KR100489614B1 - Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same - Google Patents

Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same Download PDF

Info

Publication number
KR100489614B1
KR100489614B1 KR10-2002-0049584A KR20020049584A KR100489614B1 KR 100489614 B1 KR100489614 B1 KR 100489614B1 KR 20020049584 A KR20020049584 A KR 20020049584A KR 100489614 B1 KR100489614 B1 KR 100489614B1
Authority
KR
South Korea
Prior art keywords
terephthalic acid
wastewater
pseudomonas
microorganism
passed
Prior art date
Application number
KR10-2002-0049584A
Other languages
Korean (ko)
Other versions
KR20040017508A (en
Inventor
김기태
Original Assignee
김기태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기태 filed Critical 김기태
Priority to KR10-2002-0049584A priority Critical patent/KR100489614B1/en
Publication of KR20040017508A publication Critical patent/KR20040017508A/en
Application granted granted Critical
Publication of KR100489614B1 publication Critical patent/KR100489614B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/348Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the way or the form in which the microorganisms are added or dosed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 호기성 및 통성 조건에서 생육이 양호하고, 테레프탈산(Terephthalic acid)의 분해능이 우수한 신규 미생물인 슈도모나스 티-1 (Pseudomonas sp. T-1) 및 이를 이용하여 폴리에스터 감량가공공정에 의해서 배출되는 테레프탈산이 함유된 합성폐수를 생물학적으로 처리하는 방법에 관한 것이다.The present invention is a novel microorganism Pseudomonas sp . T-1, which is good in aerobic and breathable conditions and has excellent resolution of terephthalic acid, and is discharged by a polyester weight loss process using the same. A method for biologically treating synthetic wastewater containing terephthalic acid.

슈도모나스 T-1 (Pseudomonas sp. T-1)는 질소원, 인원, 무기염류를 기본으로 하고 탄소원으로서 테레프탈산이 함유된 배지에서 선별된 미생물로서, 난분해성 물질인 테레프탈산의 혼입에 의한 미생물 증식의 억제가 없으며, 유량 및 BOD부하 변동에 의한 충격부하 현상이 나타나지 않으므로 폴리에스터 감량공정등에서 배출되는 산업폐수에 함유된 테레프탈산을 완전히 분해시킬 수 있는 우수한 신규 미생물이다.Pseudomonas T-1 (Pseudomonas sp. T -1) is a nitrogen atom, personnel, the inorganic salts as base and as the selected microorganism in a terephthalic acid containing as a carbon source medium, I inhibition of microbial growth by incorporation of a decomposable material terephthalic acid is No impact load phenomenon due to flow rate and BOD load fluctuations, so it is an excellent new microorganism capable of completely decomposing terephthalic acid contained in industrial wastewater discharged from polyester weight loss process.

또한, 본 발명의 테레프탈산이 함유된 폐수의 생물학적 처리 공정은, 테레프탈산이 함유된 폐수의 처리는, 원수를 중화하는 단계, 상기 중화된 폐수를 폭기조에서 폭기하는 단계, 상기 폭기조를 통과한 폐수를 침전시키는 단계, 상기 침전조를 통과한 폐수를 가압부상하는 단계, 상기 가압부상단계를 통과한 폐수를 다시 침전시키고, 정화된 분리수를 방류하는 단계를 포함하는 것을 특징으로 한다.In addition, the biological treatment process of the wastewater containing terephthalic acid of the present invention, the treatment of wastewater containing a terephthalic acid, neutralizing the raw water, aeration of the neutralized wastewater in the aeration tank, precipitation of the wastewater that passed through the aeration tank And the step of pressurizing the wastewater that has passed through the settling tank, precipitating the wastewater that has passed the pressurized flotation step, and discharging the purified separated water.

Description

테레프탈산(Terephthalic acid) 분해능력이 우수한 미생물 슈도모나스 티-1(Pseudomonas sp. T-1) 및 이것을 이용한 테레프탈산이 함유된 폐수의 처리방법{Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same} Terephthalic acid (Terephthalicacid) Microbial Pseudomonas tee-1 (PES-T-1) having excellent degradability and a method for treating wastewater containing terephthalic acid using the same {Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same}

본 발명은 테레프탈산(Terephthalic acid : TPA) 분해 능력을 지닌 신규 미생물 슈도모나스 티-1 (Pseudomonas sp. T-1) 및 이것을 이용한 테레프탈산이 함유된 폐수의 처리방법에 관한 것이다. 보다 상세하게는 호기성 및 통성 조건하에서 생육이 양호하고, pH, 온도, 유량 및 생물화학적 산소요구량(BOD)의 변화에 강하며, 테레프탈산의 탁월한 분해능을 가진 미생물인 슈도모나스 티-1 (Pseudomonas sp. T-1) 및 이것을 이용하여 테레프탈산이 함유된 폐수를 생물학적으로 처리하는 방법에 관한 것이다.The present invention relates to a novel microorganism Pseudomonas sp . T-1 having a terephthalic acid (TPA) decomposing ability and a method for treating wastewater containing terephthalic acid using the same. More specifically, Pseudomonas sp . 1 ( Pseudomonas sp . T), a microorganism having good growth under aerobic and breathable conditions, resistant to changes in pH, temperature, flow rate and biochemical oxygen demand (BOD), and having excellent resolution of terephthalic acid. -1) and a method for biologically treating wastewater containing terephthalic acid using the same.

현재 염색공단폐수의 업종별 부하량 및 처리장의 현황은 개별 염색가공업체에서 배출되는 폐수를 공동저류조에서 집수하여 처리하는 염색공단의 경우, 폐수의 업종별 화학적산소요구(COD)부하량은 폴리에스터(polyester)감량가공 68%, 면가공 22% 및 기타 11%이며, 생물화학적산소요구(BOD)부하량은 폴리에스터 감량가공 84%, 면가공 11% 및 기타에서 5%정도로 오염부하가 비교적 높은 폴리에스터 감량공정에 의한 폐수가 다량 포함되어 있다.The current load and treatment status of dyeing wastewater by industry is in the case of dyeing complex where wastewater discharged from individual dyeing processing companies is collected and treated in a joint storage tank, and the chemical oxygen demand (COD) load by waste industry is reduced by polyester. 68% for processing, 22% for cotton, and 11% for other biochemical oxygen demand (BOD) loads (84% for polyester reduction, 11% for cotton, and 5% for other cotton). Due to the large amount of wastewater contained.

