EP0885126A1 - Appareil et procede d'ejection - Google Patents

Appareil et procede d'ejection

Info

Publication number
EP0885126A1
EP0885126A1 EP97901159A EP97901159A EP0885126A1 EP 0885126 A1 EP0885126 A1 EP 0885126A1 EP 97901159 A EP97901159 A EP 97901159A EP 97901159 A EP97901159 A EP 97901159A EP 0885126 A1 EP0885126 A1 EP 0885126A1
Authority
EP
European Patent Office
Prior art keywords
ejection
electrode
voltage
location
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97901159A
Other languages
German (de)
English (en)
Other versions
EP0885126B1 (fr
Inventor
Guy Charles Fernley Newcombe
Neil Emerton
John Teape
Peter John Taylor
Richard Wilhelm Janse Van Rensburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonejet Corp Pty Ltd
Original Assignee
Tonejet Corp Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonejet Corp Pty Ltd filed Critical Tonejet Corp Pty Ltd
Publication of EP0885126A1 publication Critical patent/EP0885126A1/fr
Application granted granted Critical
Publication of EP0885126B1 publication Critical patent/EP0885126B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field
    • B41J2002/061Ejection by electric field of ink or of toner particles contained in ink

Definitions

  • the present invention relates to a method of and apparatus for ejecting material from a liquid. More particularly, the method and apparatus employed may be generally of the type described in O-A-93-11866, PCT/GB95/01215 and WO-A-94-18011. In the methods described in these patent applications an agglomeration or concentration of particles is achieved at an ejection location and from the ejection location particles are then ejected onto a substrate, eg. for printing purposes. In the case of an array printer, plural cells may be arranged in one or more rows.
  • an apparatus for ejecting material from a liquid comprises an ejection location having an electrode; means to apply an electrical potential to the ejection location electrode to form an electric field at the location; means for supplying liquid containing the particulate material to the ejection location; and a second electrode disposed adjacent to the ejection location, the voltage on the secondary electrode relative to the voltage on the ejection location electrode being controlled so as to reduce the sensitivity of the head to influence by external electric fields.
  • the voltage on the secondary electrode may also be controlled to reduce the sensitivity of the head to variations in the distance between the ejection location and the substrate onto which the particles are ejected.
  • the invention also includes a method of operating such apparatus to eject agglomerations of particles onto the substrate.
  • the voltage on the secondary electrode relative to the voltage of the ejection location is controlled by a suitable electronic control circuit.
  • the use of a secondary electrode is also particularly advantageous in an array system in which there are a plurality of cells in a row.
  • the number of connections necessary to the electrodes at the ejection location and the secondary electrodes can each be reduced. For example, by connecting adjacent electrodes at the electrode location together in pairs and similarly for the secondary electrode the number of connections required for each set of electrodes is reduced by half.
  • control of ejection and thus of printing can be achieved by selective application of voltages to the electrodes at the ejection location and the secondary electrodes in a "matrix addressing" mode since each ejection location electrode of a connected pair will be disposed opposite a secondary electrode of a different connected pair, ie. the opposing secondary electrodes will not be electrically connected.
  • ejection voltages can be applied to the ejection location electrodes of a pair and ejection can be individually controlled from each of the respective cells by the application of different voltages on the opposing secondary electrodes. Further multiplexing can be achieved if desired.
  • the secondary electrode is insulated and the ejection electrode is not, but in certain designs both may be non-insulated or both may be insulated or the ejection electrode insulated and the secondary electrode non-insulated.
  • Figure 1 illustrates part of a printhead having a row of ejection cells and corresponding secondary electrodes;
  • Figure 2 illustrates the arrangement of Figure 1 in side view
  • Figure 3 illustrates, diagrammatically, an arrangement of the electrodes so as to allow addressing of individual ejection electrodes in pairs;
  • Figure 4 illustrates, diagrammatically, how secondary electrodes can be used for a matrix addressing mode of operation
  • Figure 5 is a partial perspective view of a portion of a further printhead incorporating ejection apparatus according to the present invention.
  • Figure 6 is a view similar to Figure 5 showing further and alternative features of the ejection apparatus.
  • Figure 7 is a partial sectional views through a cell of Figure 5.
  • Figures 1 & 2 illustrate a printhead, diagrammatically, the printhead having plural cells 1 separated by insulating walls 2 and each containing an ejection electrode 3.
  • agglomerations of particles carried by fluid in each of the cells can be ejected from the cells on application of a voltage to the respective electrodes 3 as indicated by the arrows in Figure l.
  • Figure 2 shows a substrate 4 onto which agglomerations of particles, for example, for printing, are ejected from the cells 1.
  • a secondary electrode 5 which has plural apertures 6 disposed opposite respective cells 3, is provided in front of the ejection cell.
  • the electrode 5 is disposed on a first side of a support 7 and a further secondary electrode 8 is disposed on the other side.
  • Charged agglomerations of particles emitted from the cell 1 pass through the electrodes 5 and 8 onto the earthed substrate 4.
  • the voltages applied to the electrodes may be IkV on the ejection electrodes for ejection purposes, 500V on the secondary electrode 5 and OV on the further secondary electrode 8.
  • the electrode support 7 may be provided by 150 micron thick glass slips chrome plated on both faces to provide the electrodes 5,8, and with the apertures 6 formed with 45 degree chamfered faces and having a width of 50 microns.
