EP0885032A1 - Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose - Google Patents

Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose

Info

Publication number
EP0885032A1
EP0885032A1 EP97906145A EP97906145A EP0885032A1 EP 0885032 A1 EP0885032 A1 EP 0885032A1 EP 97906145 A EP97906145 A EP 97906145A EP 97906145 A EP97906145 A EP 97906145A EP 0885032 A1 EP0885032 A1 EP 0885032A1
Authority
EP
European Patent Office
Prior art keywords
fermenter
degradation
microorganism
formaldehyde
dsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97906145A
Other languages
German (de)
French (fr)
Inventor
Peter Bartholmes
Kerstin Heesche-Wagner
Michael Kaufmann
Thomas Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitop Gesellschaft fur Biotechnische Optimierung mbH
Original Assignee
Bitop Gesellschaft fur Biotechnische Optimierung mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitop Gesellschaft fur Biotechnische Optimierung mbH filed Critical Bitop Gesellschaft fur Biotechnische Optimierung mbH
Publication of EP0885032A1 publication Critical patent/EP0885032A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a method for microbial degradation of pollutants in pollutant-laden media in air, wastewater or soil purification and a device for carrying out this method.
  • the invention further relates to microorganisms suitable for carrying out the method and their use.
  • remediation processes The methods for the reduction of pollutants in polluted media (air, waste water, soil) are referred to as remediation processes. These methods include both the thermal, physical or chemical treatment of the contaminated medium and the biological elimination of pollutants, in which the pollutants contained in the medium are decomposed by the microorganisms or converted into other substances, the disposal of which is less problematic.
  • Microorganisms suitable for the efficient degradation of pollutants must have an optimal pollutant tolerance and the highest possible genetic stability in addition to their specific degradability. In addition, suitable strains must not be pathogenic and must not form dangerous end or intermediate products.
  • microorganisms belonging to the site are often used for biological pollutant elimination.
  • on-site microorganisms often have the disadvantage that they are unsuitable for use in environmental engineering because of their low breakdown rates, their low toxin tolerance or their susceptibility to foreign germs Systems not suitable For this reason, more and more "special cultures" are used in microbial pollutant elimination, which have both higher degradation rates and less susceptibility to foreign germs, a relatively high level of genetic stability and / or a high toxin tolerance Special crops can achieve a certain increase in the degradation performance of the biocoenosis and a shortening of the approach tents of degradation systems
  • a further object of the invention is to develop microorganisms, which are suitable for carrying out the method according to the invention, and to provide their use and a device for carrying out the method
  • the task is solved by a process for the degradation of pollutants in pollutant-laden media during air, wastewater or soil cleaning, in which continuous degradation fermentation is carried out using contaminated pollutants
  • Microorganism culture is carried out in a degradation fermenter, the pollutant concentration in the degradation fermenter being controlled with the aid of a control loop during the degradation fermentation
  • This control can be carried out either by keeping the pollutant concentration constant between an upper and a lower threshold value (f-oxinostatic fermentation) or by using the vitality of the biomass as a leader to regulate the toxin concentration (toxinodynamic fermentation)
  • Toxinodynamic fermentation for example, oxygen consumption or cell respiration serve as vitality parameters.
  • the above-mentioned regulations for the pollutant concentration in the fermenter allow the selection pressure to be maintained during the process.
  • the fermenter is used for continuous sampling for on-line purposes. Measurement of the pollutant concentration, the type of measurement of course depending on the pollutant to be detected.
  • the control can be parameterized in such a way that when a certain threshold value is reached, it is reduced the pollutants are pumped into the reactor while the inflow of the pollutants is reduced when a second, upper concentration threshold value is reached
  • FIG. 1 shows the phenol and formaldehyde concentration in the course of a toxinostatic fermentation.
  • Curve A shows the measurement signal of the concentration of phenol and curve B shows the measurement signal of the concentration of formaldehyde in the fermenter.
  • the black blocks show the duration of the pumping intervals of the substrate feed on
  • the process according to the invention under the control of toxinostatic fermentation brings two essential advantages for industrial pollutant degradation in a continuous reactor.
  • a suitable setpoint for the pollutant concentration in the reactor outflow by specifying a suitable setpoint for the pollutant concentration in the reactor outflow, prescribed receiving water limit values can be observed.
  • the lower threshold value of the pollutant concentration in the degradation fermenter is preferably not below the okotoxicity limit of any microorganisms which are present in the degradation fermenter but which do not contribute to pollutant degradation
  • the okotoxicity limit is the pollutant concentration at which the total metabolism of the examined biological material breaks down
  • the polluted medium contains formaldehyde and the added microorganism culture contains the microorganisms DSM 11423 and / or DSM 11424 or mutants or variants of these microorganisms
  • Formaldehyde in aqueous solution has an extremely toxic effect on microorganisms and is one of the best disinfectants, preservatives and stabilizers.
  • the formaldehyde tolerance values of the microorganisms described so far are far below the formalin concentrations normally found in problematic waste water and waste Microbial degradation of formaldehyde in high concentrations has not been possible until now.
  • a microorganism culture is developed which is capable of formaldehyde concentrations of up to 5,500 mg / l tolerate and degrade the pollutant at high speed
  • the pollutant-containing medium contains phenol and the microorganism culture contains the microorganism DSM 11425 or mutants or variants of this microorganism.
  • the degradation of formaldehyde and phenol during the same fermentation is carried out with simultaneous use of DSM 11425 with DSM 11423 and / or DSM 11424 also possible
  • microorganisms DSM 11423, DSM 11424 and DSM 11425 were deposited on 21.02.1997 with the DSMZ - German Collection of Microorganisms and Cell Cultures Mascheroder Weg 1 b, D-38124 Braunschweig. The physiological and bacterological properties of these microorganisms are shown in Tables 1 and 2 referenced
  • the microorganism DSM 11423 was isolated from a formalin-impregnated tissue sample and initially identified as Methylobacterium ⁇ xtorquens. In degradation fermentations under different conditions, DSM 11423 shows a maximum degradation rate for formaldehyde of 1612 nmol / min * mg and a tolerance limit for this pollutant of 10 mM.
  • DSM 11423 has the highest degradation rate and the lowest Ks value of the formaldehyde-degrading strains investigated in the context of the invention (696 ⁇ M) and is able to reduce the formaldehyde content of a formaldehyde-contaminated medium to almost zero by degradation.
  • the pollutant tolerance is low at 10 mM (300 mg / l).
  • the formaldehyde is broken down by oxidation to formic acid, catalyzed by the glutathione-dependent formaldehyde dehydrogenase.
  • the specific activity of this enzyme in the crude extract is very high at around 1.6 lU / mg protein.
  • the microorganism DSM 11424 was also isolated from a formalin-impregnated tissue sample and initially identified as Pseudomonas putida. When degradation was observed under various conditions, DSM 11424 showed a maximum degradation rate for formaldehyde of 784 nmol / min * mg and a tolerance limit for this pollutant of 100 mM. Compared to other formaldehyde-degrading strains investigated, DSM 11423 has an average degradation rate but the highest K s value (11643 ⁇ M) and is able to decompose formaldehyde even at very high concentrations.
  • the formaldehyde content of the medium can be reduced to approximately 200 mg / l by pure culture of this microorganism.
  • the formaldehyde degradation takes place in the first step via oxidation to formic acid, catalyzed by the glutathione-dependent formaldehyde dehydrogenase. The specific activity of this enzyme in the crude extract is only low.
  • the microorganism DSM 11425 was isolated from a soil sample and is able to convert phenol with a significantly higher degradation rate than the microorganisms on site.
  • the partial sequencing of the 16S rRNA of this microorganism showed a similarity of 99.1% to the type strain Klebsiella oxytoca.
  • the aerobic phenol degradation takes place in a first step by means of an NADH- or NADPH-dependent orf / 70-hydroxylation of the phenol which is catalyzed by the phenol hydroxylase.
  • the product is catechol, a key intermediate in most aromatics routes.
  • Catechol is metabolized in two ways: first through the chromosome-encoded o / t ⁇ o cleavage, and also via the plasmid-encoded mete-cleavage, the ort ⁇ o cleavage being induced by its product, cis. ⁇ s-muconic acid and the mete-cleavage by phenol.
  • the medium flowing out of the degradation fermentation is subjected to a second degradation fermentation, the lower threshold value of the pollutant concentration in the degradation fermenter being lower in the second degradation fermentation than in the first degradation fermentation.
  • An increase in the degradation efficiency is achieved by the pollutant concentration in the first fermenter, independent of that of the second fermenter, so that an optimal enzyme induction and thus a correspondingly high degradation rate is achieved.
  • the pollutant concentration in the second fermenter is then set so that the pollutant concentration in the process corresponds to the prescribed introduction limit