염색과 관련된 업체의 수는 전체의 약 5.02%이나 폐수배출량은 약 316,000톤/일 로 총 배출량의 16.61%에 달하여 전체 폐수 배출 업종 중 두 번째로 많은 비율을 차지하고 있다. 특히 감량폐수는 테레프탈산과 같은 난분해성 물질이 다량으로 폐수에 함유되어 있기 때문에 기존의 처리 방법인 응집공정과 활성슬러지 공정을 이용하여도 그 처리효율은 저조한 실정에 있어, 테레프탈산은 환경오염의 대표적 원인물질로 공공수역에 미치는 영향이 매운 큰 것으로 알려져 있다.The number of companies involved in dyeing is about 5.02% of the total, but the wastewater discharge is about 316,000 tons / day, accounting for 16.61% of the total emissions, making it the second largest proportion of the total wastewater industry. In particular, since the wastewater contains a large amount of hardly decomposable substances such as terephthalic acid in the wastewater, the treatment efficiency is low even if the existing treatment method using the flocculation process and the activated sludge process is used. Terephthalic acid is a representative cause of environmental pollution. It is known to have a very big impact on public waters as a substance.

종래에는 폴리에스터 감량폐수를 황산으로 처리하여 pH 4로 중화시켜 테레프탈산을 석출·침전시킨 후, 탈수 건조시켜 폐기물을 처리하는 방법이 제시되었으나, 석출 침전된 테레프탈산 슬러지는 88%의 수분을 함유하고 있기 때문에 고농도의 폐수인 탈수여액에 대한 처리에 많은 문제점을 가지고 있는 것으로 지적되었다. Conventionally, a method of treating waste by treating polyester wastewater with sulfuric acid, neutralizing it to pH 4 to precipitate and precipitate terephthalic acid, and then dehydrating and drying it, but the precipitated terephthalic acid sludge contains 88% water. Therefore, it has been pointed out that there are many problems in the treatment of the dehydrated liquid which is a high concentration of wastewater.

난분해성 물질이나 유해한 화학물질의 화학적 처리는 어려운 과제이었으나, 최근에는 생물공학기술을 응용하면서 충분히 해결가능한 기술로 판단되어, 국내외적으로 생물공학적인 처리방법에 대한 연구가 다양하게 진행되어 왔다. Chemical treatment of hardly degradable substances or harmful chemicals has been a difficult task, but recently, it has been considered as a technology that can be sufficiently solved by applying biotechnology, and various researches on biotechnological treatment methods have been conducted at home and abroad.

특정한 방향족화합물을 분해하는 능력을 가진 균주를 선별하고 이용하는 것으로서 벤젠분해방법(Eric 등, Appl. Environ. Microbiol., Vol. 55, p.3221, 1989), 슈도모나스 푸티다와 크렙토코코스엘리노비를 혼합배양한 후 활성탄에 고정시켜 페놀을 분해하는 방법(Rehm 등, Appl. Microbiol. Biotechnol. Vol. 16, p283. 1987) 및 슈도모나스속을 이용한 나프탈렌분해방법(Kobayshi 등, Environ. Sci. Technol., Vol. 16, p170, 1982)등과 같이 미생물을 이용하여 실제 산업현장의 폐수처리에 응용하려는 연구가 다각도로 진행되었다.Benzene digestion method (Eric et al., Appl. Environ. Microbiol., Vol. 55, p.3221, 1989), Pseudomonas putida and Kreptococosellinobi were selected as screening and using strains having the ability to degrade specific aromatic compounds. Method of decomposing phenol by mixed culture and immobilization on activated carbon (Rehm et al., Appl. Microbiol. Biotechnol. Vol. 16, p283. 1987) and naphthalene decomposition method using Pseudomonas genus (Kobayshi et al., Environ. Sci. Technol., Vol. 16, p170, 1982) have been conducted in various angles to apply the microorganisms to the wastewater treatment of industrial sites.

하지만, 아직은 일부 국한된 난분해성 물질에 대해서만 분해능력을 가진 미생물이 개발되고 있을 뿐 그 범위가 한정적이었고, 테레프탈산을 분해하는 미생물에 대한 연구는 거의 진행되지 않고 있으며, 또한 실제 폐수처리에서의 분해 효율 및 안정성이 미흡하기 때문에 실제 폐수처리에서도 우수한 분해능이 있는 것으로 확인된 미생물의 개발이 시급한 실정이었다.However, only a limited number of hardly decomposable microorganisms have been developed, and the scope thereof has been limited. Researches on microorganisms that decompose terephthalic acid have not been conducted. Due to the lack of stability, it was urgent to develop microorganisms that were found to have excellent resolution in actual wastewater treatment.

따라서, 테레프탈산을 분해하는 미생물을 선별하여 폴리에스터 감량폐수의 처리에 응용하는 것이 필요하며, 이러한 물질을 분해하는 미생물을 선택하여 분리하기 위해서는 분리원의 선택과 대상물질을 선정하는 것이 중요하다고 할 수 있다. Therefore, it is necessary to select microorganisms that decompose terephthalic acid and apply them to the treatment of polyester weight loss wastewater.In order to select and isolate microorganisms that decompose such substances, it is important to select a source and select a target substance. have.

대한민국 특허 제142,106호 에서는 테레프탈산을 기질로 이용하는 신규 미생물인 슈도모나스 티에스2 및 이를 이용한 폐수의 처리방법이 제시되었다. 하지만, 본 미생물은 테레프탈산을 완전히 분해하지 못하는 문제점이 있었다.Korean Patent No. 142,106 proposes Pseudomonas TS2, a novel microorganism using terephthalic acid as a substrate, and a method of treating wastewater using the same. However, this microorganism had a problem in that it could not completely decompose terephthalic acid.