  • the secondary electrode 8 may be separated from the outermost extremity of the ejection cell by a distance of 200 microns. It has been found generally that the closer the secondary electrode structure is to the ejection cell the greater the electric field in the region between them, but this also results in an increase in electrostatic pressure over the whole meniscus. The desired pressure distribution can be restored by increasing the potential on the secondary electrode 5.
  • voltages on the electrodes may be as described in our British Patent Application 9601232.3, as described below.
  • Figure 3 shows how the primary 3 and secondary 5 electrodes may be offset from one another and connected in pairs A,B,C,D,E,F etc. as referred to above.
  • the number of connections required for each set of electrodes is reduced by half and by disposing the connected pairs of the secondary electrodes 5 offset with respect to the connected pairs of electrodes 3 at the ejection location, control of ejection and thus of printing can be achieved by selective application of voltages to the electrodes at the ejection location and the secondary electrodes in an "addressing" mode since each ejection location electrode 3 of a connected pair will be disposed opposite a secondary electrode of a different connected pair, ie. the opposing secondary electrodes will not be electrically connected.
  • ejection voltages can be applied to the ejection location electrodes 3 of a pair and ejection can be individually controlled from each of the respective cells by the application of different voltages on the opposing secondary electrodes.
  • the arrangement shown in Figure 4 is different again.
  • This arrangement enables a matrix addressing scheme to be utilised to drive the apparatus.
  • This addressing scheme is similar to that used, for example, in flat panel display technology and may be used to address N 2 ejection electrodes with 2N address lines.
  • a 16 (4 2 ) element array is driven by 8 (2x4) address lines.
  • the multiplex advantage is particularly significant with increasing numbers of electrodes, so that, for example, it would be possible to address a head with 256 (2 8 ) electrodes with 16 (2x8) address lines (8 primary and 8 secondary) .
  • the detailed connection arrangements of the primary and secondary electrodes can be reversed of course if desired.
  • Figure 5 illustrates part of an array-type printhead 1, the printhead comprising a body 2 of a dielectric material such as a synthetic plastics material or a ceramic.
  • a series of grooves 3 are machined in the body 2, leaving interposing plate-like lands 4.
  • the grooves 3 are each provided with a ink inlet and ink outlet (not shown, but indicated by arrows I & 0) disposed at opposite ends of the grooves 3 so that fluid ink carrying a material which is to be ejected (as described in our earlier applications) can be passed into the grooves and depleted fluid passed out.
  • Each pair of adjacent grooves 3 define a cell 5, the plate-like land or separator 4 between the pairs of grooves 3 defining an ejection location for the material and having an ejection upstand 6,6'.
  • two cells 5 are shown, the left-hand cell 5 having an ejection upstand 6 which is of generally triangular shape and the right-hand cell 5 having a truncated ejection upstand.
  • Each of the cells 5 is separated by a cell separator 7 formed by one of the plate-like lands 4 and the corner of each separator 7 is shaped or chamfered as shown so as to provide a surface 8 to allow the ejection upstand to project outwardly of the cell beyond the exterior of the cell as defined by the chamfered surfaces 8.
  • a truncated ejection upstand 6 1 is used in the end cell 5 to reduce end effects resulting from the electric fields which in turn result from voltages applied to ejection electrodes 9 provided as metallised surfaces on the faces of the plate-like lands 4 facing the ejection upstand 6,6' (ie. the inner faces of each cell separator) .
  • the ejection electrodes 9 extend over the side faces of the lands 4 and the bottom surfaces 10 of the grooves 3. The precise extent of the ejection electrodes 9 will depend upon the particular design and purpose of the printer.
  • Figure 6 illustrates two alternative forms for side covers of the printer, the first being a simple straight- edged cover 11 which closes the sides of the grooves 3 along the straight line as indicated in the top part of the figure.
  • a second type of cover 12 is shown on the lower part of the figure, the cover still closing the grooves 3 but having a series of edge slots 13 which are aligned with the grooves.
  • This type of cover construction may be used to enhance definition of the position of the fluid meniscus which is formed in use and the covers, of whatever form, can be used to provide surfaces onto which the ejection electrode and/or secondary or additional electrodes can be formed to enhance the ejection process.
  • Figure 6 also illustrates an alternative form of the ejection electrode 9, which comprises an additional metallised surface on the face of the land 4 which supports the ejection upstand 6,6'. This may help with charge injection and may improve the forward component of the electric field.
  • Figure 7 illustrates a partial sectional view through one side of the one of the cells 5 of Figure 5, with a secondary electrode 19 being shown located on the chamfered face 8 on the cell separator lands 4 and therefore disposed substantially alongside the ejection upstand.
  • the secondary electrode may be formed, at least in part, on the face of the cell separator land 4 (and thus rearwardly of the ejection upstand) , with the ejection electrode also on the face, but separated therefrom.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Treating Waste Gases (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Seal Device For Vehicle (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
EP97901159A 1996-01-22 1997-01-22 Appareil et procede d'ejection Expired - Lifetime EP0885126B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9601226 1996-01-22
GBGB9601226.5A GB9601226D0 (en) 1996-01-22 1996-01-22 Ejection apparatus and method
PCT/GB1997/000186 WO1997027056A1 (fr) 1996-01-22 1997-01-22 Appareil et procede d'ejection

