EP0882941B1 - Infrared seeker head for homing missile - Google Patents
Infrared seeker head for homing missile Download PDFInfo
- Publication number
- EP0882941B1 EP0882941B1 EP98109319A EP98109319A EP0882941B1 EP 0882941 B1 EP0882941 B1 EP 0882941B1 EP 98109319 A EP98109319 A EP 98109319A EP 98109319 A EP98109319 A EP 98109319A EP 0882941 B1 EP0882941 B1 EP 0882941B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- radiation
- seeker head
- infrared seeker
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2213—Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/224—Deceiving or protecting means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2253—Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G7/00—Direction control systems for self-propelled missiles
- F41G7/20—Direction control systems for self-propelled missiles based on continuous observation of target position
- F41G7/22—Homing guidance systems
- F41G7/2273—Homing guidance systems characterised by the type of waves
- F41G7/2293—Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
Definitions
- the invention relates to an infrared search head for target-seeking missiles, in which a field of view through an imaging optical system on a main detector is reproducible, which detects a target located in your visual field, and a second Detector is provided, which responds to the high-intensity radiation, the Seeker contains a facility to prevent interference by going from the target the missile emitted, high-intensity radiation is caused and by the second detector can be activated.
- Infrared search heads for missiles are widely known.
- An infrared search head for target-seeking missiles is, for example, by EP-B-0 538 671 known.
- the seeker head contains an optical system that gimbals over an inner and an outer frame with respect to a structure movable on all sides is stored.
- the optical system creates an image of a Field of view. Signals are obtained which are sent via two frame actuators direct the viewfinder towards a detected target.
- a gyro-stabilized viewfinder is known from DE-PS-3 925 942.
- the seeker contains an imaging optical system through which a field of view Detector means is mapped.
- the detector means generate target signals, from which Alignment signals are generated.
- the orbital axis becomes a through the alignment signals Rotors aimed at a target.
- the detector means are in a dewar arranged and are cooled.
- FR 2 740 638 A1 relates to an arrangement which is intended to prevent a Infrared detector can be detected or disturbed by enemy laser radiation.
- a second, special detector is provided which is suitable for the To detect the occurrence of such laser radiation. If such a disturbance occurs Laser radiation is e.g. the field of view scanning of the infrared detector is interrupted.
- the special detector in one version of FR 2 740 638 A1 contains one Monochromator, being the distinguishing criterion between laser radiation and thermal radiation of a target the monochromatic character of laser radiation serves.
- the laser radiation is higher as a light pulse Performance recognized.
- the invention has for its object in a seeker head of the aforementioned Kind after detection of disruptive laser radiation and appropriate shutdown or shielding the main detector to avoid losing a target.
- this object is achieved in that the second detector is on the location of the light source emitting the high-intensity radiation is more appealing
- the function of the position-sensitive detector is its high-intensity radiation is not affected.
- the devices for preventing interference from high-intensity radiation usually a laser beam directed at the search head of the missile be of different types. Different solutions, individually or in suitable Combination can be used are the subject of the subclaims.
- an infrared seeker head is shown schematically.
- the search head can be in the nose an air-to-air missile and an infrared-transmissive dome be protected.
- the infrared seeker head is rotatable on an axis 10 mounted inner frame 12 of a gimbal system.
- the inner frame 12 carries that entire opto-electronic receiving system whose optical axis through appropriate deflection of the frame axes is aimed at a target.
- a first one Detector system 14 contains infrared optics 16 as the imaging optical system. This detector system 14 forms a conventional passive infrared detector, which is based on Thermal radiation appeals.
- the infrared optics 16 form a field of view (and the target) via a scanning device arranged behind with a movable optical Deflector from an infrared detector line as the main detector.
- the one from it derived infrared data are arranged in a structure-fixed manner in the missile Signal processing forwarded.
- the second detector system On the inner frame 12 there is a second one close to the first detector system 14 Detector system arranged. Contains in the embodiment shown in Fig.1 the second detector system as "second detectors" two laser detector modules 18 and 20, which respond to laser radiation.
- the optical axes of the two laser detector modules 18 and 20 are defined to the optical axis of the first Detector system 14 aligned.