본 발명자들은 상기한 문제점을 해결하기 위하여 연구를 거듭한 결과, 폴리에스터 감량공정에서 배출되는 생물학적 난분해성 물질인 테레프탈산을 함유하고 있는 고부하, 다변성 및 악성의 산업폐수를 분해할 수 있는 것은 미생물인 세균인 점에 착안하고, 다년간 국내의 여러 섬유공장의 폴리에스터 감량공정에서 배출되는 폐수 및 오염원으로부터 시료를 채취하여 테레프탈산 성분을 분해할 수 있는 세균을 분리하여 염색공장폐수의 분해실험을 실시하였으며, 테레프탈산 성분의 분해능이 우수한 종을 선정하여 슈도모나스 티-1 (Pseudomonas sp. T-1)로 동정하였다.The present inventors have conducted studies to solve the above problems, microorganisms that can decompose high-load, multimodal and malignant industrial wastewater containing terephthalic acid, a biodegradable material discharged from the polyester weight loss process Focusing on the point of view, samples were collected from wastewater and pollutants discharged from polyester weight reduction process of various textile factories in Korea for many years to separate bacteria which can decompose terephthalic acid component, and we conducted decomposition experiment of wastewater of terephthalic acid. Pseudomonas sp . T-1 was identified as a species with excellent resolution.

본 발명은 호기성 및 통성 조건하에서 생육이 양호하고, 실제 감량폐수처리에서도 테레프탈산을 완전히 분해시키는 테레프탈산의 분해능이 우수한 미생물 및 이 미생물을 이용하여 테레프탈산이 함유된 산업폐수를 생물학적으로 처리하는 효과적인 방법을 제공하는데 그 목적이 있다. The present invention provides a microorganism having good growth under aerobic and breathable conditions and having excellent resolution of terephthalic acid which completely decomposes terephthalic acid even in actual weight loss wastewater treatment, and an effective method for biologically treating terephthalic acid-containing industrial wastewater using the microorganism. Its purpose is to.

또한, 본 발명은 테레프탈산 등 난분해성 물질의 혼입에 의한 미생물의 증식의 억제가 없으며, 유량 및 BOD부하 변동에 의한 충격부하현상이 나타나지 않기 때문에, 사전 응집처리에 의하여 부하를 낮추는 공정이 필요없는, 본 발명인 신규 미생물을 이용한 폐쑤의 처리방법을 제공하는 것을 그 목적으로 한다.In addition, the present invention does not suppress the growth of microorganisms due to the incorporation of hardly decomposable substances such as terephthalic acid, and the impact load phenomenon due to fluctuations in the flow rate and BOD load does not appear, and thus, a process for lowering the load by pre-aggregation treatment is unnecessary. It is an object of the present invention to provide a method for treating waste pulverized using the novel microorganism of the present invention.

본 발명은 호기성 및 통성 조건에서 생육이 양호하고, 테레프탈산(Terephthalic acid)의 분해능이 우수한 신규 미생물인 슈도모나스 티-1 (Pseudomonas sp. T-1) 및 이를 이용하여 테레프탈산이 함유된 폐수의 처리 방법에 관한 것이다.The present invention is a novel microorganism Pseudomonas sp . T-1, which is a good microorganism having good growth under aerobic and breathable conditions, and has excellent resolution of terephthalic acid, and a method for treating wastewater containing terephthalic acid using the same. It is about.

보다 상세하게는 호기성 및 통성 조건에서 생육이 양호하고, pH, 온도, 유량 및 생물화학적 산소요구량(BOD)의 변화에 강하며, 테레프탈산의 탁월한 분해능을 가진 미생물인 슈도모나스 티-1 (Pseudomonas sp. T-1)에 관한 것이다. 또한, 본 발명은 상기 미생물을 이용하여 테레프탈산이 함유된 폐수를 생물학적으로 처리하는 방법에 관한 것이다.More specifically, Pseudomonas sp.T ( Pseudomonas sp . T), which is a microorganism having good growth under aerobic and breathable conditions, resistant to changes in pH, temperature, flow rate and biochemical oxygen demand (BOD), and having excellent resolution of terephthalic acid. -1). The present invention also relates to a method for biologically treating wastewater containing terephthalic acid using the microorganism.

본 발명자들은 대구지역의 섬유공장 주변 하천의 토양(오염원)을 채취하였다. 본 발명인 신규 미생물은 질소원, 인원, 무기염류를 기본으로 하고, 유일탄소원으로서 테레프탈산을 함유하는 최소배지를 사용하여, 테레프탈산을 탄소원으로 이용할 수 있는 세균들을 분리한 후, 테레프탈산 분해능이 가장 우수한 균주로 선별된 것이다. 본 발명에 따른 신규 미생물의 성상은 다음과 같다. 상기 최소배지를 보다 상세하게 설명하면, 황산암모늄, 인산이수소칼륨, 염화나트륨 및 황산마그네슘을 기본으로 하고, 유일탄소원으로서 테레프탈산을 함유하고 있다.The present inventors collected the soil (pollution source) of the rivers surrounding the textile factory in Daegu area. The novel microorganism of the present invention is based on a nitrogen source, a person, an inorganic salt, and using a minimal medium containing terephthalic acid as the only carbon source, after separating the bacteria that can use terephthalic acid as a carbon source, it is selected as the strain having the highest resolution of terephthalic acid. It is. The characteristics of the novel microorganism according to the present invention are as follows. In more detail, the minimum medium is based on ammonium sulfate, potassium dihydrogen phosphate, sodium chloride and magnesium sulfate, and contains terephthalic acid as the only carbon source.

분리균주의 형태학적, 생리학적 특징을 조사한 결과는 하기 표 1 및 표 2 와 같다. 분리균주는 그람(Gram)음성, 간균으로서 운동성을 가지고 있었다. 또한, 배양학적 성질을 조사한 결과 카탈라아제 테스트(catalase test), 젤라틴(gelatin) 액화능, 질산 환원능(nitrate reduction) 등은 모두 양성을 나타내었으며, 옥시다아제 테스트, 일돌 생성능, V-P 테스트, 우라아제 테스트(Urease test), 황화수소 생성능(H2S production) 등은 음성이었다. 탄수화물 이용가능성은 글루코오스(glucose), 만노오스(Mannose), 말토오스(Maltose), 수크로오스(Sucrose), 마니톨(Mannitol), 시트르산(Citrate), 글루콘산(Gluconate), N-아세틸글루코사민(N-acetylglucosamine)을 이용하였으며, 그 외의 탄수화물은 이용하지 못하거나 미약하였다.The results of examining the morphological and physiological characteristics of the isolates are shown in Tables 1 and 2 below. The isolates were Gram negative and motility as bacilli. In addition, as a result of examining the cultural properties, the catalase test, gelatin liquefaction ability, and nitrate reduction ability were all positive. Urease test, hydrogen sulfide production capacity (H 2 S production) was negative. Carbohydrate availability includes glucose, mannose, maltose, maltose, sucrose, mannitol, citrate, gluconate, and N-acetylglucosamine And other carbohydrates were not available or weak.