Publications (2)

Publication Number Publication Date
EP0885126A1 true EP0885126A1 (fr) 1998-12-23
EP0885126B1 EP0885126B1 (fr) 2001-12-19

Family

ID=10787359

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97901159A Expired - Lifetime EP0885126B1 (fr) 1996-01-22 1997-01-22 Appareil et procede d'ejection

Country Status (12)

Country Link
US (1) US6247797B1 (fr)
EP (1) EP0885126B1 (fr)
JP (2) JP2000503915A (fr)
KR (1) KR100483143B1 (fr)
CN (1) CN1177691C (fr)
AT (1) ATE211072T1 (fr)
AU (1) AU714514B2 (fr)
CA (1) CA2241471A1 (fr)
DE (1) DE69709318T2 (fr)
GB (1) GB9601226D0 (fr)
RU (1) RU2141407C1 (fr)
WO (1) WO1997027056A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813965A3 (fr) * 1996-06-17 1998-11-04 NEC Corporation Imprimante électrostatique à jet d'encre comportant une électrode de grille et tête d'impression pour cette imprimante
GB9706069D0 (en) 1997-03-24 1997-05-14 Tonejet Corp Pty Ltd Application of differential voltage to a printhead
JP2937955B2 (ja) * 1997-07-22 1999-08-23 新潟日本電気株式会社 静電式インクジェット記録ヘッド
EP1095772A1 (fr) 1999-10-25 2001-05-02 Tonejet Corporation Pty Ltd Tête d'impression
EP1225048A1 (fr) 2001-01-18 2002-07-24 Tonejet Corporation Pty Ltd Electrode d'une imprimante pour éjecter des gouttes sur demande
GB0212976D0 (en) * 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
EP1552922A1 (fr) 2004-01-09 2005-07-13 Kodak Polychrome Graphics, LLC Fabrication de plaques flexographiques par impression par jet d'encre
GB0520159D0 (en) 2005-10-04 2005-11-09 The Technology Partnership Plc Coated electrodes for a drop-on-demand printer
EA018818B1 (ru) * 2008-06-27 2013-10-30 Спектрум Сайнтифик Инк. Удаление зараженных фузариозом зерен из зерновой культуры
PL2370259T3 (pl) * 2008-12-08 2018-11-30 Hewlett-Packard Development Company, L.P. Urządzenie wyrzucające płyn
WO2011032939A1 (fr) 2009-09-15 2011-03-24 Tonejet Limited Procédé d'impression et encre liquide pour jet d'encre
EP2394818A1 (fr) 2010-06-11 2011-12-14 Tonejet Limited Contrôle de tête d'impression
PL2666636T3 (pl) 2012-05-23 2018-11-30 Tonejet Limited Sposób sterowania głowicą drukującą
EP2708363A1 (fr) 2012-09-17 2014-03-19 Tonejet Limited Étalonnage de tête d'impression et impression
EP2805826A1 (fr) 2013-05-20 2014-11-26 Tonejet Limited Étalonnage de tête d'impression et impression
EP2853400A1 (fr) 2013-09-25 2015-04-01 Tonejet Limited Procédé de nettoyage de tête d'impression électrostatique
EP2801480B1 (fr) 2013-09-25 2016-04-13 Tonejet Limited Bouchon de nettoyage de tête d'impression
ES2593308T3 (es) 2013-11-20 2016-12-07 Tonejet Limited Control de cabezal de impresión
GB201407440D0 (en) 2014-04-28 2014-06-11 Tonejet Ltd Printing on cylindrical objects
PL3344459T3 (pl) 2015-09-02 2020-03-31 Tonejet Limited Sposób sterowania działaniem atramentowej głowicy drukującej
CN108136781B (zh) 2015-10-16 2020-07-24 唐杰有限公司 超声维护帽

