oder nicht substituierte Arylgruppe stehen;
    oder Formel IIg:
    Figure 00710001
    worin:
    Z1 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, der ein basischer Kern ist;
    R1 für ein substituiertes oder nicht substituiertes Alkyl steht,
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht;
    p für 0 oder 1 steht;
    q für eine positive ganze Zahl von 1 bis 4 steht;
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; und
    Z4 für die Atome steht, die notwendig sind, um einen substituierten oder nicht substituierten heterozyklischen sauren Kern zu bilden;
    oder nach Formel IIh:
    Figure 00710002
    worin:
    X2 für O, S oder Se steht,
    R16, R17 und R18 unabhängig voneinander substituiertes oder nicht substituiertes Alkyl oder substituiertes oder nicht substituiertes Aryl sind, und
    R19 für einen geladenen Substituenten oder einen sterisch voluminösen Substituenten steht
  6. Fotografisches Silberhalogenidelement nach Anspruch 6, worin die Brückengruppe folgender Formel entspricht: ―G1―(OG2)t―G3 worin G1, G2, G3 jeweils unabhängig voneinander für eine oder mehrere substituierte oder nicht substituierte Alkylen- oder eine substituierte oder nicht substituierte Alkenylengruppe mit 1 bis 20 Kohlenstoffatomen steht und t für 1-8 steht;
    oder Formel: ―G1―(OG2)t―NHCO―G3 worin G1, G2, G3 jeweils unabhängig voneinander für eine oder mehrere substituierte oder nicht substituierte Alkylen- oder substituierte oder nicht substituierte Alkenylengruppen mit 1 bis 20 Kohlenstoffatomen steht und t für 1-8 steht;
    oder nach Formel IIId oder IIIe: -(CH2)a(OCH2CH2)bNHCO(CH2)c-, oder -(CH2)aCONH(OCH2CH2)bNHCO(CH2)e-, worin: a, b und c unabhängig voneinander für ganze Zahlen von 1 bis 4 stehen.
  7. Fotografisches Silberhalogenidelement nach einem der vorausgehenden Ansprüche, worin die Silberhalogenidemulsion mit einem Farbstoff nach Formel (I) der folgenden Struktur sensibilisiert ist:
    Figure 00730001
    worin:
    Z1, Z2 und Z4 für die Atome stehen, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, wobei diese gleich oder verschieden sein können,
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p und r jeweils unabhängig voneinander für 0 oder 1 stehen,
    R1 und R2 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl oder ein nicht substituiertes Aryl stehen, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist;
    worin G1, G2, G3 jeweils unabhängig voneinander für eine oder mehrere substituierte oder nicht substituierte Alkylen- oder substituierte oder nicht substituierte Alkenylengruppen mit 1 bis 20 Kohlenstoffatomen stehen;
    t für eine positive ganze Zahl von 1 bis 6 steht;
    oder nach der Struktur:
    Figure 00740001
    worin:
    Z1 und Z4 für die Atome stehen, die notwendig sind, um einen substituierten oder nicht substituierten Heteroring zu bilden, wobei diese gleich oder verschieden sein können,
    jedes M unabhängig für eine substituierte oder nicht substituierte Methingruppe steht,
    q für eine positive ganze Zahl von 1 bis 4 steht,
    p für eine positive ganze Zahl 0 oder 1 steht,
    R1, R2 und R3 jeweils unabhängig voneinander für ein substituiertes oder nicht substituiertes Alkyl oder ein substituiertes oder nicht substituiertes Aryl stehen,
    R5 und R6 jeweils für einen oder mehrere Substituenten stehen, einschließlich möglicher kondensierter aromatischer Ringe, und
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; L steht für
    ―G1―(OG2)t―G3 und jeweils G1, G2, G3 unabhängig voneinander für eine oder mehrere substituierte oder nicht substituierte Alkylen- oder Methingruppen mit 1 bis 20 Kohlenstoffatomen stehen und t für eine positive ganze Zahl von 1 bis 6 steht;
    oder nach der Struktur:
    Figure 00750001
    worin:
    R16 und R17 unabhängig voneinander für Halogen, substituiertes oder nicht substituiertes Alkyl, substituiertes oder nicht substituiertes Aryl, einen kondensierten aromatischen Ring oder eine Heteroarylgruppe stehen,
    R19 für eine substituierte oder nicht substituierte Alkyl- oder für eine substituierte oder nicht substituierte Arylgruppe steht,
    R18 für eine substituierte oder nicht substituierte Alkylgruppe steht;
    R20 für eine substituierte oder nicht substituierte Alkylgruppe steht und
    R21 für ein Wasserstoffatom oder eine substituierte oder nicht substituierte Alkyloder eine substituierte oder nicht substituierte Arylgruppe steht,
    W2 für ein Gegenion steht, das zum Ausgleichen der Ladung erforderlich ist; und
    -L- die Struktur -(CH2)a(OCH2CH2)bNHCO(CH2)c- aufweist, worin: a, b und c unabhängig voneinander für ganze Zahlen von 1 bis 4 stehen.
EP19980201969 1997-06-24 1998-06-12 Sensibilisierungsfarbstoffe für erhöhte Lichtabsorption Expired - Lifetime EP0887700B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88177797A 1997-06-24 1997-06-24
US881777 1997-06-24