- the fields of view of the laser detector modules 18 and 20 are matched to the field of view of the first detector system 14 in such a way that Laser interference in the entire scanning range of the first detector system 14 can be detected.
- the use of two laser detector modules 18 and 20 has the advantage that second detector system can also detect laser radiation if, depending on Deflection direction of the frame axis, one or the other laser detector module 18 or 20 at high squint angles covered by the dome bracket or other parts becomes.
- the laser detector modules 18 and 20 each contain a four-quadrant detector and one entry lens 22 and 24 respectively.
- the received laser radiation is after conventional measurement method out of focus on the four-quadrant detectors.
- the electronics of the are in a housing 26 on the inner frame 12 Seeker.
- FIG 2 the signal processing of the infrared seeker head of Figure 1 in one Block diagram shown.
- the signals (infrared data) of the first detector system 14 are fed to a signal processing unit 28.
- these signals are evaluated and alignment signals are generated.
- the Alignment signals of the signal processing unit 28 are a switching logic 30 fed which tracking and steering signals for the seeker head tracking and Missile guidance delivers. This is indicated by an arrow 34.
- the signals of the four-quadrant detector of the laser detector module 18 are fed to signal processing 32. In the Signal processing 32, these signals are evaluated and alignment signals are generated. These alignment signals are also supplied to the switching logic 30.
- the seeker tracking and the missile guidance are based on the Alignment signal from the signal processing unit 28 of the first detector system 14. If the threat is detected, a laser steel is launched onto the target from the target Missile aligned, then this alignment signal, the signal processing 28 disturbed and unusable for the guidance of the missile.
- the Switchover logic 30 detected. The switching logic 30 then switches over so that the Search head tracking and missile guidance are based on the alignment signal of the Signal processing unit 32 of the second detector system supports. This can be done take place that the analog output data of the quadrant detectors in the electronics be processed and digitized if they have a predetermined threshold exceed.
- the switching logic 30 continues to turn on Protection signal 36 generated by which measures to protect the first Detector system 14 can be initiated.
- the protection signal 36 of a protective signal processing unit 38 which are connected to a Output 40 gives a protection command to the first detector system 14.
- the protection signal 36 of a protective signal processing unit 38 which are connected to a Output 40 gives a protection command to the first detector system 14.
- the field of view of the first detector system 14 with an Scanned scanner.
- a protective measure we use the movable optical one Deflector of the scanning device when the protection signal occurs in one position stopped, in which the detector line of the first detector system 14 from the Laser radiation is not applied.
- the imaging optical again System 16 forms an infinite field of vision over a moving one optical deflection device 60 in the plane of a detector line 62.
- the optical Deflection device 60 is moved by a drive 64.
- the deflector 60 is shown as an oscillating mirror in FIG. The swinging motion is through one Double arrow indicated.
- the detector line 62 is a linear arrangement of detector elements, which extends perpendicular to the paper plane in Fig.4.
- a Protection command at the output 40 (Fig.2) is the deflection device 60 by the drive 64 brought into the position shown in dashed lines in Figure 4. In this position the Deflection device 60 all radiation from the field of view captured by the system 16 past the detector line 62.
- FIG. 6 This is shown in Fig. 6.
- a deflection mirror 70 swung in, which is dashed in Figure 6 is drawn.
- FIG. 3 shows the sequence of switching between the two operating modes in one Flow chart shown: Furthermore, there is an optional process at short distance shown between search head and target.
- the Search head is switched to regular infrared mode. This is through block 42 shown.
- a query takes place (block 44) whether laser radiation is received or not. If no laser radiation is received ("NO"), then it remains Seeker head in this infrared mode. If laser radiation is received (“YES”), the protective measures for the first detector system 14 are initiated (cf. Switching logic 30 in Fig.2). This is represented by block 46.
- the Search head switched to laser-controlled operation (block 48). It finds one repeated query instead (block 50) as to whether laser radiation is still being received.
- the infrared search head can also be used to check whether the target is within a short time Distance.
- the target image is larger than the laser interference in the picture, so that at least parts of the target in the signal processing unit 28 of the first detector means 14 can be recognized and "valid" alignment signals can be generated.