따라서, 분리된 균주의 형태학적, 배양학적 및 생리학적 특성에 따라 Bergeys Manual of determinative bactoeriology(10th ed.)와 Manual for the Identification of medical bacteria(2nd ed.)등에 준하여 동정한 결과 슈도모나스(Pseudomonas)속 으로 동정되었다.Therefore, Pseudomonas genus was identified according to Bergeys Manual of determinative bactoeriology (10th ed.) And Manual for the Identification of medical bacteria (2nd ed.) According to the morphological, cultural and physiological characteristics of the isolated strains. Was identified.

이에 본 발명인 신규 미생물을 슈도모나스 티-1(Pseudomonas sp. T-1)로 명명하고, 2002년 7월 20일 자로 한국종균협회 부설 한국 미생물보존센터에 수탁번호 KFCC-11309로 기탁하였다.Accordingly, the novel microorganism of the present invention was named Pseudomonas sp . T-1, and was deposited on July 20, 2002 under the accession number KFCC-11309 to the Korea Microbial Conservation Center, which is affiliated with the Korean spawn association.

표 1. 균의 형태학적 및 배양학적특성Table 1. Morphological and Cultural Characteristics of Bacteria

그람염색(Gram staining)Gram staining 음성(-) voice(-) 모양(Form) Form 막대형(rod) Rod 운동성(Motility)Motility 운동가능(motile)Motile 최적온도(Opt. temperature) Optimal temperature 30℃30 ℃ 최적pH(Opt. pH)Optimum pH (Opt. PH) 7.57.5 균주색(Colony color)Colony color 갈색(brown)Brown

표 2. 균의 생리학적 특성 및 탄소원 이용성Table 2. Physiological Characteristics and Carbon Source Availability of Bacteria

글루코오스(Glucose) + 아라비노오스(Arabinose) ± 만노오스(Mannose) + 글루코오스(Glucose) + 람노오스(Rhamnose) - 멜리비오스(Melibiose) ± 말토오스(Maltose) + 수크로오스(Sucrose) + 마니톨(Mannitol) + 소르비톨(Sorbitol) - 이노시톨(Inositol) - 글루코네이트(Gluconate) + 시트레이트(Citrate) + 페닐아세테이트(Phenylacetate) - N-아세틸글루탐사민 + N-acetylglucosamine옥시다아제테스트(Oxidase test) - Glucose + Arabinose ± Mannoose + Glucose + Glucose + Rhamnose-Melibiose ± Maltose + Sucrose + Mannitol + Mannitol + Sorbitol-Inositol-Gluconate + Citrate + Phenylacetate-N-acetylglutamsamine + N-acetylglucosamine Oxidase test- 인돌생성능(Indole production) - 젤라틴액화능(Gelatin liquefaction) + V-P test - 질산환원능(Nitrate reduction) + 우라아제테스트(Urease test) - 황화수소생성능(H2S production) - O-F test 0 리진디하이드롤라아제 - (Lysine dehydrolase) 오르니틴디옥실라아제 - (Ornitine decarboxylase) 아르기닌디하이드롤라아제 + (Arginine dehydrolase) 베타갈락토시다제(β-galactosidase) + 카달라아제 테스트(Catalase test) + 형광색소(Fluorescent pigments) + 전분가수분해(Starch hydrolysis) +Indole production-Gelatin liquefaction + VP test-Nitrate reduction + Urease test-Hydrogen sulfide production (H 2 S production)-OF test 0 Lysinedihydrola Ase-(Lysine dehydrolase) Ornithine dioxylase-(Ornitine decarboxylase) Arginine dihydrolase + (Arginine dehydrolase) Beta-galactosidase + Catalase test + Fluorescent pigment pigments) + Starch hydrolysis +

+ 양성 ; - 음성  Positive; - voice

폴리에스터 폐수에는 생물학적으로 분해되기 쉬운 물질뿐만 아니라 난분해성 물질이 다량 배출되고 있으나 기존처리장에서는 응집공정으로 전 처리한 후 활성슬러지공정으로 후처리하고 있어 폭기조 내의 용존산소가 낮으며, 슬러지벌킹등이 발생하는 등, 폐수를 종합적으로 처리를 하는데 어려움이 많다. 기존 처리장에서 응집처리를 제일 먼저 하는 것은, 폭기조 내의 BOD 부하가 높아 폐수처리가 잘 되지 않기 때문에, 응집공정으로 전 처리하여 BOD 부하를 낮추기 위하여 응집처리를 하는 것이다. Polyester wastewater is not only biologically decomposable but also hardly decomposable. However, existing treatment plants are pretreated by flocculation and then treated by activated sludge, resulting in low dissolved oxygen in aeration tanks and sludge bulking. There is a lot of difficulty in comprehensively treating wastewater such as generation. In the existing treatment plant, the first thing to coagulate is because the BOD load in the aeration tank is not high and waste water treatment is not performed. Therefore, the coagulation treatment is performed to pretreat the coagulation process to lower the BOD load.

또한, 염색폐수는 성분조성이 복잡하고 수질변동이 크기 때문에 여러 가지 처리법과 그에 대한 조합이 검토되어 왔으나 아직도 정확한 폐수처리시스템이 정착되지 않고 있는 실정이다. 그러므로 기존 처리장에서는 유량 및 생물화학적 산소요구량(BOD)의 부하 변동에 의한 충격부하로 인하여 폐수처리효율이 저하하고 벌킹현상이 일어남에 따라 생물화학적 산소요구량의 부하를 낮추기 위하여 전처리로서 응집처리를 하고 있는 실정에 있다. In addition, since the composition of the dyeing wastewater is complex composition and large water quality fluctuation, various treatment methods and combinations thereof have been examined, but the exact wastewater treatment system has not been established. Therefore, in the existing treatment plants, condensation treatment is performed as a pretreatment to reduce the load of biochemical oxygen demand as the efficiency of wastewater treatment decreases due to the impact load caused by the flow rate and the load of biochemical oxygen demand (BOD) and the bulking phenomenon occurs. There is a situation.