  • the microorganism culture Before being added to the pollutant-laden medium, the microorganism culture is preferably cultured in a mutation fermenter containing a nutrient-rich medium and subjected to a mutagenic treatment and stabilized and then in a selection fermenter which contains a nutrient-poor medium enriched with the pollutant (s). subjected to a selection whereby part of the culture from the selection fermenter is continuously returned to the mutation fermenter until a microorganism culture with the desired pollutant degradation performance and tolerance has been established
  • the degradation fermentation is preceded by a method for growing microorganisms which is based on the principle of evolutionary optimization.
  • a method for growing microorganisms which is based on the principle of evolutionary optimization.
  • the microorganisms DSM 11423, DSM 11424 and DSM 11425 described above are used according to the invention for the cultivation of mutants or variants. Cultivation can take place, for example, by selecting spontaneously occurring mutations. Other possibilities include, for example, mutation through the action of chemical substances and / or radioactive radiation and / or UV light. This allows mutants and variants to be obtained which have improved properties, for example with regard to the pollutant degradation performance or the pollutant tolerance.
  • microorganisms DSM 11423 and DSM 11424 are used as donor organisms for genetic material, in particular for inserting a gene coding for a formaldehyde dehydrogenase or formaldehyde dismutase and / or the associated promoter sequence into a microorganism or a cell.
  • the gene is incorporated into the recipient organism using the methods customary in microbiology, e.g. using a vector.
  • larger amounts of an enzyme relevant for the degradation of pollutants for example formaldehyde dehydrogenase, can be produced.
  • the aforementioned microorganisms are also used to obtain a gene encoding a formaldehyde dehydrogenase or formaldehyde dismutase and / or the associated promoter sequence for the purpose of sequence analysis.
  • the biomass obtained by carrying out the method according to the invention can advantageously be used for / n-s / Y-z soil remediation, in which the pollutants of degradable microorganisms are broken down directly in the soil without removing the soil and thus changing the soil structure.
  • an apparatus for carrying out the method according to the invention which contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter or fermenters.
  • the device contains a degradation fermenter and the associated means for regulating the concentration of pollutants in the fermenter, but several parallel fermenters are also conceivable, which can be loaded and inoculated with pollutant-laden medium at the same time.
  • two successive decomposition fermenters are provided, in which the pollutant concentration is set independently of one another by corresponding control loops.
  • a device which contains a mutation fermenter for the cultivation, mutagenic treatment and stabilization of the microorganism culture, a selection fermenter, means for returning part of the culture from the selection fermenter to the mutation fermenter, means for regulating the pollutant concentration in the selection fermenter contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter (s).
  • a fermenter with a reactor volume greater than 10 1 is continuously fed with hospital wastewater which contains formaldehyde in fluctuating concentrations between 50 g / 1 and 200 g / 1.
  • the water contains various other organic substances.
  • the following media components are added to the wastewater before the reactor is introduced:
  • the formaldehyde-containing solution introduced does not contain any viable microorganisms due to its high toxicity, but for safety reasons it is exposed to lethal doses before UV radiation is introduced.
  • the reactor is inoculated with a mixed culture containing the microorganisms DSM 11423 and DSM 11424.
  • the process is carried out in the range from pH 5.0 to 8.5 and under p ⁇ 2 regulation up to 10% of the maximum oxygen saturation concentration of the waste water.
  • Degradation fermentation takes place at temperatures between 5 and 45 ° C, in particular between 22 and 30 ° C.
  • the culture is carried out aerobically, continuously and in a toxin-static mode: the formaldehyde concentration in the reactor is measured continuously and kept constant by regulating the inflow between an upper threshold value and a lower threshold value. This pollutant concentration requires a relatively high pollutant tolerance from the microorganisms.
  • Microbial formaldehyde degradation has the effect that the difference between the pollutant concentration of the waste water introduced into the system and the concentration in the outlet is very high is high is high.
  • the water flowing out of the reactor contains a residual concentration of formaldehyde, which is completely degraded microbially in a secondary clarifier
  • a large-scale fermenter is continuously fed with industrial wastewater from bakelite production, which contains formaldehyde in fluctuating concentrations between 8 g / 1 and 12 g / 1.
  • the wastewater contains phenol in a concentration of 40 g / 1 and various Other organic components
  • the media components specified above are added to the wastewater before the reactor is introduced.
  • the introduced formaldehyde and phenol-containing solution contains no viable microorganisms due to its high toxicity, but it is released as a lethal dose for safety reasons before UV radiation is introduced set
  • the reactor is inoculated with a mixed culture that contains the microorganisms DSM 11423, DSM 11424 and DSM 11425.
  • the degradation process is carried out as indicated above.
  • the formaldehyde concentration in the reactor is measured continuously and is kept constant by regulating the inflow between an upper threshold value and a lower threshold value. This pollutant concentration requires a relatively high tolerance to pollutants from the microorganisms.
  • the microbial formaldehyde degradation has the effect that the difference between the pollutant concentration of the waste water introduced into the system and the concentration in the outlet is very high. Simultaneous to formaldehyde degradation, microbiological phenol degradation takes place in the reactor.
  • the water flowing out of the reactor contains a residual concentration of formaldehyde and / or phenol, which is broken down microbially in a secondary clarifier Example 3:
  • Meat extract 3.0 g / pH 7.0
  • This culture serves as the seed culture for the following toxinostatic fermentation
  • a mixed culture under periodic ultraviolet radiation is optimized in a fermentation process carried out in a continuously toxinostatic manner.
  • the formaldehyde concentration set in the fermenter via a control loop is gradually increased during this period depending on the vitality of the overall culture.
  • the originally selected strains have a very high formaldehyde resistance of 500-6000 mg / l formaldehyde for naturally occurring microorganisms. During the fermentation, resistance and degradation rates of the original culture can be increased by a factor of 10 each
  • a production plant glues its products with formaldehyde- and phenol-containing adhesives.
  • the adhesive residues are collected and regularly transported to a central biological disposal facility.
  • the waste is biologically disposed of together with other liquid formaldehyde- and / or phenol-containing waste batches from different sources.
  • the waste stream supplied to the plant fluctuates very strongly due to the heterogeneity of the waste batches in relation to the formaldehyde and phenol concentration
  • the phenol index and the formaldehyde concentration are measured "on-line" and continuously in the bioreactor of the disposal system. If one of the two measurement parameters reaches the permissible upper limit concentration, the supply of pollutants into the reactor is stopped until the upper threshold value is again fallen below if the phenol index falls and / or the formaldehyde concentration to a fixed lower concentration value, this is raised again above the lower threshold value by increasing the flow rate or by additionally adding the respectively limited pollutant. In this way, despite charging the bioreactor with qualitatively very different wastewater batches degrading special culture can be stabilized
  • the formaldehyde-contaminated air in the vicinity of a production and processing facility must be cleaned in order to get below the permissible MAK values in the air.
  • the formaldehyde pollution in the air fluctuates
  • An air washer is used to clean the air, which removes the gaseous formaldehyde from the medium Air is transferred into the medium of water
  • the wash water contaminated with formaldehyde is finally fed to a toxinostatically regulated biological clarification stage, where the formaldehyde is biologically eliminated.
  • the washing water thus regenerated is then fed back to the air washer system in order to again take up formaldehyde from the air
  • Glutaraldehyde is used in the hospital area for cleaning and disinfecting work surfaces. Running washing water contaminated with glutaraldehyde is operated in a toxinostatic manner (the standard size is the glutaraldehyde concentration)
  • a floor contaminated with benzene is cleaned in a floor washing system.
  • the washing water contaminated with benzene is fed to a toxinostatically operated bioreactor (standard size is the benzene concentration). After the biological removal of a large part of the benzene in the washing water, it is used again for washing the floor
  • toxinostatically operated bioreactor standard size is the benzene concentration
  • a groundwater stream contaminated with various polyaromatic hydrocarbons is produced. This is conveyed to the surface via groundwater lances with the aid of suction pumps and fed to a biological clarification stage operated by toxins.
  • a sample stream is continuously withdrawn from the bioreactor and this is continuously analyzed for high-quality liquid chromatography (HPLC) coupled with fluorescence chromatography for quality and quantity of the various PAHs contained.
  • HPLC high-quality liquid chromatography
  • the PAK species which is most highly concentrated in the overall spectrum of PAHs is used at all times as the controlled variable of the toxinatic control.
  • Gram staining - Gram staining: - small round smooth medium-sized light colonies frayed colonies small coconut sticks chopsticks
  • API 20 NE
  • Arginine dihydrolase urease aesculin gelatin p-nitrophenyl- ⁇ -D-galactopyranoside. Assimilation tests glucose arabinose mannose mannitol