- This process is shown in Figure 3 by dashed lines. If in that laser-controlled operation (block 48) when queried (block 50) continues laser radiation is detected ("YES"), in this case a query takes place as to whether the destination is within a short time Distance. This is represented by block 52. If not (“NO"), then the seeker head remains in laser controlled mode (block 48). If If the target is a short distance away (“YES”), the search head is placed in the Infrared mode switched (block 54).
- an imaging optical system 72 generates the represented by a lens, an image of the field of view on a CCD matrix detector 74.
- a pair of complementary prisms 76 and 78 arranged in the beam path.
- the prisms 76 and 78 form isosceles right-angled triangles in cross section, the hypotenuses of the triangles facing each other.
- the prism 76 has an entry surface 80 and an inclined surface 82 facing the prism 78.
- the Prism 78 has a prism 76 facing, parallel to the inclined surface 82 Inclined surface 84 and an exit surface 86 parallel to the entry surface 80.
- the Sloping surface 84 is coated with a semiconductor layer 88.
- the semiconductor layer 88 is transparent to the infrared radiation received by the CCD matrix detector 74, but shows a non-linear absorption behavior. This non-linear Absorption behavior can be caused, for example, by two-photon processes his.
- the semiconductor layer for the low intensities of the infrared radiation with which the CCD matrix detector 74 is usually acted on as the main detector has a high transmission, high intensities, such as those from a laser aimed at the missile generated, strongly absorbed.
- the two prisms 76 and 78 are mutually perpendicular by a piezo actuator 90 to the planes of the two inclined surfaces 82 and 84 between one shown in FIG first position and a second position shown in Figure 8 movable.
- the prism 76 Perpendicular to the entry surface 80, the prism 76 has an exit surface 92.
- the level of Exit surface 92 is perpendicular to the plane of exit surface 86 of prism 78.
- a second detector 94 is arranged opposite the exit surface 92.
- the second Detector 94 responds to the high-intensity radiation, namely that of the target Missile-directed laser beam.
- the second detector 94 is a detector that is less sensitive to radiation than the main detector 74.
- the second detector 94 should detect the incidence of high-intensity radiation. He doesn't need the weak To address the natural radiation of a distant target like the main detector.
- the second Detector 94 is a four quadrant detector.
- the imaging optical system 72 forms the prisms 76 and 78 in the first position (FIG. 7) the field of view through the two prisms 76 and 78 and the layer 88 sharp on the CCD matrix detector 74.
- the second position of prisms 76 and 78 (FIG. 8) is through the piezo actuator 90 between the inclined surfaces 82 of the prism 76 and the semiconductor layer 88 applied to the inclined surface 84 has a narrow air gap 96 educated.
- the width of the air gap 96 can be on the order of light wavelengths lie.
- the air gap 96 leads to that on the inclined surface 82 of the Prism 76 a total reflection takes place.
- the optical system 72 does not produce an image the CCD matrix detector 74 but on the second detector 94 essentially the source of the high-intensity radiation. This illustration is done somewhat out of focus on the detector 94 designed as a four-quadrant detector.
- the individual detector elements of the CCD matrix detector build during an "integration time” due to the light falling on analog signals, each corresponds to the time integral of the light falling on the detector element. During one After the "readout time", the detector elements are read out line by line. This change of integration and readout time takes place cyclically. Useful information of CCD matrix detectors therefore only deliver that during the integration period incident light. During the readout time, the imaging light beam from the CCD matrix detector 74, without affecting the sensitivity of the CCD matrix detector is impaired.
- the prisms 76 and 78 become during the integration time into the first position shown in FIG. 7 and during the readout time in brought the read position shown in Fig.8.
- the light thereby acts on the CCD matrix detector only during the integration period.
- the light turns on during the readout time directed to the second detector 94 by the total reflection on the inclined surface 82.
- Switching between the first position of Fig.7 and the second position of Fig.8 can be done by the piezo actuator 90 at high frequency.
- the arrangement described has another advantage: the light is periodic, namely during the readout times, also directed to the second detector 94.
- the second detector 94 detects the occurrence of high-intensity radiation. If such Radiation is detected, the prisms 76 and 78 can be in their second position being held. Then the CCD matrix detector 74 is completely against that shielded from incident radiation.