그러나, 본 발명에서 분리된 세균은 pH 및 온도의 변화에 강하고, 난분해성물질의 혼입에 의한 미생물의 증식의 억제가 없으며, 유량 및 생물화학적 산소요구량의 부하 변동에 의한 충격부하현상이 없으므로, 도 4 (원수-중화-폭기조-침전조-가압부상조-침전조-방류)와 같은 공정으로 처리를 하여도 처리효율이 증가되는 것으로 나타났다.However, the bacteria isolated in the present invention is resistant to changes in pH and temperature, there is no suppression of the growth of microorganisms due to the incorporation of hardly decomposable substances, and there is no impact load phenomenon due to load fluctuations in flow rate and biochemical oxygen demand. The treatment efficiency was also increased by the same process as 4 (raw water-neutralization-aeration tank-precipitation tank-pressurization tank-precipitation tank - discharge).

슈도모나스 티-1을 이용하여 테레프탈산이 함유된 폐수를 처리하는 공정은, 원수를 중화하는 단계, 상기 중화된 폐수를 폭기조에서 폭기하는 단계, 상기 폭기조를 통과한 폐수를 침전시키는 단계, 상기 침전조를 통과한 폐수를 가압부상하는 단계, 상기 가압부상 단계를 통과한 폐수를 다시 침전시키고, 정화된 분리수를 방류하는 단계를 포함한다. 이하에서 단계별로 보다 상세히 설명한다.The process of treating wastewater containing terephthalic acid using Pseudomonas T-1 includes neutralizing raw water, aeration of the neutralized wastewater in an aeration tank, precipitating wastewater passing through the aeration tank, and passing through the precipitation tank. Pressurizing one of the wastewater; and again precipitating the wastewater that has passed through the pressurization step, and discharging the purified separated water. It will be described in more detail below step by step.

원수인 염색공정의 폐수는 pH 12 정도의 강알칼리 폐수 이다. 따라서, 생물학적 처리를 위하여는 본 균의 최적 pH로 조성해야 하는데, 본 균의 최적 pH는 6~8인 것으로 조사되었으므로, 본 균의 최적 pH를 맞추기 위하여, 황산 등의 산을 원수에 첨가하여 pH 6~8이 되도록 조절하는 중화 공정이 필요하다.The raw water from the dyeing process, which is the raw water, is strong alkaline wastewater with a pH of about 12. Therefore, for biological treatment, the optimum pH of the bacterium should be formulated. Since the optimum pH of the bacterium was found to be 6 to 8, in order to adjust the optimum pH of the bacterium, an acid such as sulfuric acid was added to raw water to adjust the pH. Neutralization process to adjust to 6-8 is necessary.

폭기조 단계에서는 본 발명인 미생물을 배양하여 폭기조에 투입시킴으로써, 난분해성 물질을 분해하는 작용이 이루어진다.In the aeration tank stage, the microorganism of the present invention is cultured and introduced into the aeration tank, thereby decomposing the hardly decomposable substance.

침전조 단계에서는 폭기조 내의 미생물과 처리수의 분리하고, 미생물의 농도를 조절하는 작용을 한다.In the sedimentation tank stage, the microorganisms in the aeration tank are separated from the treated water, and the concentration of the microorganisms is controlled.

가압부상조 단계에서는 침전조의 상등액에 남아있는 유기물을 가압부상조에서 완전히 제거하고, 상기 가압부상조를 통과한 폐수를 다시 침전시킨 후, 마지막으로 상기 공정에 의하여 정화된 분리수를 방류하는 단계로 완결된다. In the pressure flotation tank step, the organic matter remaining in the supernatant of the precipitation tank is completely removed from the pressure flotation tank, the wastewater passing through the pressure flotation tank is precipitated again, and finally, the separated water purified by the process is discharged. do.

다음의 실시예는 본 발명을 좀더 구체적으로 설명하는 것이지만, 본 발명의 범주를 하기 실시예에 한정하는 것은 아니다.The following examples further illustrate the invention, but are not intended to limit the scope of the invention to the following examples.

(실시예 1) : 테레프탈산 분해 균주의 선별Example 1 Screening of Terephthalic Acid Degrading Strains

테레프탈산 분해능력과 생육이 우수한 미생물을 선별하고자, 대구지역의 염색공단내의 폐수처리장과 인근하천들에서 시료를 채취한 후, 이 시료로부터 멸균생리식염수나 완충용액으로 시료를 현탁시킨 후, 평판 테레프탈산 함유 최소배지에 도말하여 30℃에서 배양하였다. 이때 사용된 최소배지는 황산암모늄 0.2%, 인산이수소칼륨 0.1%, 염화나트륨 0.05%, 황산마그네슘 0.05% 및 한천(agar) 1.5~3%가 포함되어 있고, 각 배지에는 필요량의 테레프탈산을 첨가하여 사용한다.To screen for microorganisms with excellent terephthalic acid degradability and growth, samples were taken from wastewater treatment plants and nearby streams in the dyeing complex of Daegu, and then suspended from the sample with sterile physiological saline or buffer solution, and then containing flat terephthalic acid. Plated in a minimal medium and incubated at 30 ℃. At this time, the minimum medium used was 0.2% ammonium sulfate, 0.1% potassium dihydrogen phosphate, 0.05% sodium chloride, 0.05% magnesium sulfate, and 1.5-3% agar, and each medium was added with the required amount of terephthalic acid. do.

상기 배양을 통해 획득한 콜로니들을 1%의 테레프탈산을 함유한 최소배지에서 회전진탕시키면서 연속적인 반복배양을 통한 선별작업을 거쳐 다수의 테레프탈산 분해균주를 확보한다. Colonies obtained through the culture are secured through a screening operation through continuous repeat culture while rotating shaking in a minimal medium containing 1% terephthalic acid to secure a large number of terephthalic acid degradation strains.