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Soil Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Biotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The invention relates to a process for microbial decomposition of harmful substances in media charged with harmful substances during cleaning of air, sewage and soil. It also relates to a device for performing said process, micro-organisms suitable for performing said process and the use thereof. The object of the invention is to improve said process in such a manner that micro-organism cultures used to break down harmful substances are established on a long-term basis, and at the same time to achieve high rates of decomposition. To attain said object, the invention proposes a process in which there is continuous decomposition fermentation in a decomposition fermenter using micro-organisms, available in the medium charged with harmful substances, and/ or a micro-organism culture added to the medium. During decomposition fermentation the concentration of harmful substances in the decomposition fermenter is controlled to make it toxin-static or toxin-dynamic using a control circuit, as a function of the vitality of the biomass. To decompose formaldehyde, the invention proposes the use of particular micro-organisms which decompose formaldehyde. To decompose phenols, the invention proposes the use of particular micro-organisms which decompose phenol.

Description

Verfahren zum mikrobiellen Abbau von Schadstoffen in schadstoff¬ befrachteten Medien und dazu geeignete Mikroorganismen Process for the microbial degradation of pollutants in polluted media and suitable microorganisms
Die Erfindung betrifft ein Verfahren zum mikrobiellen Abbau von Schadstoffen in schadstoffbefrachteteπ Medien bei der Luft-, Abwasser- oder Bodenreinigung und eine Vorrichtung zur Durchführung dieses Verfahrens Weiterhin betrifft die Erfindung für die Durchführung des Verfahrens geeignete Mikroorganismen und ihre Verwendung.The invention relates to a method for microbial degradation of pollutants in pollutant-laden media in air, wastewater or soil purification and a device for carrying out this method. The invention further relates to microorganisms suitable for carrying out the method and their use.
Als Sanierungsverfahren werden die Methoden bezeichnet, mit denen sich eine Schad- Stoffreduzierung in schadstoffbefrachteten Medien (Luft, Abwasser, Boden) erzielen läßt. Zu diesen Methoden gehören sowohl die thermische, physikalische oder chemi¬ sche Behandlung des kontaminierten Mediums als auch die biologische Schadstoffeli- minierung, bei der die im Medium enthaltenen Schadstoffe durch die Mikroorganismen zersetzt oder in andere Stoffe umgewandelt werden, deren Entsorgung unproblemati- scher ist. Für den effizienten Abbau von Schadstoffen geeignete Mikroorganismen müssen über die spezifische Abbaufähigkeit hinaus eine optimale Schadstofftoleranz und eine möglichst hohe genetische Stabilität aufweisen. Darüber hinaus dürfen geeig¬ nete Stämme nicht pathogen sein und keine gefährlichen End- oder Zwischenprodukte bilden.The methods for the reduction of pollutants in polluted media (air, waste water, soil) are referred to as remediation processes. These methods include both the thermal, physical or chemical treatment of the contaminated medium and the biological elimination of pollutants, in which the pollutants contained in the medium are decomposed by the microorganisms or converted into other substances, the disposal of which is less problematic. Microorganisms suitable for the efficient degradation of pollutants must have an optimal pollutant tolerance and the highest possible genetic stability in addition to their specific degradability. In addition, suitable strains must not be pathogenic and must not form dangerous end or intermediate products.
Da an entsprechend kontaminierten Standorten durch die natürliche Selektion bereits eine Anreicherung von Mikroorganismen stattgefunden hat, die über besondere Ab¬ baufähigkeiten für diese Schadstoffe und über eine relativ gute Schadstofftoleranz verfügen, werden zur biologischen Schadstoffeliminierung häufig standorteigene Mikro¬ organismen verwendet. Standorteigene Mikroorganismen haben jedoch häufig den Nachteil, daß sie sich aufgrund ihrer niedrigen Abbauraten, ihrer niedrigen Toxin- toleranz oder ihrer Anfälligkeit gegen Fremdkeime für den Einsatz in umwelttechnischen Anlagen nicht eignen Aus diesem Grund finden in der mikrobiellen Schadstoffeliminie- rung immer mehr "Spezialkulturen" Anwendung, die sowohl höhere Abbauraten als auch eine geringere Anfälligkeit gegen Fremdkeime, eine relativ hohe genetische Stabi¬ lität und/oder eine hohe Toxintoleranz aufweisen Durch den Einsatz von Spezialkultu- ren laßt sich eine gewisse Steigerung der Abbauleistung der Biozönose und eine Ver¬ kürzung von Anfahrzelten von Abbausystemen erzielenSince natural selection has already resulted in the accumulation of microorganisms at correspondingly contaminated sites, which have special degradability for these pollutants and have a relatively good tolerance to pollutants, microorganisms belonging to the site are often used for biological pollutant elimination. However, on-site microorganisms often have the disadvantage that they are unsuitable for use in environmental engineering because of their low breakdown rates, their low toxin tolerance or their susceptibility to foreign germs Systems not suitable For this reason, more and more "special cultures" are used in microbial pollutant elimination, which have both higher degradation rates and less susceptibility to foreign germs, a relatively high level of genetic stability and / or a high toxin tolerance Special crops can achieve a certain increase in the degradation performance of the biocoenosis and a shortening of the approach tents of degradation systems
Im Bereich der Umweltbiotechnik sind eine Reihe speziell für bestimmte Anwendungen gezüchteter Mikroorganismen kommerziell erhältlich Werden solche Mikroorganismen¬ kulturen bei den Abbauverfahren nach dem Stand der Technik eingesetzt, so tritt häufig das Problem auf, daß die Lebensdauer der eingesetzten Mikroorganismen und daher die Abbauleistung der Kultur begrenzt sind, weil die Spezialisten nach der Beimpfung absterben oder von anderen, zum Schadstoffabbau nicht beitragenden Mikroorganis¬ men verdrangt werdenIn the field of environmental biotechnology, a number of microorganisms which have been bred specifically for specific applications are commercially available. If such microorganism cultures are used in the degradation processes according to the prior art, the problem frequently arises that the life of the microorganisms used and therefore the degradation performance of the culture is limited are because the specialists die after inoculation or are displaced by other microorganisms which do not contribute to the reduction of pollutants
Dies gilt besonders dann, wenn in dem schadstoffbefrachteten Medium Gemische aus toxischen und nichttoxischen Substanzen vorliegen Kommen solche Substratgemische vor, so werden die leichter abbaubaren Stoffe bevorzugt umgesetzt, da dies ener¬ getisch gunstiger ist Die adaptierten Spezialisten werden nicht weiter gefordert und entwickeln sich demnach nicht weiter Deshalb gelingt eine langfristige Etablierung der Kulturen bei den Abbauverfahren nach dem Stand der Technik meist nicht und aus die- sem Grund muß der Abbaufermenter, in dem die Abbaufermentation stattfindet, peri¬ odisch nachgeimpft werden, was zeit- und kostenintensiv und daher unwirtschaftlich istThis is particularly true when mixtures of toxic and non-toxic substances are present in the polluted medium. If such substrate mixtures are present, the more easily degradable substances are preferably used, since this is more energy-efficient. The adapted specialists are no longer required and therefore do not develop Therefore, long-term establishment of the cultures in the state-of-the-art mining processes usually does not succeed, and for this reason the digesting fermenter in which the digesting fermentation takes place must be re-vaccinated periodically, which is time-consuming and cost-intensive and therefore uneconomical
Es ist deshalb Aufgabe der Erfindung, das Verfahren zum mikrobiellen Abbau von Schadstoffen in schadstoffbefrachteten Medien so zu verbessern, daß eine langfristige Etablierung der zum Schadstoffabbau eingesetzten Mikroorganismenkulturen erreicht wird und gleichzeitig hohe Abbauraten erzielt werden Eine weitere Aufgabe der Erfin¬ dung ist es, Mikroorganismen, die sich zur Durchfuhrung des erfindungsgemaßen Ver¬ fahrens eignen, sowie ihre Verwendung und eine Vorrichtung zur Durchfuhrung des Verfahrens bereitzustellenIt is therefore an object of the invention to improve the process for microbial degradation of pollutants in polluted media in such a way that long-term establishment of the microorganism cultures used for degradation of pollutants is achieved and high degradation rates are achieved at the same time. A further object of the invention is to develop microorganisms, which are suitable for carrying out the method according to the invention, and to provide their use and a device for carrying out the method
Die Aufgabe wird durch ein Verfahren zum Abbau von Schadstoffen in schadstoffbe- frachteten Medien bei der Luft-, Abwasser- oder Bodenreinigung gelost, bei dem eine kontinuierliche Abbaufermentation unter Einsatz von in dem schadstoffbefrachtetenThe task is solved by a process for the degradation of pollutants in pollutant-laden media during air, wastewater or soil cleaning, in which continuous degradation fermentation is carried out using contaminated pollutants
Medium vorhandenen Mikroorganismen und/oder einer dem Medium zugesetzten Mikroorganismenkultur in einem Abbaufermenter durchgeführt wird, wobei wahrend der Abbaufermentation die Schadstoffkonzentration im Abbaufermenter mit Hilfe eines Re¬ gelkreises gesteuert wirdMedium existing microorganisms and / or one added to the medium Microorganism culture is carried out in a degradation fermenter, the pollutant concentration in the degradation fermenter being controlled with the aid of a control loop during the degradation fermentation