- a second detector 94 designed as a four-quadrant detector is used Image of the light source of high intensity radiation generated.
- the four quadrant detector now delivers target placement signals from the laser beam, by means of which the missile enters the Goal is led.
- the laser beam thus sets the highly sensitive CCD matrix detector 74 out of function. For this, he now provides a means by which To guide missiles into the target.
- the system is immediately switched back to normal operation: the prisms are brought into the position of Fig. 7, and the CCD matrix detector 74 takes over the observation of the target again. It also happens when the laser beam is pulsed.
- a prism arrangement with piezo actuators, as described in FIGS. 7 and 8, can also be used in place of the mirror 7 in FIG.
- the periodic switching between the positions of Fig. 7 and Fig. 8 during the integration time and the readout time of the CCD matrix detector 74 and / or the upstream of the semiconductor layer 88 with non-linear absorption behavior can u.U. the high-intensity radiation can be attenuated so far that the CCD matrix detector 74 continues to lead even without switching to a detector 94 of the missile into the source of this high-intensity radiation without being blinded or damaged.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Description
Die Erfindung betrifft einen Infrarot-Suchkopf für zielsuchende Flugkörper, bei welchem ein Gesichtsfeld durch ein abbildendes optisches System auf einem Haupt-Detektor abbildbar ist, der ein in dein Gesichtsfeld befindliches Ziel erfaßt, und ein zweiter Detektor vorgesehen ist, welcher auf die hochintensive Strahlung anspricht, wobei der Suchkopf eine Einrichtung zur Abwehr von Störungen enthält, die durch vom Ziel auf den Flugkörper ausgesandte, hochintensive Strahlung hervorgerufen wird und die durch den zweiten Detektor aktivierbar ist.The invention relates to an infrared search head for target-seeking missiles, in which a field of view through an imaging optical system on a main detector is reproducible, which detects a target located in your visual field, and a second Detector is provided, which responds to the high-intensity radiation, the Seeker contains a facility to prevent interference by going from the target the missile emitted, high-intensity radiation is caused and by the second detector can be activated.
Infrarot-Suchköpfe für Flugkörper sind vielfältig bekannt.Infrared search heads for missiles are widely known.
Ein Infrarot-Suchkopf für zielsuchende Flugkörper ist beispielsweise durch die EP-B-0 538 671 bekannt. Der Suchkopf enthält ein optisches System, welches kardanisch über einen Innen- und einen Außenrahmen gegenüber eine Struktur allseitig beweglich gelagert ist. Auf einem Detektor wird durch das optische System ein Bild eines Gesichtsfeldes erzeugt. Es werden Signale gewonnen, welche über zwei Rahmen-Stellmotoren eine Ausrichtung des Suchers auf ein erfaßtes Ziel bewirken.An infrared search head for target-seeking missiles is, for example, by EP-B-0 538 671 known. The seeker head contains an optical system that gimbals over an inner and an outer frame with respect to a structure movable on all sides is stored. The optical system creates an image of a Field of view. Signals are obtained which are sent via two frame actuators direct the viewfinder towards a detected target.
Durch die DE-PS-3 925 942 ist ein kreiselstabilisierter Sucher bekannt. Der Sucher enthält ein abbildendes optisches System, durch welches ein Gesichtsfeld auf Detektormitteln abgebildet wird. Die Detektormittel erzeugen Zielsignale, aus welchen Ausrichtsignale erzeugt werden. Durch die Ausrichtsignale wird die Umlaufachse eines Rotors auf ein Ziel ausgerichtet. Die Detektormittel sind in einem Dewar-Gefäß angeordnet und werden gekühlt.A gyro-stabilized viewfinder is known from DE-PS-3 925 942. The seeker contains an imaging optical system through which a field of view Detector means is mapped. The detector means generate target signals, from which Alignment signals are generated. The orbital axis becomes a through the alignment signals Rotors aimed at a target. The detector means are in a dewar arranged and are cooled.
Um Angriffe von zielsuchenden Flugkörper abzuwehren werden von einem angegriffenen Flugzeug Maßnahmen angewandt, den Infrarot-Suchkopf zu stören. To ward off attacks from target-seeking missiles are used by one Aircraft under attack applied measures to disrupt the infrared seeker head.