이들을 다시 테레프탈산 1~5% 농도 범위에서 1%단위로 변화시킨 테레프탈산함유 최소배지에서 성장시키면서 고농도의 테레프탈산에서도 성장이 지연되지 않을 뿐만 아니라, 폐수중의 고농도 테레프탈산을 직접적이고 신속하게 완전분해 할 수 있도록 계대배양을 통해 순수한 단일 콜로니를 획득한다. They are grown in a terephthalic acid-containing minimum medium in which the concentration of terephthalic acid is changed from 1 to 5% in 1% increments, so that growth is not delayed even at high concentrations of terephthalic acid, and it is possible to directly and quickly complete the high concentration of terephthalic acid in wastewater. Passage yields a single, pure colony.

이때 테레프탈산의 측정 및 공시균의 테레프탈산의 분해능을 확인하기 위하여 균을 소량 접종하면서 자외선/가시광선(UV/Vis)로 자외선주사(UV scanning)하였고, 고압액체크로마토그래피칼럼 (HPLC)을 사용하여 경시적으로 테레프 탈산의 분해정도를 조사하였다(도 2).At this time, in order to measure the terephthalic acid and to determine the resolution of the terephthalic acid of the test bacteria, a small amount of bacteria were inoculated by UV scanning with UV / Vis (UV / Vis) and over time using a high pressure liquid chromatography column (HPLC). The degradation degree of terefe deoxidation was investigated (FIG. 2).

(실시예 2)(Example 2)

상기 실시예 1의 미생물을 이용하여 테레프탈산이 함유된 폐수를 처리하기 위하여 다음과 같은 처리를 하였다. In order to treat the wastewater containing terephthalic acid using the microorganism of Example 1 was subjected to the following treatment.

염색공장의 폐수인 원수는 pH 12정도의 강알칼리 폐수 이므로, 생물학적 폐수처리를 위해서는 본 균의 최적 pH조건에 맞추어야 하는데, 본 균의 최적 pH는 6~8사이인 것으로 조사되었으므로 본 균의 최적 pH에 맞추기 위하여 황산등의 산을 첨가하여 pH를 6~8사이로 조절하였다. The raw water, which is the wastewater of the dyeing plant, is a strong alkaline wastewater with a pH of about 12. Therefore, for biological wastewater treatment, the optimal pH condition of the bacterium should be adjusted. The optimum pH of the bacterium was found to be between 6 and 8. In order to adjust the pH by adjusting the acid such as sulfuric acid was adjusted between 6-8.

폭기조의 유효용량은 13.8ℓ 이며 두께 5mm의 아크릴 수지로 제작하였다. 반응조의 온도 유지를 위하여 물자켓(water jacket)을 이용하여 반응기내 온도를 30±2℃로 유지하였다. The effective capacity of the aeration tank is 13.8 L and it is made of acrylic resin having a thickness of 5 mm. In order to maintain the temperature of the reactor, the temperature in the reactor was maintained at 30 ± 2 ℃ using a water jacket.

반응조의 원수공급과 오니 반송을 위하여 정량펌프를 이용하여 연속공급하였으며, 송풍기(air blower)를 이용하여 반응기의 용존산소 농도를 1.0~2.0 mg/ℓ 로 유지하였다. 또한, 유입수의 씨엔피 균형(CNP Balance)를 유지하기 위하여 요소와 인산을 이용하여 화학적산소요구량(COD) : 질소(N) : 인(P)이 100 : 5 : 1 으로 유지되도록 영양염류를 주입하였으며, 반응조의 수리학적 체류시간을 30~35시간으로 유지하였다. In order to supply the raw water and the sludge return to the reactor, the metering pump was continuously supplied, and the dissolved oxygen concentration of the reactor was maintained at 1.0 to 2.0 mg / l using an air blower. In addition, in order to maintain the CNP balance of the influent, nutrients are injected so that the chemical oxygen demand (COD): nitrogen (N): phosphorus (P) is maintained at 100: 5: 1 by using urea and phosphoric acid. The hydraulic residence time of the reactor was maintained at 30 to 35 hours.

그리고, 폭기조에는 본 발명인 슈도모나스 티-1을 배양하여 폭기조에 첨가한 후, 침전조에서는 폭기조 내의 미생물과 처리수를 분리하고, 미생물의 농도를 조절하였다. 침전조의 상등액에 남아있는 유기물을 가압부상조에서 완전히 제거하고, 상기 가압부상조를 통과한 폐수를 다시 침전시킨 후, 마지막으로 이(분리수)를 방류함으로써 폐수의 처리는 완료된다.Then, in the aeration tank, Pseudomonas ti-1 of the present invention was cultured and added to the aeration tank, and in the precipitation tank, the microorganism and the treated water in the aeration tank were separated and the concentration of the microorganism was adjusted. The organic matter remaining in the supernatant of the settling tank is completely removed from the pressurized floatation tank, the wastewater passing through the pressurized floatation tank is settled again, and finally, the discharged water (separated water) is discharged to complete the treatment of the wastewater.

그 결과 운전 25일부터 슬러지 반송을 시작하여 폭기조 체류시간이 35시간에서 30시간으로 감소하였지만 처리수의 수질에는 큰 변화가 없이 COD가 20.1~33.5 mg/ℓ, BOD가 0.4~3.5mg/ℓ 정도로 안정적으로 처리수를 얻을 수 있었다. 또한, 테레프탈산은 회분식(batch type)에서는 4~9%, 연속형(continuous type)에서는 2~3%였으나, 본 균에 의한 처리로 폭기조와 방류수에서 전혀 검출되지 않아 본 처리 공정을 통해 테레프탈산은 100%제거되는 것으로 나타났다 (표 3).As a result, the sludge returned from the 25th operation, and the aeration tank residence time was reduced from 35 hours to 30 hours, but the COD of 20.1-33.5 mg / ℓ and BOD of 0.4-3.5 mg / ℓ had no significant change in the water quality. The treated water was stably obtained. In addition, terephthalic acid was 4-9% in batch type and 2-3% in continuous type, but it was not detected at all in aeration tank and effluent by treatment with this bacteria, so terephthalic acid was 100 % Was shown to be removed (Table 3).