Diese Steuerung kann wahlweise dadurch erfolgen, daß die Schadstoffkonzentration zwischen einem oberen und einem unteren Schwellwert konstant gehalten wird f-oxinostatische Fermentation) oder dadurch, daß die Vitalität der Biomasse als Fuh- rungsgroße für die Regelung der Toxinkonzentration herangezogen wird (toxinodynamische Fermenation) Bei dieser toxinodynamischen Fermentation dienen z B der Sauerstoffverbrauch bzw die Zellatmung als Vitalitatsparameter Die obener- wähnten Regelungen der Schadstoffkonzentration im Fermenter erlauben es den Selektioπsdruck wahrend des Prozesses aufrechtzuerhalten Wahrend der toxinostati¬ schen oder toxinodynamischen Fermentation erfolgt aus dem Fermenter zwecksmaßig eine kontinuierliche Probennahme zur On-Line-Messung der Schadstoffkonzentration wobei die Art der Messung selbstverständlich von dem nachzuweisenden S chadstoff abhangt Die Regelung laßt sich so parametrisieren daß bei Erreichen eines bestimm¬ ten Schwellwertes die abzubauenden Schadstoffe in den Reaktor gepumpt werden wahrend beim Erreichen eines zweiten, oberen Konzentrationschwellwert.es der Zufluß der Schadstoffe herabgesetzt wirdThis control can be carried out either by keeping the pollutant concentration constant between an upper and a lower threshold value (f-oxinostatic fermentation) or by using the vitality of the biomass as a leader to regulate the toxin concentration (toxinodynamic fermentation) Toxinodynamic fermentation, for example, oxygen consumption or cell respiration serve as vitality parameters. The above-mentioned regulations for the pollutant concentration in the fermenter allow the selection pressure to be maintained during the process. During toxinostatic or toxinodynamic fermentation, the fermenter is used for continuous sampling for on-line purposes. Measurement of the pollutant concentration, the type of measurement of course depending on the pollutant to be detected. The control can be parameterized in such a way that when a certain threshold value is reached, it is reduced the pollutants are pumped into the reactor while the inflow of the pollutants is reduced when a second, upper concentration threshold value is reached
In Figur 1 werden beispielsweise die Phenol- und Formaldehydkonzentration im Ablauf einer toxinostatischen Fermentation gezeigt Kurve A zeigt das Meßsignal der Konzen¬ tration von Phenol und Kurve B das Meßsignal der Konzentration von Formaldehyd im Fermenter Die schwarzen Blocke zeigen die Dauer der Pumpintervalle der Substratzu- fuhrung anFor example, FIG. 1 shows the phenol and formaldehyde concentration in the course of a toxinostatic fermentation. Curve A shows the measurement signal of the concentration of phenol and curve B shows the measurement signal of the concentration of formaldehyde in the fermenter. The black blocks show the duration of the pumping intervals of the substrate feed on
Das erfindungsgemäße Verfahren unter toxinostatischer Fermentatioπsfuhrung bringt für den technischen Schadstoffabbau im kontinuierlichen Reaktor zwei wesentliche Vor¬ teile. Zum einen können durch Vorgabe eines geeigneten Sollwerts für die Schad¬ stoffkonzentration im Reaktorausfluß vorgeschriebene Vorflutergrenzwerte eingehalten werden Zum anderen erlaubt diese Art der Regelung, hohe Schwankungen der Schadstoffkonzentration im schadstoffbefrachtetem Medium in dem kontinuierlichen Betneb effizient abzupuffern Um zu verhindern, daß Mikroorganismen, die keinen Beitrag zum Schadstoffabbau lei¬ sten, sich auch im System etablieren liegt der untere Schwellwert der Schadstoffkon¬ zentration im Abbaufermenter vorzugsweise nicht unter der Okotoxizitatsgrenze von im Abbaufermenter eventuell vorhandenen, zum Schadstoffabbau jedoch nicht beitragen- den Mikroorganismen Die Okotoxizitatsgrenze ist diejenige Schadstoffkonzentration, bei der der Gesamtstoffwechsel des untersuchten biologischen Materials zusammen¬ brichtThe process according to the invention under the control of toxinostatic fermentation brings two essential advantages for industrial pollutant degradation in a continuous reactor. On the one hand, by specifying a suitable setpoint for the pollutant concentration in the reactor outflow, prescribed receiving water limit values can be observed. On the other hand, this type of control allows high fluctuations in the pollutant concentration in the polluted medium to be buffered efficiently in the continuous operation In order to prevent microorganisms which do not contribute to the degradation of pollutants from establishing themselves in the system, the lower threshold value of the pollutant concentration in the degradation fermenter is preferably not below the okotoxicity limit of any microorganisms which are present in the degradation fermenter but which do not contribute to pollutant degradation The okotoxicity limit is the pollutant concentration at which the total metabolism of the examined biological material breaks down
In einer bevorzugten Durchfuhrungsform der Erfindung enthalt das schadstoffbefrach¬ tete Medium Formaldehyd und die zugesetzte Mikroorganismenkultur enthalt die Mikroorganismen DSM 11423 und/oder DSM 11424 oder Mutanten oder Vaπanten die¬ ser MikroorganismenIn a preferred embodiment of the invention, the polluted medium contains formaldehyde and the added microorganism culture contains the microorganisms DSM 11423 and / or DSM 11424 or mutants or variants of these microorganisms
Formaldehyd in wäßriger Losung, üblicherweise auch als Formahn bezeichnet wirkt extrem toxisch auf Mikroorganismen und ist eines der besten Desinfektions-, Konser- vierungs- und Steπlisationsmittel Die Formaldehydtoleranzwerte der bisher beschπe- benen Mikroorganismen liegen weit unterhalb der üblicherweise in problematischen Abwassern und Abfallen anfallenden Formalinkonzentrationen Daher war ein mikrobio¬ logischer Abbau von Formaldehyd in hohen Konzentrationen bislang nicht möglich Beim Einsatz der obengenannten Mikroorganismen in dem Verfahren gemäß der Erfin¬ dung entwickelt sich jedoch eine Mikroorganismenkultur, die in der Lage ist, Formalde- hydkonzentrationen von bis zu 5 500 mg/l zu tolerieren und den Schadstoff mit hoher Geschwindigkeit abzubauenFormaldehyde in aqueous solution, usually also referred to as formahn, has an extremely toxic effect on microorganisms and is one of the best disinfectants, preservatives and stabilizers. The formaldehyde tolerance values of the microorganisms described so far are far below the formalin concentrations normally found in problematic waste water and waste Microbial degradation of formaldehyde in high concentrations has not been possible until now. When using the above-mentioned microorganisms in the process according to the invention, however, a microorganism culture is developed which is capable of formaldehyde concentrations of up to 5,500 mg / l tolerate and degrade the pollutant at high speed
In einer weiteren Durchfuhrungsform des erfindungsgemaßen Verfahrens enthalt das schadstoffbefrachtete Medium Phenol und die Mikroorganismenkultur enthalt den Mikroorganismus DSM 11425 oder Mutanten oder Varianten dieses Mikroorganismus Der Abbau von Formaldehyd und Phenol wahrend derselben Fermentation ist bei gleichzeitigem Einsatz von DSM 11425 mit DSM 11423 und/oder DSM 11424 ebenfalls möglichIn a further embodiment of the process according to the invention, the pollutant-containing medium contains phenol and the microorganism culture contains the microorganism DSM 11425 or mutants or variants of this microorganism. The degradation of formaldehyde and phenol during the same fermentation is carried out with simultaneous use of DSM 11425 with DSM 11423 and / or DSM 11424 also possible
Die Mikroorganismen DSM 11423, DSM 11424 und DSM 11425 wurden am 21 02 1997 bei der DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen Mascheroder Weg 1 b, D-38124 Braunschweig - hinterlegt Zu den physiologischen und baktenologischen Eigenschaften dieser Mikroorganismen wird auf die Tabellen 1 und 2 verwiesen Der Mikroorganismus DSM 11423 wurde aus einer formalingetränkten Gewebeprobe isoliert und zunächst als Methylobacterium βxtorquens identifiziert. Bei Abbaufermen¬ tationen unter verschiedenen Bedingungen zeigt DSM 11423 eine maximale Abbau¬ geschwindigkeit für Formaldehyd von 1612 nmol/min*mg und eine Toleraπzgrenze für diesen Schadstoff von 10 mM. DSM 11423 besitzt die höchste Abbaugeschwindigkeit und den kleinsten Ks-Wert der im Rahmen der Erfindung untersuchten formaldehyd- abbauenden Stämme (696 μM) und ist in der Lage, den Formaldehydgehalt eines formaldehydbefrachteten Mediums durch Abbau auf nahezu Null zu reduzieren. Die Schadstofftoleranz ist dagegen mit 10 mM (300 mg/l) gering. Der Abbau des Formal- dehyds erfolgt im ersten Schritt über eine Oxidation zu Ameisensäure, katalysiert durch die glutathionabhängige Formaldehyddehydrogenase. Die spezifische Aktivität dieses Enzyms im Rohextrakt ist mit etwa 1 ,6 lU/mg Protein sehr hoch.The microorganisms DSM 11423, DSM 11424 and DSM 11425 were deposited on 21.02.1997 with the DSMZ - German Collection of Microorganisms and Cell Cultures Mascheroder Weg 1 b, D-38124 Braunschweig. The physiological and bacterological properties of these microorganisms are shown in Tables 1 and 2 referenced The microorganism DSM 11423 was isolated from a formalin-impregnated tissue sample and initially identified as Methylobacterium βxtorquens. In degradation fermentations under different conditions, DSM 11423 shows a maximum degradation rate for formaldehyde of 1612 nmol / min * mg and a tolerance limit for this pollutant of 10 mM. DSM 11423 has the highest degradation rate and the lowest Ks value of the formaldehyde-degrading strains investigated in the context of the invention (696 μM) and is able to reduce the formaldehyde content of a formaldehyde-contaminated medium to almost zero by degradation. The pollutant tolerance, on the other hand, is low at 10 mM (300 mg / l). In the first step, the formaldehyde is broken down by oxidation to formic acid, catalyzed by the glutathione-dependent formaldehyde dehydrogenase. The specific activity of this enzyme in the crude extract is very high at around 1.6 lU / mg protein.
Der Mikroorganismus DSM 11424 wurde ebenfalls aus einer formalingetränkten Gewe¬ beprobe isoliert und zunächst als Pseudomonas putida identifiziert. Bei Abbaufermen- tationen unter verschiedenen Bedingungen zeigte DSM 11424 eine maximale Abbau¬ geschwindigkeit für Formaldehyd von 784 nmol/min*mg und eine Toleraπzgrenze für diesen Schadstoff von 100 mM. DSM 11423 besitzt im Vergleich zu anderen unter¬ suchten formaldehydabbauenden Stämmen eine mittlere Abbaugeschwindigkeit aber den höchsten Ks-Wert (11643 μM) und ist in der Lage, Formaldehyd auch noch bei sehr hohen Konzentrationen abzubauen. Durch den hohen Ks-Wert läßt sich der Form¬ aldehydgehalt des Mediums durch Reinkulturen dieses Mikroorganismus auf ca. 200 mg/l reduzieren. Der Formaldehydabbau erfolgt wie bei DSM 1 1423 im ersten Schritt über eine Oxidation zu Ameisensäure, katalysiert durch die glutathionabhängige Formaldehyddehydrogenase. Die spezifische Aktivität dieses Enzyms im Rohextrakt ist nur gering.The microorganism DSM 11424 was also isolated from a formalin-impregnated tissue sample and initially identified as Pseudomonas putida. When degradation was observed under various conditions, DSM 11424 showed a maximum degradation rate for formaldehyde of 784 nmol / min * mg and a tolerance limit for this pollutant of 100 mM. Compared to other formaldehyde-degrading strains investigated, DSM 11423 has an average degradation rate but the highest K s value (11643 μM) and is able to decompose formaldehyde even at very high concentrations. Due to the high K s value, the formaldehyde content of the medium can be reduced to approximately 200 mg / l by pure culture of this microorganism. As in DSM 1 1423, the formaldehyde degradation takes place in the first step via oxidation to formic acid, catalyzed by the glutathione-dependent formaldehyde dehydrogenase. The specific activity of this enzyme in the crude extract is only low.