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2358168C2 (de) * 1972-11-24 1982-06-03 Research and Development Laboratories of Ohno Co.Ltd., Yokohama, Kanagawa Registiereinheit
JPS5727760A (en) * 1980-07-26 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Driving method of ink recording head
JPS5727759A (en) * 1980-07-26 1982-02-15 Nippon Telegr & Teleph Corp <Ntt> Ink recording head
US4568955A (en) * 1983-03-31 1986-02-04 Tokyo Shibaura Denki Kabushiki Kaisha Recording apparatus using a toner-fog generated by electric fields applied to electrodes on the surface of the developer carrier
US4477869A (en) * 1983-04-28 1984-10-16 Burroughs Corporation Pulsed aperture for an electrostatic ink jet system
JPH01206062A (ja) * 1988-02-12 1989-08-18 Ricoh Co Ltd 静電型インクジェット記録装置
JPH05116322A (ja) * 1991-10-28 1993-05-14 Matsushita Electric Ind Co Ltd インクジエツト記録装置
AU664404B2 (en) * 1991-12-18 1995-11-16 Tonejet Limited Method and apparatus for the production of discrete agglomerations of particulate matter
JP3315268B2 (ja) * 1994-09-22 2002-08-19 株式会社東芝 画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9727056A1 *

Also Published As

Publication number Publication date
JP2000503915A (ja) 2000-04-04
DE69709318T2 (de) 2002-09-19
AU1450497A (en) 1997-08-20
AU714514B2 (en) 2000-01-06
KR19990081892A (ko) 1999-11-15
DE69709318D1 (de) 2002-01-31
US6247797B1 (en) 2001-06-19
RU2141407C1 (ru) 1999-11-20
GB9601226D0 (en) 1996-03-20
CA2241471A1 (fr) 1997-07-31
ATE211072T1 (de) 2002-01-15
KR100483143B1 (ko) 2005-08-31
CN1209771A (zh) 1999-03-03
JP2006347181A (ja) 2006-12-28
WO1997027056A1 (fr) 1997-07-31
EP0885126B1 (fr) 2001-12-19
CN1177691C (zh) 2004-12-01

Similar Documents

Publication Publication Date Title
EP0885126B1 (fr) Appareil et procede d&#39;ejection
EP0885128B1 (fr) Electrode pour imprimante
US6905188B1 (en) Ejection apparatus for printhead
EP0658142B1 (fr) Tete d&#39;impression a jet d&#39;encre
EP0699133B1 (fr) Systeme de commande differentiel pour tete d&#39;impression a jet d&#39;encre
EP0958141A1 (fr) Appareil expulsif
US6409313B1 (en) Application of differential voltage to a printhead
CA2151206A1 (fr) Methode de fabrication de reseaux d&#39;actionneurs lateraux pour tete d&#39;impression a jet d&#39;encre
JP3578097B2 (ja) 荷電偏向装置およびそれを用いたインクジェットプリンタ
EP0885127A1 (fr) Procede et appareil d&#39;ejection de materiau particulaire
JP2002273890A5 (fr)
JP2783224B2 (ja) インクジェット式ヘッド装置
US6135588A (en) Electrostatic ink-jet printing head having projections extending out of an ink chamber
JP2783208B2 (ja) 静電式インクジェット記録装置
EP0836943A2 (fr) Imprimante et tête électrostatique à jet d&#39;encre
JP2885745B2 (ja) 静電式インクジェット記録ヘッド
JPH01206062A (ja) 静電型インクジェット記録装置
JPS60116458A (ja) インクジエツト式画像記録装置
JP2005022285A (ja) 静電吐出型インクジェットヘッド

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 980807;LT PAYMENT 980807;LV PAYMENT 980807;RO PAYMENT 980807;SI PAYMENT 980807

17Q First examination report despatched

Effective date: 19990113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19980807;LT PAYMENT 19980807;LV PAYMENT 19980807;RO PAYMENT 19980807;SI PAYMENT 19980807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20011219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011219

REF Corresponds to:

Ref document number: 211072

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020122

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020122

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69709318

Country of ref document: DE

Date of ref document: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020319

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69709318

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170121