표 3. 염색공단의 폐수에 본 미생물을 적용한 결과 (방류수의 수질)Table 3. Results of the application of this microorganism to the wastewater of the dyeing complex (water quality of effluent)

항목Item 방 류 수Effluent CODMn COD Mn 20.1 ∼ 33.5 ㎎/ℓ20.1 to 33.5 mg / l CODCr COD Cr 35.1 ∼ 49.2 ㎎/ℓ35.1 to 49.2 mg / l BOD5 BOD 5 0.4 ∼ 3.5 ㎎/ℓ0.4 to 3.5 mg / l 총 유기탄소(TOC)Total Organic Carbon (TOC) 21.4 ∼ 31.73 ㎎/ℓ21.4-31.73 mg / l 테레프탈산Terephthalic acid 불검출Not detected 부유물질(SS)Suspended solids (SS) 5 ∼ 20 ㎎/ℓ5-20 mg / l pHpH 7.5 ∼ 8.27.5 to 8.2

(실험예 1)Experimental Example 1

슈도모나스 티-1(Pseudomonas sp. T-1)의 테레프탈산(Terephthalic acid)분해능을 확인하기 위하여 초기의 테레프탈산의 농도를 1000ppm으로 조정한 액체배지에 균주를 배양하면서 경시적으로 균의 생육도와 테레프탈산의 농도를 분석한 결과, 36시간 후 테레프탈산의 잔존량은 100ppm으로서 분해율이 90%이었어며, 60시간 배양후 잔존량은 20ppm, 72시간 배양 후에는 테레프탈산이 거의 완전하게 분해된 것으로 나타났다(도 1). 따라서, 슈도모나스 티-1을 감량폐수처리에 적용하면 감량폐수에 함유되어 있는 테레프탈산을 완전히 분해할 수 있는 것으로 나타났다.In order to check the resolution of terephthalic acid of Pseudomonas sp. T-1, the growth of bacteria and the concentration of terephthalic acid over time were cultivated while culturing the strain in a liquid medium in which the initial concentration of terephthalic acid was adjusted to 1000 ppm. As a result, after 36 hours the residual amount of terephthalic acid was 100ppm, the decomposition rate was 90%, the residual amount after 60 hours incubation was 20ppm, terephthalic acid was almost completely decomposed after 72 hours (Fig. 1). Therefore, it was shown that the application of Pseudomonas-1 to the wastewater treatment can completely decompose the terephthalic acid contained in the wastewater.

(실험예 2)Experimental Example 2

테레프탈산의 분해능을 측정하기 위하여 테레프탈산 함유 최소배지에서 슈도모나스 티-1(Pseudomonas sp. T-1)을 배양하면서 배지내의 테레프탈산 함량을 고압액체크로마토그래피갈럼(High pressure liquid chromatography : HPLC columns)을 이용하여 테레프탈산의 함량을 측정한 결과 도 2에서 보는 바와 같이 시간이 경과함에 따라 테레프탈산은 분해되어 완전히 제거되는 것으로 나타났다In order to measure the resolution of terephthalic acid, the content of terephthalic acid in the medium was measured by terephthalic acid using high pressure liquid chromatography (HPLC columns) while incubating Pseudomonas sp -1 in a medium containing terephthalic acid. As a result of measuring the content of the terephthalic acid was shown to decompose over time and completely removed as shown in FIG.

(실험예 3)Experimental Example 3

슈도모나스 티-1의 생육에 미치는 테레프탈산의 영향을 조사하기 위하여 테레프탈산의 농도를 0.05%에서 8%까지 단계적으로 테레프탈산의 농도를 변화시켜, 테레프탈산의 농도가 슈도모나스 티-1의 생육에 미치는 영향을 조사한 결과, 5%까지는 균의 생육에 영향이 없으나 5%이상에서는 균의 생육에 저해를 나타내었으므로 본 균에 의한 폐수처리시에는 TPA의 농도를 5%까지 최대 효율을 나타내었다(도 3).In order to investigate the effect of terephthalic acid on the growth of Pseudomonas-1, the concentration of terephthalic acid was varied in stages from 0.05% to 8%, and the effect of terephthalic acid on the growth of Pseudomonas-1 was investigated. , Up to 5% had no effect on the growth of the bacteria, but at 5% or more, the growth of the bacteria was inhibited. Thus, when the wastewater was treated by the bacterium, the concentration of TPA was up to 5% (Fig. 3).

상기 설명에서 확인 할 수 있는 바와 같이, 본 발명인 신규한 슈도모나스 T-1 (Pseudomonas sp. T-1)는 질소원, 인원, 무기염류를 기본으로 하고 탄소원으로서 테레프탈산이 함유된 배지에서 선별된 미생물로서, 난분해성 물질인 테레프탈산의 혼입에 의한 미생물 증식의 억제가 없으며, 유량 및 BOD부하 변동에 의한 충격부하 현상이 나타나지 않으므로 폴리에스터 감량공정등에서 배출되는 산업폐수에 함유된 테레프탈산을 완전히 분해시킬 수 있는 우수한 효과를 보인다.As can be seen from the above description, the novel Pseudomonas sp . T-1 of the present invention is a microorganism selected from a medium containing a nitrogen source, a person, an inorganic salt, and containing terephthalic acid as a carbon source. There is no suppression of microbial growth by mixing terephthalic acid, which is a hard-decomposable substance, and no impact load due to fluctuations in flow rate and BOD load. Seems.

또한, 본 발명은 미생물에 의하여 염색폐수를 처리함으로써 염색폐수에 함유된 특정의 난분해성 유기화합물을 광물화 시켜 생육을 위한 탄소원 내지는 에너지 원으로 이용하거나, 또는 독성 오염물질을 자화하지는 못하더라도 화학구조의 변화를 일으켜 무독물질로 변화시킴으로써 환경정화에 기여할 수 있는 효과가 있다. In addition, the present invention, by treating the dyeing wastewater by microorganisms, mineralizes specific hardly decomposable organic compounds contained in the dyeing wastewater to be used as a carbon source or energy source for growth, or chemical structure, even if it does not magnetize toxic contaminants It is effective in contributing to environmental cleanup by changing to non-toxic substances.

도 1은 테레프탈산 함유 최소배지에서 슈도모나스 티-1(Pseudomonas sp.T-1)를 배양하면서, 시간에 따른 균의 생육도와 테레프탈산이 분해되는 과정을 나타낸 것이다.FIG. 1 shows the growth of bacteria and degradation of terephthalic acid over time while culturing Pseudomonas sp. T-1 in a minimal medium containing terephthalic acid.