Der Mikroorganismus DSM 11425 wurde aus einer Bodenprobe isoliert und ist in der Lage, Phenol mit einer gegenüber standorteigenen Mikroorganismen deutlich höheren Abbaurate umzusetzen. Die partielle Sequenzierung der 16S-rRNA dieses Mikroorga¬ nismus ergab eine Ähnlichkeit von 99,1 % zum Typ-Stamm Klebsiella oxytoca.The microorganism DSM 11425 was isolated from a soil sample and is able to convert phenol with a significantly higher degradation rate than the microorganisms on site. The partial sequencing of the 16S rRNA of this microorganism showed a similarity of 99.1% to the type strain Klebsiella oxytoca.
Der aerobe Phenoiabbau erfolgt in einem ersten Schritt durch eine durch die Phenol- hydroxylase katalysierte NADH- bzw. NADPH-abhängige orf/70-Hydroxylierung des Phenols. Als Produkt entsteht dabei Catechol, ein zentrales Zwischenprodukt in den meisten Aromatenabbauwegen. Catechol wird auf zwei Arten metabolisiert: zum einen durch die chromosomencodierte o/tΛo-Spaltung, zum anderen über die plasmidcodierte mete-Spaltung, wobei die ortήo-Spaltung durch ihr Produkt, cis.αs-Muconsaure und die mete-Spaltung durch Phenol induziert wird Die Expression der jeweiligen Enzyme laßt sich im Rohextrakt anhand der unterschiedlichen Absorptionsmaxima der entstehenden Produkte, cis.cis-Muconsaure (λmax = 260 nm) und 2-Hydroxymuconsauresemιaldehyd (λmax = 375 nm) verfolgen In Tabelle 3 werden die spezifischen Aktivitäten undThe aerobic phenol degradation takes place in a first step by means of an NADH- or NADPH-dependent orf / 70-hydroxylation of the phenol which is catalyzed by the phenol hydroxylase. The product is catechol, a key intermediate in most aromatics routes. Catechol is metabolized in two ways: first through the chromosome-encoded o / tΛo cleavage, and also via the plasmid-encoded mete-cleavage, the ortήo cleavage being induced by its product, cis.αs-muconic acid and the mete-cleavage by phenol. The expression of the respective enzymes can be found in the crude extract based on the different absorption maxima of the resulting products, cis.cis-muconic acid (λmax = 260 nm) and 2-hydroxymuconic acid semιaldehyde (λmax = 375 nm). Table 3 shows the specific activities and
Michaehskonstanten im Rohextrakt des Mikroorganismus DSM 1 1425 gezeigt Die kinetischen Parameter ganzer Zellen betragen 7-9 μM (Ks), 400-500 nmol/mιn*mg (vmax) sowie 1 ,83 mM für die Hemmkonstante KsiMichaehkonstanten in the crude extract of the microorganism DSM 1 1425 shown The kinetic parameters of whole cells are 7-9 μM (K s ), 400-500 nmol / min * mg (vmax) and 1.83 mM for the inhibition constant Ksi
In einer weiteren Durchführungsform des erfindungsgemaßen Verfahrens wird das aus der Abbaufermentation abfließende Medium einer zweiten Abbaufermentation unterzo¬ gen, wobei der untere Schwellwert der Schadstoffkonzentration im Abbaufermenter bei der zweiten Abbaufermentation niedriger als bei der ersten Abbaufermentation hegt Eine Steigerung der Abbaueffizienz wird erreicht, indem die Schadstoffkonzentration in dem ersten Fermenter unabhängig von der des zweiten Fermenters so eingestellt wird daß eine optimale Enzyminduktion und somit eine entsprechend hohe Abbauge¬ schwindigkeit erzielt wird Die Schadstoffkonzentration im zweiten Fermenter wird dann so eingestellt, daß die Schadstoffkonzentration im Ablauf dem vorgeschriebenen Ein- leitgrenzwert entsprichtIn a further embodiment of the method according to the invention, the medium flowing out of the degradation fermentation is subjected to a second degradation fermentation, the lower threshold value of the pollutant concentration in the degradation fermenter being lower in the second degradation fermentation than in the first degradation fermentation. An increase in the degradation efficiency is achieved by the pollutant concentration in the first fermenter, independent of that of the second fermenter, so that an optimal enzyme induction and thus a correspondingly high degradation rate is achieved. The pollutant concentration in the second fermenter is then set so that the pollutant concentration in the process corresponds to the prescribed introduction limit
Vorzugsweise wird die Mikroorganismenkultur vor der Zugabe in das schadstoffbe¬ frachtete Medium in einem ein nährstoffreiches Medium enthaltenden Mutationsfer- menter kultiviert einer mutagenen Behandlung unterzogen und stabilisiert und an¬ schließend in einem Selektionsfermenter, der ein nahrstoffarmes, mit dem oder den Schadstoffen angereichertes Medium enthalt, einer Selektion unterzogen wobei ein Teil der Kultur aus dem Selektionsfermenter in den Mutationsfermenter kontinuierlich so lange zurückgeführt wird, bis sich eine Mikroorganismenkultur mit der gewünschten Schadstoffabbauleistung und Schadstofftoleranz etabliert hatBefore being added to the pollutant-laden medium, the microorganism culture is preferably cultured in a mutation fermenter containing a nutrient-rich medium and subjected to a mutagenic treatment and stabilized and then in a selection fermenter which contains a nutrient-poor medium enriched with the pollutant (s). subjected to a selection whereby part of the culture from the selection fermenter is continuously returned to the mutation fermenter until a microorganism culture with the desired pollutant degradation performance and tolerance has been established
Bei dieser Durchfuhrungsform des erfindungsgemaßen Verfahrens wird der Abbau¬ fermentation ein Verfahren zur Züchtung von Mikroorganismen vorgeschaltet, das auf dem Prinzip der evolutiven Optimierung beruht Es wird hier auf das deutsche Patent Nr 195 07 103 des Anmelders verwiesen Die oben beschriebenen Mikroorganismen DSM 11423, DSM 11424 und DSM 11425 werden erfindungsgemäß zur Anzucht von Mutanten oder Varianten verwendet. Die Anzucht kann beispielsweise durch Selektion spontan vorkommender Mutationen erfol¬ gen. Andere Möglichkeiten umfassen z.B. die Mutation durch Einwirkung chemischer Stoffe und/oder radioaktiver Strahlung und/oder von UV-Licht. Dadurch können Mutan¬ ten und Varianten erhalten werden, die verbesserte Eigenschaften aufweisen, bei¬ spielsweise bezüglich der Schadstoffabbauleistung oder der Schadstofftoleranz.In this embodiment of the method according to the invention, the degradation fermentation is preceded by a method for growing microorganisms which is based on the principle of evolutionary optimization. Reference is made here to the applicant's German Patent No. 195 07 103 The microorganisms DSM 11423, DSM 11424 and DSM 11425 described above are used according to the invention for the cultivation of mutants or variants. Cultivation can take place, for example, by selecting spontaneously occurring mutations. Other possibilities include, for example, mutation through the action of chemical substances and / or radioactive radiation and / or UV light. This allows mutants and variants to be obtained which have improved properties, for example with regard to the pollutant degradation performance or the pollutant tolerance.
Des weiteren werden die erfindungsgemäßen Mikroorganismen DSM 11423 und DSM 11424 als Spenderorganismus für genetisches Material verwendet, insbesondere zur Insertion eines eine Formaldehyddehydrogenase oder Formaldehyddismutase codierenden Gens und/oder der dazugehörigen Promotorsequenz in einen Mikroorga¬ nismus oder eine Zelle. Der Einbau des Gens in den Empfängerorganismus erfolgt mit den in der Mikrobiologie üblichen Methoden, z.B. mit Hilfe eines Vektors. Durch Ex¬ pression des eingebauten Gens in dem Empfängerorgaπismus können größere Men- gen eines für den Schadstoffabbau relevanten Enzyms, beispielsweise der Formalde¬ hyddehydrogenase, produziert werden. Die vorgenannten Mikroorganismen werden ebenfalls zur Gewinnung eines eine Formaldehyddehydrogenase oder Formalde¬ hyddismutase codierenden Gens und/oder der dazugehörigen Promotorsequenz zwecks Sequenzanalyse verwendet.Furthermore, the microorganisms DSM 11423 and DSM 11424 according to the invention are used as donor organisms for genetic material, in particular for inserting a gene coding for a formaldehyde dehydrogenase or formaldehyde dismutase and / or the associated promoter sequence into a microorganism or a cell. The gene is incorporated into the recipient organism using the methods customary in microbiology, e.g. using a vector. By expression of the gene incorporated in the recipient organism, larger amounts of an enzyme relevant for the degradation of pollutants, for example formaldehyde dehydrogenase, can be produced. The aforementioned microorganisms are also used to obtain a gene encoding a formaldehyde dehydrogenase or formaldehyde dismutase and / or the associated promoter sequence for the purpose of sequence analysis.
Die Biomasse, die man durch Durchführung des erfindungsgemäßen Verfahrens erhält, läßt sich vorteilhaft zur /n-s/Y-z-Bodensanierung verwenden, bei der die Schadstoffe von abbaufähigen Mikroorganismen direkt im Boden abgebaut werden, ohne das Erdreich abzutragen und damit die Bodenstruktur zu verändern.The biomass obtained by carrying out the method according to the invention can advantageously be used for / n-s / Y-z soil remediation, in which the pollutants of degradable microorganisms are broken down directly in the soil without removing the soil and thus changing the soil structure.
Zur Lösung einer weiteren Aufgabe der Erfindung wird eine Vorrichtung zur Durchfüh- rung des erfindungsgemäßen Verfahrens vorgeschlagen, die mindestens einen Abbau¬ fermenter und Mittel zur Regelung der Schadstoffkonzentration in dem oder den Abbau- fermentern enthält. In ihrer einfachsten Ausführungsform enthält die Vorrichtung einen Abbaufermenter und die dazugehörigen Mittel zur Regelung der Schadstoffkonzentra¬ tion im Fermenter, es sind aber auch mehrere parallele Fermenter denkbar, die gleich- zeitig mit schadstoffbefrachtetem Medium beschickt und angeimpft werden können. Zur Durchführung des Verfahrens nach Anspruch 7 werden zwei aufeinanderfolgende Ab¬ baufermenter vorgesehen, in denen die Schadstoffkonzentration unabhängig vonein¬ ander durch entsprechende Regelkreise eingestellt wird. Zur Durchführung des Verfahrens nach Anspruch 8 wird eine Vorrichtung bevorzugt, die einen Mutationsfermenter zur Kultivierung, mutagenen Behandlung und Stabilisie¬ rung der Mikroorganismenkultur, einen Selektionsfermenter, Mittel zur Rückführung eines Teils der Kultur aus dem Selektionsfermenter in den Mutationsfermenter, Mittel zur Regelung der Schadstoffkonzentration in dem Selektionsfermenter, mindestens einen Abbaufermenter und Mittel zur Regelung der Schadstoffkonzentration in dem oder den Abbaufermentem enthält.To achieve a further object of the invention, an apparatus for carrying out the method according to the invention is proposed which contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter or fermenters. In its simplest embodiment, the device contains a degradation fermenter and the associated means for regulating the concentration of pollutants in the fermenter, but several parallel fermenters are also conceivable, which can be loaded and inoculated with pollutant-laden medium at the same time. To carry out the method according to claim 7, two successive decomposition fermenters are provided, in which the pollutant concentration is set independently of one another by corresponding control loops. To carry out the method according to claim 8, a device is preferred which contains a mutation fermenter for the cultivation, mutagenic treatment and stabilization of the microorganism culture, a selection fermenter, means for returning part of the culture from the selection fermenter to the mutation fermenter, means for regulating the pollutant concentration in the selection fermenter contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter (s).