Publications (2)

Publication Number Publication Date
EP0887700A1 EP0887700A1 (de) 1998-12-30
EP0887700B1 true EP0887700B1 (de) 2004-01-28

Family

ID=25379192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980201969 Expired - Lifetime EP0887700B1 (de) 1997-06-24 1998-06-12 Sensibilisierungsfarbstoffe für erhöhte Lichtabsorption

Country Status (3)

Country Link
EP (1) EP0887700B1 (de)
JP (1) JPH1165016A (de)
DE (1) DE69821289T2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0002261D0 (en) * 2000-02-02 2000-03-22 Amersham Pharm Biotech Uk Ltd Fluorescent detection method & reagent
EP1252236A1 (de) * 2000-02-02 2002-10-30 Amersham Pharmacia Biotech UK Limited Messreagenz
JP4132547B2 (ja) * 2000-03-01 2008-08-13 富士フイルム株式会社 画像形成材料及びそれを用いた平版印刷版原版
JP2002148767A (ja) 2000-08-28 2002-05-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
US6649337B2 (en) * 2000-11-17 2003-11-18 Fuji Photo Film Co., Ltd. Heat-developable photosensitive material
US6770433B2 (en) 2001-01-12 2004-08-03 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
US6806043B2 (en) 2001-03-23 2004-10-19 Fuji Photo Film Co., Ltd. Methine dye and silver halide photographic light-sensitive material containing the same
JP2003026946A (ja) 2001-07-16 2003-01-29 Fuji Photo Film Co Ltd メチン色素、その製造方法及び該色素を含有するハロゲン化銀写真感光材料
US7172856B2 (en) 2001-07-24 2007-02-06 Fuji Photo Film Co., Ltd. Silver halide photographic light-sensitive material
US6838231B2 (en) 2001-10-15 2005-01-04 Fuji Photo Film Co., Ltd. Production process of silver halide photographic emulsion and silver halide photographic light-sensitive material
JP2003280130A (ja) 2002-03-22 2003-10-02 Fuji Photo Film Co Ltd メチン色素及びそれを含有するハロゲン化銀写真感光材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR930514A (fr) * 1946-07-11 1948-01-28 Photo Produits Gevaert Procédé de sensibilisation d'émulsions photographiques à l'halogénure d'argent
JPS6491134A (en) * 1987-10-02 1989-04-10 Fuji Photo Film Co Ltd Silver halide photographic sensitive material

Also Published As

Publication number Publication date
DE69821289D1 (de) 2004-03-04
EP0887700A1 (de) 1998-12-30
JPH1165016A (ja) 1999-03-05
DE69821289T2 (de) 2004-11-25

Similar Documents

Publication Publication Date Title
EP0786691B1 (de) Lichtempfindliche Silberhalogenidemulsionschicht mit gesteigerter photographischer Empfindlichkeit
EP0893731B1 (de) Lichtempfindliche Silberhalogenidemulsionsschicht verbesserter photographischer Empfindlichkeit
US5994051A (en) Silver halide light sensitive emulsion layer having enhanced photographic sensitivity
EP0893732B1 (de) Lichtempfindliche Silberhalogenidemulsionsschicht mit verbesserter photographischer Empfindlichkeit
EP0786692B1 (de) Lichtempfindliche Silberhalogenidemulsionschicht mit gesteigerter photographischer Empfindlichkeit
EP0985966B1 (de) Farbphotographisches Material mit verbesserter Lichtabsorption
EP0985965A1 (de) Photographisches Material mit erhöhter Lichtabsorption
US6010841A (en) Silver halide light sensitive emulsion layer having enhanced photographic sensitivity
EP0887700B1 (de) Sensibilisierungsfarbstoffe für erhöhte Lichtabsorption
EP0985967B1 (de) Photographisches Material mit erhöhter Lichtabsorption
US6558893B1 (en) Photographic material having improved color reproduction
US6312883B1 (en) Photographic material having enhanced light absorption and low dye stain
US5091298A (en) Sensitizing dyes for photographic materials
US6620581B1 (en) Photographic material having enhanced light absorption
US5597687A (en) Sensitizing dye combination for photographic materials
US6342341B1 (en) Fragmentable electron donor compounds used in conjunction with epitaxially sensitized silver halide emulsions
US5356769A (en) Methine compound and silver halide light-sensitive material containing the methine compound
EP0735416A1 (de) Photographische Elemente mit speziellen sensibilisierten Silberhalogenid-Emulsionen
EP1033617A1 (de) Photographisches Material mit verbesserter Farbwiedergabe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990514

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20020712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69821289

Country of ref document: DE

Date of ref document: 20040304

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050506

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050602

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20060221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060612

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060612

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630