도 2는 테레프탈산 함유 최소배지에서 슈도모나스 티-1을 배양하면서 고압액체크로마토그래피칼럼(High pressure liquid chromatography : HPLC)를 이용하여 시간의 경과에 따른 테레프탈산이 분해되는 과정을 나타낸 것이다. FIG. 2 shows a process in which terephthalic acid is decomposed over time using a high pressure liquid chromatography (HPLC) while culturing Pseudomonas ti-1 in a minimal medium containing terephthalic acid.

도 3은 테레프탈산의 농도를 단계적으로 변화시키면서, 테레프탈산의 농도가 슈도모나스 티-1의 생육에 미치는 영향을 나타낸 것이다.Figure 3 shows the effect of the concentration of terephthalic acid on the growth of Pseudomonas ti-1 while changing the concentration of terephthalic acid in stages.

도 4는 기존의 폐수처리 공정과 본 발명의 슈도모나스 티-1을 이용한 폐수처리 공정의 비교를 도시한 것이다.Figure 4 shows a comparison of the conventional wastewater treatment process and wastewater treatment process using Pseudomonas ti-1 of the present invention.

Claims (4)

삭제delete 질소원, 인원 및 무기염류를 기본으로 하고 유일탄소원으로 테레프탈산(Terephthalic acid)을 함유하는 최소배지에서 테레프탈산의 분해능력을 가진 미생물로서 선별된 것을 특징으로 하는 미생물 슈도모나스 티-1(Pseudomonas sp. T-1)(KFCC-11309).Microorganism Pseudomonas sp. T-1, which is selected as a microorganism having a decomposing ability of terephthalic acid in a minimum medium containing terephthalic acid as the sole carbon source based on nitrogen sources, personnel and inorganic salts. (KFCC-11309). 제2항의 미생물 슈도모나스 티-1 (Pseudomonas sp. T-1)(KFCC-11309)을 이용하여 테레프탈산이 함유된 폐수를 처리하는 방법.A method for treating wastewater containing terephthalic acid using the microorganism Pseudomonas sp. T-1 (KFCC-11309) of claim 2. 테레프탈산이 함유된 원수를 중화하는 단계, 제2항의 슈도모나스 티-1 (Pseudomonas sp. T-1)(KFCC-11309)을 상기 중화된 폐수와 함께 폭기조에서 폭기하는 단계, 상기 폭기조를 통과한 폐수를 침전시키는 단계, 상기 침전조를 통과한 폐수를 가압부상하는 단계, 상기 가압부상단계를 통과한 폐수를 다시 침전시키고 정화된 분리수를 방류하는 단계를 포함하는 것을 특징으로 하는 테레프탈산이 함유된 폐수의 처리 방법.Neutralizing the raw water containing terephthalic acid, aeration of Pseudomonas sp. T-1 (KFCC-11309) according to claim 2 together with the neutralized wastewater in the aeration tank, and the wastewater passing through the aeration tank Precipitating the wastewater that has passed through the settling tank, precipitating the wastewater that has passed through the pressurizing flotation step, and discharging the purified separation water to discharge the purified sewage water. .
KR10-2002-0049584A 2002-08-21 2002-08-21 Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same KR100489614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0049584A KR100489614B1 (en) 2002-08-21 2002-08-21 Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0049584A KR100489614B1 (en) 2002-08-21 2002-08-21 Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same

Publications (2)

Publication Number Publication Date
KR20040017508A KR20040017508A (en) 2004-02-27
KR100489614B1 true KR100489614B1 (en) 2005-05-17

Family

ID=37323043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0049584A KR100489614B1 (en) 2002-08-21 2002-08-21 Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same

Country Status (1)

Country Link
KR (1) KR100489614B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724778B1 (en) 2006-08-03 2007-06-04 강산엔지니어링(주) An apparatus of a wastewater treatment

Also Published As

Publication number Publication date
KR20040017508A (en) 2004-02-27

Similar Documents

Publication Publication Date Title
Prasad et al. Physicochemical analysis of textile effluent and decolorization of textile azo dye by Bacillus Endophyticus strain VITABR13
US20060194303A1 (en) Wastewater treatment compositions
Bettmann et al. Continuous degradation of phenol (s) by Pseudomonas putida P8 entrapped in polyacrylamidehydrazide
US3940332A (en) Treating waste water containing nitriles and cyanides
Kulkarni et al. Bioremediation of ε-caprolactam from nylon-6 waste water by use of Pseudomonas aeruginosa MCM B-407
Brodisch Interaction of different groups of micro-organisms in biological phosphate removal
US5407577A (en) Biological process to remove color from paper mill wastewater
El-Bestawy et al. Effective production of bacterial cellulose using acidic dairy industry by-products and agro wastes
US6780317B1 (en) Method of purifying water, suitable bacteria for the method and use thereof
CN105925508A (en) Aerobic denitrifying pseudomonas and application thereof
Lallai et al. pH variation during phenol biodegradation in mixed cultures of microorganisms
KR100489614B1 (en) Pseudomonas sp. T-1 having a ability to resolve high-density Terephthalic acid and a method of waste-water treatment using the same
EP0567102B1 (en) Method of biologically decomposing phenol or furan compounds by microorganisms
Urbain et al. Composition and activity of activated sludge under starvation conditions
Baccella et al. Biological treatment of alkaline industrial waste waters
Khelifi et al. Enhancement of textile wastewater decolourization and biodegradation by isolated bacterial and fungal strains
Dangcong et al. Anaerobic digestion of alkaline black liquor using an up‐flow anaerobic sludge blanket reactor
KR19980033946A (en) Active microorganism culture material for wastewater treatment and its use method
Jain et al. Isolation, screening and identification of bacterial strains for degradation of predigested distillery wastewater
KR100455643B1 (en) Pseudomonas sp. EG-2 having a ability to resolve high-density ethylene glycol and a method of waste-water treatment using the same
JPH09308494A (en) Production of lactic acid
Jain et al. Treatment of black liquor by Pseudomonas putida and Acinetobacter calcoaceticus in continuous reactor
Woodard et al. The biological degradation of lignin from pulp mill black liquor
Khan et al. Biodegradation of phenol by aerobic granulation technology
Saha et al. Bioremedial Efficacy of Nostoc Carneum Agardh in Industrial Effluents Treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130313

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140225

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200212

Year of fee payment: 16