Das Wesen der Erfindung wird im folgenden anhand einiger Beispiele erläutert, ohne die Erfindung darauf einzuschränken.The essence of the invention is explained below with the aid of a few examples, without restricting the invention thereto.
Beispiel 1example 1
Ein Fermenter mit einem Reaktorvolumen größer als 10 1 wird kontinuierlich mit einem Krankenhausabwasser beschickt, welches Formaldehyd in schwankenden Konzentra¬ tionen zwischen 50 g/1 und 200 g/1 enthält. Außer Formaldehyd enthält das Wasser verschiedene andere organische Stoffe. Dem Abwasser werden vor der Reaktoreinlei- tung folgende Medienkomponenten zugesetzt:A fermenter with a reactor volume greater than 10 1 is continuously fed with hospital wastewater which contains formaldehyde in fluctuating concentrations between 50 g / 1 and 200 g / 1. In addition to formaldehyde, the water contains various other organic substances. The following media components are added to the wastewater before the reactor is introduced:
NH4N03 7,6 mMNH4N03 7.6 mM
K2HP04/KH2PO4 6,0 mMK2HP04 / KH2PO4 6.0 mM
MgSθ4*7H2θ 1 ,2 mMMgSO4 * 7H2θ1.2 mM
CaCl2 0,9 mM N NaaCCII 0 0,,55 mMCaCl2 0.9 mM N NaaCCII 0., 55 mM
ZnSθ4 0,1 mMZnSθ4 0.1 mM
FeSθ4 0,07 mMFeSO4 0.07 mM
Die eingeleitete formaldehydhaltige Lösung enthält aufgrund ihrer hohen Toxizität keine lebensfähigen Mikroorganismen, sie wird jedoch sicherheitshalber vor dem Einleiten einer UV-Strahlung in letaler Dosis ausgesetzt. Der Reaktor wird mit einer Mischkultur angeimpft, die die Mikroorganismen DSM 11423 und DSM 11424 enthält.The formaldehyde-containing solution introduced does not contain any viable microorganisms due to its high toxicity, but for safety reasons it is exposed to lethal doses before UV radiation is introduced. The reactor is inoculated with a mixed culture containing the microorganisms DSM 11423 and DSM 11424.
Das Verfahren wird im Bereich von pH 5,0 bis 8,5 und unter pθ2-Regulierung bis zu 10% der maximalen Sauerstoff-Sättigungskonzentration des Abwassers geführt. Die Abbaufermentation erfolgt bei Temperaturen zwischen 5 und 45°C, insbesondere zwi- sehen 22 und 30°C. Die Kulturführung erfolgt aerob, kontinuierlich und in toxinostati- schem Betrieb: Die Formaldehydkonzentration im Reaktor wird kontinuierlich gemessen und durch Regelung des Zuflusses zwischen einem oberen Schwellwert und einem unteren Schwellwert konstant gehalten Diese Schadstoffkonzentration erfordert von den Mikroorganismen eine relativ hohe Schadstofftoleranz Der mikrobielle Formalde¬ hydabbau bewirkt, daß die Differenz zwischen der Schadstoffkonzentration des in die Anlage eingeleiteten Abwassers und der Konzentration im Ablauf sehr hoch ist Das aus dem Reaktor abfließende Wasser enthalt eine Restkoπzentration an Formaldehyd, welche in einem Nachklärbecken mikrobiell restlos abgebaut wirdThe process is carried out in the range from pH 5.0 to 8.5 and under pθ2 regulation up to 10% of the maximum oxygen saturation concentration of the waste water. Degradation fermentation takes place at temperatures between 5 and 45 ° C, in particular between 22 and 30 ° C. The culture is carried out aerobically, continuously and in a toxin-static mode: the formaldehyde concentration in the reactor is measured continuously and kept constant by regulating the inflow between an upper threshold value and a lower threshold value. This pollutant concentration requires a relatively high pollutant tolerance from the microorganisms. Microbial formaldehyde degradation has the effect that the difference between the pollutant concentration of the waste water introduced into the system and the concentration in the outlet is very high is high The water flowing out of the reactor contains a residual concentration of formaldehyde, which is completely degraded microbially in a secondary clarifier
Beispiel 2:Example 2:
Ein großtechnischer Fermenter wird kontinuierlich mit einem industriellen Abwasser aus der Bakelit-Produktion beschickt, welches Formaldehyd in schwankenden Konzentra¬ tionen zwischen 8 g/1 und 12 g/1 enthalt Außer Formaldehyd enthalt das Abwasser Phenol in einer Konzentration von 40 g/1 und verschiedene andere organische Kompo¬ nenten Dem Abwasser werden vor der Reaktoreinleitung die oben angegebenen Medienkomponenten zugesetzt Die eingeleitete formaldehyd- und phenolhaltige Lo- sung enthalt aufgrund ihrer hohen Toxizitat keine lebensfähigen Mikroorganismen, sie wird jedoch sicherheitshalber vor dem Einleiten einer UV-Strahlung in letaler Dosis aus¬ gesetztA large-scale fermenter is continuously fed with industrial wastewater from bakelite production, which contains formaldehyde in fluctuating concentrations between 8 g / 1 and 12 g / 1. In addition to formaldehyde, the wastewater contains phenol in a concentration of 40 g / 1 and various Other organic components The media components specified above are added to the wastewater before the reactor is introduced. The introduced formaldehyde and phenol-containing solution contains no viable microorganisms due to its high toxicity, but it is released as a lethal dose for safety reasons before UV radiation is introduced set
Der Reaktor wird mit einer Mischkultur angeimpft, die die Mikroorganismen DSM 11423, DSM 11424 und DSM 11425 enthalt Das Abbauverfahren erfolgt wie oben angegeben Die Formaldehydkonzentration im Reaktor wird kontinuierlich gemessen und durch Regelung des Zuflusses zwischen einem oberen Schwellwert und einem unteren Schwellwert konstant gehalten Diese Schadstoffkonzentration erfordert von den Mikroorganismen eine relativ hohe Schadstofftoleranz Der mikrobielle Formaldehydab¬ bau bewirkt, daß die Differenz zwischen der Schadstoffkonzentration des in die Anlage eingeleiteten Abwassers und der Konzentration im Ablauf sehr hoch ist Simultan zum Formaldehydabbau erfolgt im Reaktor ein mikrobiologischer Phenolabbau Das aus dem Reaktor abfließende Wasser enthalt eine Restkonzentration an Formaldehyd und/oder Phenol, welche in einem Nachklärbecken mikrobiell abgebaut wird Beispiel 3:The reactor is inoculated with a mixed culture that contains the microorganisms DSM 11423, DSM 11424 and DSM 11425. The degradation process is carried out as indicated above. The formaldehyde concentration in the reactor is measured continuously and is kept constant by regulating the inflow between an upper threshold value and a lower threshold value. This pollutant concentration requires a relatively high tolerance to pollutants from the microorganisms. The microbial formaldehyde degradation has the effect that the difference between the pollutant concentration of the waste water introduced into the system and the concentration in the outlet is very high. Simultaneous to formaldehyde degradation, microbiological phenol degradation takes place in the reactor. The water flowing out of the reactor contains a residual concentration of formaldehyde and / or phenol, which is broken down microbially in a secondary clarifier Example 3:
Jeweils 10 ml Medium mit der ZusammensetzungEach 10 ml medium with the composition
Pepton Nr. 5 5,0Peptone No. 5 5.0
Fleischextrakt 3,0 g/ι pH 7,0Meat extract 3.0 g / pH 7.0
werden mit 0,1 g in Formalin gelagertem formalinhaltigem Gewebe anatomischer Prä¬ parate verschiedener Probenahmestellen in 50 ml Erlenmeyerkolben bei 30°C unter leichtem Schwenken auf einer Rotationsschüttelmaschine 24 Stunden lang inkubiert. Jeweils 250 μl dieser Kultur werden in 5 ml Mineralmedium mit Formaldehyd als einzi- ger Kohlenstoffquelle mit der folgenden Zusammensetzung überimpft:are incubated with 0.1 g of formalin-containing tissue in formalin containing anatomical preparations from various sampling points in 50 ml Erlenmeyer flasks at 30 ° C. with gentle swirling on a rotary shaker for 24 hours. 250 μl of this culture are inoculated in 5 ml of mineral medium with formaldehyde as the only carbon source with the following composition:
NH4N03 7,6 mMNH4N03 7.6 mM
K2HP04/KH2P04 6,0 mMK2HP04 / KH2P04 6.0 mM
MgSθ4*7H2θ 1 ,2 mMMgSO4 * 7H2θ1.2 mM
CaCl2 0,9 mM N NaaCCII 0 0,,55 mMCaCl2 0.9 mM N NaaCCII 0., 55 mM
ZnS04 0,1 mMZnS04 0.1 mM
FeS04 0,07 mMFeS04 0.07 mM
Formaldehyd 2,0 mM pH 7,0Formaldehyde 2.0 mM pH 7.0
Nach dreitägiger Inkubation wird die Kultur in 150 ml des obengenannten Mediums überführt. Nach weiterer viertägiger Inkubation wird eine Verdünnungsreihe sowie eine Teilcharakterisierung der entstandenen Kolonien durchgeführt. Diese Kultur dient als Animpfkultur für die folgende toxinostatische FermentationAfter three days of incubation, the culture is transferred to 150 ml of the above medium. After another four days of incubation, a series of dilutions and a partial characterization of the colonies formed are carried out. This culture serves as the seed culture for the following toxinostatic fermentation
Über einen längeren Zeitraum wird in einem kontinuierlich-toxinostatisch geführten Fermentationsprozeß eine Mischkultur unter periodischer Ultraviolettbestrahlung opti¬ miert. Die dabei im Fermenter über einen Regelkreis eingestellte Formaldehydkonzen¬ tration wird während dieses Zeitraumes in Abhängigkeit von der Vitalität der Gesamtkul¬ tur sukzessive erhöht.Over a longer period of time, a mixed culture under periodic ultraviolet radiation is optimized in a fermentation process carried out in a continuously toxinostatic manner. The formaldehyde concentration set in the fermenter via a control loop is gradually increased during this period depending on the vitality of the overall culture.
Zu verschiedenen Fermentationszeitpunkten werden Proben aus dem Fermenter ent- nommen und einer mikrobiologischen Untersuchung nach den üblichen Methoden un- terzogeπ Wenn keine Steigerung der Abbauleistung und Resistenz mehr beobachtet werden kann, wird die Kultur geerntet und zum Animpfen einer Abbaufermentation entsprechend dem Beispiel 1 eingesetztAt different fermentation times, samples are taken from the fermenter and subjected to microbiological analysis according to the usual methods. terzogeπ If no increase in degradation performance and resistance can be observed, the culture is harvested and used to inoculate a degradation fermentation according to Example 1
Die ursprünglich selektierten Stamme weisen eine für natürlich vorkommende Mikro- Organismen sehr hohe Formaldehydresistenz von 500-6000 mg/l Formaldehyd auf Im Verlauf der Fermentation können Resistenz und Abbauraten der ursprunglichen Kultur noch um jeweils ca den Faktor 10 gesteigert werdenThe originally selected strains have a very high formaldehyde resistance of 500-6000 mg / l formaldehyde for naturally occurring microorganisms. During the fermentation, resistance and degradation rates of the original culture can be increased by a factor of 10 each
Beispiel 4:Example 4:
Ein Produktionsbetπeb verklebt seine Erzeugnisse mit formaldehyd- und phenolhaltigen Klebstoffen Die Klebemittelruckstande werden gesammelt und regelmäßig zu einer zentralen biologischen Entsorgungseinrichtung transportiert Hier werden die Abfalle gemeinsam mit anderen flussigen formaldehyd- und/oder phenolhaltigen Abfallchargen aus unterschiedlichen Quellen biologisch entsorgt Der der Anlage zugefuhrte Abfall¬ strom schwankt aufgrund der Heterogenitat der zugefuhrten Abfallchargen in Bezug auf die Formaldehyd- und Phenolkonzentration sehr starkA production plant glues its products with formaldehyde- and phenol-containing adhesives. The adhesive residues are collected and regularly transported to a central biological disposal facility. Here, the waste is biologically disposed of together with other liquid formaldehyde- and / or phenol-containing waste batches from different sources. The waste stream supplied to the plant fluctuates very strongly due to the heterogeneity of the waste batches in relation to the formaldehyde and phenol concentration
Der Phenolindex und die Formaldehydkonzentration werden im Bioreaktor der Entsor¬ gungsanlage "on-line" und kontinuierlich gemessen Erreicht einer der beiden Meßpa¬ rameter die zulassige obere Grenzkonzentration, wird die Schadstoffzufuhrung in den Reaktor gestoppt, bis der obere Schwellwert wieder unterschritten wird Fallt der Phenolindex und/oder die Formaldehydkonzentration auf einen festgelegten unteren Konzentrationswert, wird durch Erhöhung der Durchflußrate oder durch zusatzliche Zu- dosierung des jeweils limitierten Schadstoffes diese wieder über den unteren Schwell¬ wert angehoben Auf diese Weise kann trotz Beschickung des Bioreaktors mit qualitativ höchst unterschiedlichen Abwasserchargen eine optimal abbauende Spezialkultur sta- bilisiert werdenThe phenol index and the formaldehyde concentration are measured "on-line" and continuously in the bioreactor of the disposal system. If one of the two measurement parameters reaches the permissible upper limit concentration, the supply of pollutants into the reactor is stopped until the upper threshold value is again fallen below if the phenol index falls and / or the formaldehyde concentration to a fixed lower concentration value, this is raised again above the lower threshold value by increasing the flow rate or by additionally adding the respectively limited pollutant. In this way, despite charging the bioreactor with qualitatively very different wastewater batches degrading special culture can be stabilized
Beispiel 5:Example 5:
Die formaldehydbelastete Luft in der Umgebung einer Produktions- und Verarbei- tungsstatte muß gereinigt werden, um unter die zulassigen MAK-Werte in der Luft zu kommen Die Formaldehydbelastungen in der Luft schwanken Zur Reinigung der Luft wird ein Luftwascher eingesetzt, der den gasformigen Formaldehyd vom Medium Luft in das Medium Wasser transfenert Das formaldehydbelastete Waschwasser wird an- schließend einer toxinostatisch geregelten biologischen Klarstufe zugeführt, wo der Formaldehyd biologisch eliminiert wird Anschließend wird das so regenerierte Wasch¬ wasser wieder der Luftwascheranlage zugeführt, um erneut Formaldehyd aus der Luft aufzunehmenThe formaldehyde-contaminated air in the vicinity of a production and processing facility must be cleaned in order to get below the permissible MAK values in the air. The formaldehyde pollution in the air fluctuates An air washer is used to clean the air, which removes the gaseous formaldehyde from the medium Air is transferred into the medium of water The wash water contaminated with formaldehyde is finally fed to a toxinostatically regulated biological clarification stage, where the formaldehyde is biologically eliminated. The washing water thus regenerated is then fed back to the air washer system in order to again take up formaldehyde from the air
Beispiel 6:Example 6:
Große Mengen phenolbelasteter Abwasser fallen bei der Sanierung von ehemaligen Lagerstatten des Braunkohletagebaus an Wahrend dieser Sanierung wird Grund- und Niederschlagwasser mit Phenolen verunreinigt Der Verschmutzungsgrad liegt in derLarge amounts of phenol-contaminated wastewater accumulate during the renovation of former lignite mine deposits. During this renovation, groundwater and rainwater are contaminated with phenols
Regel zwischen 500-1500 mg/l Phenolindex und der Abwasservolumenstrom pro Sanie-Usually between 500-1500 mg / l phenol index and the waste water volume flow per sanitary
3 rungsstandort zwischen 100 000 und 200 000 m /Jahr Die relativ kontinuierlich anfal¬ lenden Abwasserstrome werden einer mehrstufigen Behandlungsanlage zugeführt, deren zentrale und wichtigste Komponente ein toxinostatisch betriebener Bioreaktor mit3 location between 100,000 and 200,000 m / year The relatively continuously occurring wastewater flows are fed to a multi-stage treatment plant, the central and most important component of which is a toxinostatically operated bioreactor
3 einem Arbeitsvolumen von 10 m ist Hier werden die im Abwasser enthaltenen Phe¬ nole bis zu einer unteren Grenzkonzentration eliminiert Die restliche Phenolbelastung wird in einer weniger energieintensiven Tropfkorperbiologie abgebaut3 a working volume of 10 m. Here the phenols contained in the wastewater are eliminated up to a lower limit concentration. The remaining phenol load is broken down in a less energy-intensive drip body biology
Beispiel 7:Example 7:
Glutaraldehyd wird im Krankenhausbereich zur Reinigung und Desinfektion von Ar¬ beitsflächen verwendet Ablaufendes, mit Glutaraldehyd kontaminiertes Waschwasser wird einem toxinostatisch (Regelgroße ist die Glutaraldehydkonzentration) betriebenenGlutaraldehyde is used in the hospital area for cleaning and disinfecting work surfaces. Running washing water contaminated with glutaraldehyde is operated in a toxinostatic manner (the standard size is the glutaraldehyde concentration)
3 Reaktor mit einem Arbeitsvolumeπ von 1 m zugeführt Glutaraldehyd wird im Reaktor zu einem großen Teil biologisch eliminiert und das Waschwasser anschließend weiter- behandelt3 Reactor with a working volume of 1 m fed Glutaraldehyde is largely biologically eliminated in the reactor and the wash water is then further treated
Beispiel 8:Example 8:
Ein mit Benzol verunreinigter Boden wird in einer Bodenwaschanlage gereinigt Das mit Benzol belastete Waschwasser wird einem toxinostatisch betriebenen Bioreaktor (Regelgroße ist die Benzolkonzentration) zugeführt Nach der biologischen Beseitigung eines Großteils des Benzols im Waschwasser wird dieses erneut zur Bodenwasche verwendet Beispiel 9:A floor contaminated with benzene is cleaned in a floor washing system. The washing water contaminated with benzene is fed to a toxinostatically operated bioreactor (standard size is the benzene concentration). After the biological removal of a large part of the benzene in the washing water, it is used again for washing the floor Example 9:
Während einer In-situ-Bodensanierung fällt ein mit verschiedenen polyaromatischen Kohlenwasserstoffen (PAK) belasteter Grundwasserstrom an Dieser wird über Grund¬ wasserlanzen mit Hilfe von Saugpumpen zu Tage befördert und einer toxinostatisch betriebenen biologischen Klärstufe zugeführt. Dem Bioreaktor wird kontinuierlich ein Probenstrom entnommen und dieser kontinuierlich über Hochdruckflüssigkeit¬ schromatographie (HPLC) gekoppelt mit Fluoreszenzchromatographie auf Qualität und Quantität der enthaltenen verschiedenen PAK analysiert. Als Regelgröße der toxino¬ statischen Regelung wird zu jedem Zeitpunkt die jeweils im Gesamtspektrum der PAK am höchsten konzentrierte PAK-Spezies herangezogen. During an in-situ soil remediation, a groundwater stream contaminated with various polyaromatic hydrocarbons (PAHs) is produced. This is conveyed to the surface via groundwater lances with the aid of suction pumps and fed to a biological clarification stage operated by toxins. A sample stream is continuously withdrawn from the bioreactor and this is continuously analyzed for high-quality liquid chromatography (HPLC) coupled with fluorescence chromatography for quality and quantity of the various PAHs contained. The PAK species which is most highly concentrated in the overall spectrum of PAHs is used at all times as the controlled variable of the toxinatic control.
Tabelle 1Table 1
DSM 11423 DSM 11424DSM 11423 DSM 11424
Identifizierungidentification
Gramfärbung: - Gramfärbung: - kleine runde glatte mittelgroße leicht Kolonien fransige Kolonien kleine kokkoide Stäbchen StäbchenGram staining: - Gram staining: - small round smooth medium-sized light colonies frayed colonies small coconut sticks chopsticks
API 20 NE:API 20 NE:
Nitratnitrate
Tryptophan GlucoseTryptophan glucose
Arginin Dihydrolase Urease Aesculin Gelatine p-Nitrophenyl-ß-D-galactopyranosid. Assimilationstests Glucose Arabinose Mannose MannitolArginine dihydrolase urease aesculin gelatin p-nitrophenyl-β-D-galactopyranoside. Assimilation tests glucose arabinose mannose mannitol
N-Acetylglucosamin Maltose Gluconat + Caprat + Adipat + Malat + + Citrat + +N-acetylglucosamine maltose gluconate + caprate + adipate + malate + + citrate + +
Phenyllactat + + Oxidase + + Tabelle 2Phenyl lactate + + oxidase + + Table 2
Eigenschaften DSM 11425Properties DSM 11425
Zellform Stabchen ONPGCell shape rods ONPG
Breite μm 1,0-1 ,2Width μm 1.0-1.2
Lange μm 1 ,2-2,0 ADHLong μm 1, 2-2.0 ADH
Beweglichkeitagility
Gram-Reaktion - ODCGram response - ODC
Lyse durch 3% KOH +Lysis by 3% KOH +
Aminopeptidase (Cerny) + VPAminopeptidase (Cerny) + VP
Sporen - H2S-BιldungSpores - H 2 S education
OxidaseOxidase
Catalase + Simmons CitratCatalase + Simmons Citrate
Wachstum + anaerobGrowth + anaerobic
Saure aus (OF-Test) + Phenylalanin- desaminaseAcid from (OF test) + phenylalanine deaminase
Glucose aerob + Glucose anaerob + MalonatverwertungGlucose aerobic + glucose anaerobic + malonate utilization
Gas aus Glucose + Saure aus (ASS) + UreaseGas from glucose + acid from (ASS) + urease
Glucose +Glucose +
Fructose + Hydrolyse vonFructose + hydrolysis of
Xylose + GelatineXylose + gelatin
Erythπt DNAErythπt DNA
Adonit + Tween 80Adonit + Tween 80
D-Mannose +D-Mannose +
L-Rhamnose +L-rhamnose +
Dulαt +Dulαt +
Inosit +Inositol +
Sorbit + α-Methyl-D-glucosid +Sorbitol + α-methyl-D-glucoside +
Cellobiose +Cellobiose +
Maltose +Maltose +
Lactose +Lactose +
D-Arabitol + Tabe l l e 3D-Arabitol + Table III
spezifische Aktivitäten und Michaeliskonstanten im Rohextraktspecific activities and Michaelis constants in the crude extract
l) Die Dehydrogenaseakrivitat wurde durch Subtraktion der Hydrolaseaktivitat (ohne NAD" im Test) von der Summe aus beiden Aktivitäten (NAD" im Test) bestimmt. b) Phenol niedrig: Konzentration im Mittel ca. 100 mg/l Phenol; Phenol hoch: Konzentration 200 - 500 mg/l Phenol während der gesamten Kultivierung der Zellen. l) The dehydrogenase activity was determined by subtracting the hydrolase activity (without NAD " in the test) from the sum of both activities (NAD " in the test). b) Low phenol: concentration on average approx. 100 mg / l phenol; High phenol: concentration 200 - 500 mg / l phenol during the entire cultivation of the cells.
Abkürzungen: 2-HMS. 2-Hyo^oxymuconsäuresernialdehyd, n.d.. nicht durchgeführt Abbreviations: 2-HMS. 2-Hyo ^ oxymuconsäuresernialdehyd, n.d .. not carried out