Die FR 2 740 638 A1 betrifft eine Anordnung, welche verhindern soll, daß ein Infrarotdetektor durch feindliche Laserstrahlung entdeckt oder gestört werden kann. Zu diesem Zweck ist ein zweiter, spezieller Detektor vorgesehen, der geeignet ist, das Auftreten solcher Laserstrahlung zu erkennen. Bei Auftreten solcher störender Laserstrahlung wird z.B. die Gesichtsfeldabtastung des Infrarotdetektors unterbrochen. Der spezielle Detektor enthält bei einer Ausführung der FR 2 740 638 A1 einen Monochromator, wobei als Unterscheidungskriterium zwischen Laserstrahlung und thermischer Strahlung eines Ziels der monochromatische Charakter der Laserstrahlung dient. Bei einer anderen Ausführung wird die Laserstrahlung als Lichtimpuls hoher Leistung erkannt.FR 2 740 638 A1 relates to an arrangement which is intended to prevent a Infrared detector can be detected or disturbed by enemy laser radiation. To for this purpose, a second, special detector is provided which is suitable for the To detect the occurrence of such laser radiation. If such a disturbance occurs Laser radiation is e.g. the field of view scanning of the infrared detector is interrupted. The special detector in one version of FR 2 740 638 A1 contains one Monochromator, being the distinguishing criterion between laser radiation and thermal radiation of a target the monochromatic character of laser radiation serves. In another embodiment, the laser radiation is higher as a light pulse Performance recognized.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Suchkopf der eingangs genannten Art auch nach Erkennen von störender Laserstrahlung und entsprechender Abschaltung oder Abschirmung des Haupt-Detektors einen Zielverlust zu vermeiden.The invention has for its object in a seeker head of the aforementioned Kind after detection of disruptive laser radiation and appropriate shutdown or shielding the main detector to avoid losing a target.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß der zweite Detektor ein auf den Ort der die hochintensive Strahlung aussendenden Lichtquelle ansprechender positionsempfindlicher Detektor ist dessen Funktion durch die hochintensive Strahlung nicht beeinträchtigt ist. According to the invention, this object is achieved in that the second detector is on the location of the light source emitting the high-intensity radiation is more appealing The function of the position-sensitive detector is its high-intensity radiation is not affected.
Die Einrichtungen zur Abwehr von Störungen durch hochintensive Strahlung, üblicherweise einen auf den Suchkopf des Flugkörpers gerichteten Laserstrahl, können verschiedener Art sein. Verschiedene Lösungen, die einzeln oder in geeigneter Kombination angewandt werden können, sind Gegenstand der Unteransprüche.The devices for preventing interference from high-intensity radiation, usually a laser beam directed at the search head of the missile be of different types. Different solutions, individually or in suitable Combination can be used are the subject of the subclaims.
Ausführungsbeispiele der Erfindung sind nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.Embodiments of the invention are below with reference to the associated drawings explained in more detail.
- Fig.1Fig.1
- ist eine schematische, perspektivische Darstellung und zeigt ein Ausführungsbeispiel des erfindungsgemäßen Infrarot-Suchkopfes.Fig. 3 is a schematic perspective view showing a Embodiment of the infrared seeker head according to the invention.
- Fig.2Fig.2
- ist ein Blockdiagramm und veranschaulicht die Signalverarbeitung bei einem erfindungsgemäßen Infrarot-Suchkopf.Figure 4 is a block diagram illustrating signal processing at an infrared seeker head according to the invention.
- Fig.3Figure 3
- ist ein Flußdiagramm und veranschaulicht die Steuerung des erfindungsgemäßen Infrarot-Suchkopfes und zusätzlich eine optionale Betriebsweise des Infrarot-Suchkopfes.is a flowchart illustrating the control of the infrared search head according to the invention and in addition an optional Operating mode of the infrared search head.