Claims

Patentansprüche claims
1. Verfahren zum Abbau von Schadstoffen in schadstoffbefrachteten Medien bei der Luft-, Abwasser- oder Bodenreinigung, bei dem eine kontinuierliche Ab¬ baufermentation unter Einsatz von in dem schadstoffbefrachteten Medium vorhan- denen Mikroorganismen und/oder einer dem Medium zugesetzten Mikroorganismenkul¬ tur in einem Abbaufermenter durchgeführt wird, wobei während der Abbaufermentation die Schadstoffkonzentration im Abbaufermenter mit Hilfe eines Regelkreises gesteuert wird.1. Process for the degradation of pollutants in polluted media in air, waste water or soil cleaning, in which continuous degradation fermentation using microorganisms present in the polluted medium and / or a microorganism culture added to the medium in one Digestion fermenter is carried out, the pollutant concentration in the degradation fermenter being controlled with the aid of a control circuit during the degradation fermentation.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Schad- Stoffkonzentration im Abbaufermenter zwischen einem oberen und einem unteren2. The method according to claim 1, characterized in that the pollutant concentration in the fermenter between an upper and a lower
Schwellwert konstant gehalten wird.Threshold is kept constant.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Schad¬ stoffkonzentration im Abbaufermenter in Abhängigkeit von der Vitalität der Biomasse gesteuert wird.3. The method according to claim 1, characterized in that the pollutant concentration in the degradation fermenter is controlled depending on the vitality of the biomass.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der untere Schwellwert der Schadstoffkonzentration im Abbaufermenter nicht unter der Okotoxizitatsgrenze von im Abbaufermenter eventuell vorhandenen, zum Schad¬ stoffabbau jedoch nicht beitragenden Mikroorganismen liegt.4. The method according to any one of claims 1 to 3, characterized in that the lower threshold value of the pollutant concentration in the degradation fermenter is not below the okotoxicity limit of possibly present in the degradation fermenter, but not contributing to pollutant degradation microorganisms.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das schadstoffbefrachtete Medium Formaldehyd enthält und daß die zugesetzte Mikroorganismenkultur Formaldehyd abbauende Mikroorganismen, insbesondere DSM 11423 und/oder DSM 11424 oder Mutanten oder Varianten dieser Mikroorganis¬ men enthält. 5. The method according to any one of claims 1 to 4, characterized in that the contaminated medium contains formaldehyde and that the added microorganism culture contains formaldehyde-degrading microorganisms, in particular DSM 11423 and / or DSM 11424 or mutants or variants of these microorganisms.
6 Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das schadstoffbefrachtete Medium Phenole enthalt und daß die Mikroorganismen¬ kultur Phenol abbauende Mikroorganismen, insbesondere den Mikroorganismus DSM 11425 oder Mutanten oder Varianten dieses Mikroorganismuses enthalt6. The method according to any one of claims 1 to 4, characterized in that the polluted medium contains phenols and that the Mikroorganismen¬ culture contains phenol-degrading microorganisms, in particular the microorganism DSM 11425 or mutants or variants of this microorganism
7 Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß das aus der Abbaufermentation abfließende Medium einer zweiten Ab¬ baufermentation unterzogen wird, wobei der untere Schwellwert der Schadstoffkonzen¬ tration im Abbaufermenter bei der zweiten Abbaufermentation niedriger als bei der ersten Abbaufermentation liegt7. The method according to any one of the preceding claims, characterized gekenn¬ characterized in that the medium flowing from the degradation fermentation is subjected to a second degradation fermentation, the lower threshold of the concentration of pollutants in the degradation fermenter in the second degradation fermentation being lower than in the first degradation fermentation
8 Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß vor der Zugabe in das schadstoffbefrachtete Medium die Mikroorganis¬ menkultur in einem ein nährstoffreiches Medium enthaltenden Mutationsfermenter kul¬ tiviert, einer mutagenen Behandlung unterzogen und stabilisiert wird und anschließend in einem Selektionsfermenter, der ein nahrstoffarmes, mit dem oder den Schadstoffen angereichertes Medium enthalt, einer Selektion unterzogen wird wobei ein Teil der Kul¬ tur aus dem Selektionsfermenter in den Mutationsfermenter kontinuierlich so lange zu¬ rückgeführt wird, bis sich eine Mikroorganismenkultur mit der gewünschten Schadstoff- abbauleistung und Schadstofftoleranz etabliert hat8. The method according to any one of the preceding claims, characterized gekenn¬ characterized in that the microorganism culture is cultivated in a mutant fermenter containing a nutrient-rich medium, subjected to a mutagenic treatment and stabilized and then in a selection fermenter, before being added to the contaminated medium a nutrient-poor medium containing the pollutant or pollutants is subjected to a selection, part of the culture from the selection fermenter being continuously returned to the mutation fermenter until a microorganism culture with the desired pollutant degradation capacity and tolerance is established Has
9 Mikroorganismus DSM 114239 microorganism DSM 11423
10 Mikroorganismus DSM 1142410 microorganism DSM 11424
11 Mikroorganismus DSM 1142511 DSM 11425 microorganism
12 Verwendung eines Mikroorganismus nach einem der Ansprüche 9 bis 11 zur Anzucht von Mutanten oder Vaπanten derselben12 Use of a microorganism according to one of claims 9 to 11 for the cultivation of mutants or Vaπanten the same
13 Verwendung eines Mikroorganismus nach Anspruch 9 oder 10 als Spen- derorganismus für genetisches Material, insbesondere zur Insertion eines eine Formal¬ dehyddehydrogenase oder Formaldehyddismutase codierenden Gens und/oder der dazugehörigen Promotorsequenz in einen Mikroorganismus oder eine Zelle13 Use of a microorganism according to claim 9 or 10 as a donor organism for genetic material, in particular for inserting a gene encoding a formaldehyde hydrogenase or formaldehyde dismutase and / or the associated promoter sequence into a microorganism or a cell
14 Verwendung eines Mikroorganismus nach Anspruch 9 oder 10 zur Ge¬ winnung eines eine Formaldehyddehydrogenase oder Formaldehyddismutase codie- renden Gens und/oder der dazugehörigen Promotorsequenz 14 Use of a microorganism according to claim 9 or 10 for obtaining a gene encoding a formaldehyde dehydrogenase or formaldehyde dismutase and / or the associated promoter sequence
15. Biomasse, erhalten durch Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8.15. Biomass obtained by performing the method according to any one of claims 1 to 8.
16. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie mindestens einen Abbaufermenter und Mittel zur Regelung der Schadstoffkonzentration in dem oder den Abbaufermentern enthält.16. Device for performing the method according to one of claims 1 to 7, characterized in that it contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter or fermenters.
17. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 8, dadurch gekennzeichnet, daß sie einen Mutationsfermenter zur Kultivierung, mutagenen Be¬ handlung und Stabilisierung der Mikroorganismenkultur, einen Selektionsfermenter, Mittel zur Rückführung eines Teils der Kultur aus dem Selektionsfermenter in den Muta- tionsfermenter, Mittel zur Regelung der Schadstoffkonzentration in dem Selektionsfer¬ menter, mindestens einen Abbaufermenter und Mittel zur Regelung der Schadstoffkon¬ zentration in dem oder den Abbaufermentern enthält. 17. Device for carrying out the method according to claim 8, characterized in that it comprises a mutation fermenter for the cultivation, mutagenic treatment and stabilization of the microorganism culture, a selection fermenter, means for returning part of the culture from the selection fermenter to the mutation fermenter, agents for regulating the pollutant concentration in the selection fermenter, contains at least one degradation fermenter and means for regulating the pollutant concentration in the degradation fermenter or fermenters.
EP97906145A 1996-03-01 1997-02-28 Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose Withdrawn EP0885032A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19607943 1996-03-01
DE19607943 1996-03-01
PCT/EP1997/001017 WO1997031682A1 (en) 1996-03-01 1997-02-28 Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose

Publications (1)

Publication Number Publication Date
EP0885032A1 true EP0885032A1 (en) 1998-12-23

Family

ID=7786948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97906145A Withdrawn EP0885032A1 (en) 1996-03-01 1997-02-28 Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose

Country Status (4)

Country Link
EP (1) EP0885032A1 (en)
JP (1) JP2000505341A (en)
DE (1) DE19708181A1 (en)
WO (1) WO1997031682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641199A (en) * 2017-09-26 2018-01-30 广东绿净界新材料科技股份有限公司 A kind of preparation method of polyaminoacid coenzyme copolyether

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679413B2 (en) * 2006-03-31 2011-04-27 東洋エンジニアリング株式会社 High temperature treatment method for hydrocarbon or oxygenated compound production plant wastewater
EP2239322A1 (en) * 2009-04-07 2010-10-13 Basf Se Use of enzymes to reduce formaldehyde from formaldehyde-containing products
CN107158928A (en) * 2017-06-05 2017-09-15 石河子开发区创客科技咨询服务有限责任公司 A kind of biology enzyme removes formaldehyde agent soon
JP2019018118A (en) * 2017-07-12 2019-02-07 三木理研工業株式会社 Formaldehyde decomposition method
CN108744946A (en) * 2018-05-18 2018-11-06 朱文杰 A kind of preparation method of biological enzyme formaldehyde scavenger
CN112076604A (en) * 2020-09-21 2020-12-15 嘉兴瓦格纳环保科技有限公司 Deodorizing and aldehyde-removing agent and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303981A (en) * 1993-04-21 1994-11-01 Toyobo Co Ltd Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JPH0779775A (en) * 1993-07-30 1995-03-28 Mitsubishi Chem Corp Nad(h) bonding type oxidation and reduction disproportionation enzyme and its gene
DE59508927D1 (en) * 1994-03-02 2001-02-01 Bitop Gmbh METHOD FOR GROWING MICROORGANISMS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9731682A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641199A (en) * 2017-09-26 2018-01-30 广东绿净界新材料科技股份有限公司 A kind of preparation method of polyaminoacid coenzyme copolyether

Also Published As

Publication number Publication date
WO1997031682A1 (en) 1997-09-04
DE19708181A1 (en) 1997-11-06
JP2000505341A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
DE69814317T2 (en) Process for the reduction of sewage sludge from aerobic sewage treatment plants
DE69518300T2 (en) Microorganism and method for degrading at least one aromatic compound and halogenated organic compound by means of a microorganism and method for environmental remediation
DE69937330T2 (en) A DNA fragment containing a toluene monooxygenase gene, a recombinant plasmid, a transformed microorganism, a method for degrading chlorinated aliphatic hydrocarbons and aromatic compounds, and methods of environmental containment
DE3784563T2 (en) MICROORGANISMS FOR THE DECOMPOSITION OF TOXIC WASTE.
EP0141784B1 (en) Process for the decomposition of s-triazine derivatives in aqueous solutions
WO1997031682A1 (en) Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose
DE3939771A1 (en) PROCESS FOR THE BIOLOGICAL INACTIVATION OF NUCLEIC ACIDS
DE60017263T2 (en) METHOD FOR CLEANING WATER, BACTERIA SUITABLE FOR USE AND THEIR USE
KR100761339B1 (en) -2Novel strain Pseudomonas sp. KS-2P useful for degradation of endosulfan and toxic endosulfan sulfate
DE19654624C1 (en) Corynebacterium sp. K2-17
EP0447862B1 (en) Method for the biological purification of gases which are contaminated with halogenated ethenes and/or with halogenated butadienes
EP0881923B1 (en) BACTERIUM SPECIES COMAMONAS ACIDOVORANS P4a AND PROCESS FOR THE MICROBIAL DECONTAMINATION OF MATERIALS POLLUTED WITH PHENOXYACETIC ACID HERBICIDES
EP0989098B1 (en) Bacterial strain Comamonas Testosteroni MC1 and process for the microbial decontamination of materials polluted with phenoxyacetic acid herbicides
DE60008432T2 (en) METHOD FOR THE BACTERIAL TREATMENT OF ETHER-CONTAINING WASTE WATER BY GORDONA TERRAE CIP I-2194
DE69733194T2 (en) NEW MICROORGANISM AND ITS USE IN AN ENVIRONMENTAL CLEANING METHOD
CN103381418A (en) Method for processing tobacco waste or organic fluorine wastewater
EP0933121A1 (en) Process for biological treatment of volatile organic compounds in gas emissions
DE69632360T2 (en) Microorganism mutants that express oxygenase, processes for biodegradation of organic compounds and remediation of the environment with it
DE19962722A1 (en) Removal of ethers, e.g. gasoline additive methyl tert. butyl ether, from aqueous effluents by aerobic degradation using Gordona terrae or Rhodococus equi strain grown in presence of substrate
DE19531519C2 (en) Microorganism capable of denitrification and its use in connection with a method for denitrification of water
KR102652220B1 (en) Novel Shinella granuli CK-4 strain with high capability of 1,4-dioxane decomposition and method for treating 1,4-dioxane-containing wastewater using the same
EP0556465A2 (en) Microbiological process for the preparation of aromatic hydroxylated heterocyclic acids
JP3062121B2 (en) Formaldehyde decomposition method
DE69108798T2 (en) Microorganisms and their application for the degradation of N-phosphonomethylglycine in waste streams.
KR100489614B1 (en) Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19990831

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020808