- Fig.4Figure 4
- zeigt eine Ausführung, bei welcher im Normalbetrieb das Gesichtsfeld mittels einer Detektorzeile über einen Schwingspiegel abgetastet wird und bei Auftreten einer hochintensiven Störstrahlung der Schwingspiegel in eine Stellung bewegt wird, in welcher die Detektorzeile nicht von der Störstrahlung beaufschlagt ist.shows an embodiment in which the field of view during normal operation is scanned by means of a detector line via an oscillating mirror and when a high-intensity interference radiation occurs, the oscillating mirror into a Position is moved in which the detector line is not from the Interference radiation is applied.
- Fig.5Figure 5
- zeigt eine Ausführung, bei welcher als Schutzmaßnahme zum Schutz des Haupt-Detektors vor hochintensiver Störstrahlung eine vor dem Haupt-Detektor angeordnete mechanische oder elektro-optische Blende geschlossen wird.shows an embodiment in which as a protective measure to protect the Main detector before high-intensity interference radiation in front of the main detector arranged mechanical or electro-optical aperture is closed.
- Fig.6Figure 6
- zeigt eine Ausführung, bei welcher als Schutzmaßnahme zum Schutz des Haupt-Detektors vor hochintensiver Störstrahlung ein Spiegel in den Strahlengang eingeschwenkt wird, der die Störstrahlung von dem Haupt-Detektor ablenkt.shows an embodiment in which as a protective measure to protect the Main detector in front of high-intensity interference radiation Beam path is pivoted, the interference radiation from the main detector distracting.
- Fig.7Figure 7
- zeigt eine Ausführung, zwei durch einen Piezosteller gegeneinander beweglicher Prismen in der Stellung, in welcher das von dem optischen System erfaßte Licht auf einen Haupt-Detektor geleitet wird.shows an embodiment, two against each other by a piezo actuator movable prisms in the position in which that of the optical System detected light is directed to a main detector.
- Fig.8Figure 8
- zeigt die Ausführung von Fig.7 in einer Stellung, bei welcher das von dem optischen System erfaßte Licht auf einen Hilfs-Detektor geleitet wird, der zum Empfang der hochintensiven Störstrahlung ausgelegt ist.shows the embodiment of Figure 7 in a position in which the optical system detected light is directed to an auxiliary detector which is designed to receive the high-intensity interference radiation.
In Fig. 1 ist ein Infrarot-Suchkopf schematisch dargestellt. Der Suchkopf kann in der Nase
eines Luft-Luft-Flugkörpers vorgesehen und durch einen infrarot-durchlässigen Dom
geschützt sein. Der Infrarot-Suchkopf befindet sich auf einem um eine Achse 10 drehbar
gelagerten Innenrahmen 12 eines kardanischen Systems. Der Innenrahmen 12 trägt das
gesamte opto-elektronische Empfangssystem, dessen optische Achse durch
entsprechende Auslenkung der Rahmenachsen auf ein Ziel ausgerichtet wird. Ein erstes
Detektorsystem 14 enthält als abbildendes optisches System eine Infrarot-Optik 16.
Dieses Detektorsystem 14 bildet einen üblichen passiven Infrarot-Detektor, welcher auf
Wärmestrahlung anspricht. Die Infrarot-Optik 16 bildet ein Gesichtsfeld (und das Ziel)
über einen dahinter angeordneten Abtastvorrichtung mit einem beweglichen optischen
Ablenkglied auf eine Infrarot-Detektorzeile als Haupt-Detektor ab. Die daraus
abgeleiteten Infrarot-Daten werden zu einer strukturfest im Flugkörper angeordneten
Signalverarbeitung weitergeleitet. In Fig. 1, an infrared seeker head is shown schematically. The search head can be in the nose
an air-to-air missile and an infrared-transmissive dome
be protected. The infrared seeker head is rotatable on an
An dem Innnenrahmen 12 ist nahe bei dem ersten Detektorsystem 14 ein zweites
Detektorsystem angeordnet. In dem in Fig.1 dargestellten Ausführungsbeispiel enthält
das zweite Detektorsystem als "zweite Detektoren" zwei Laser-Detektor-Module 18 und
20, welche auf Laserstrahlung ansprechen. Die optischen Achsen der beiden Laser-Detektor-Module
18 und 20 sind definiert zur optischen Achse des ersten
Detektorsystems 14 ausgerichtet. Die Gesichtsfelder der Laser-Detektor-Module 18 und
20 sind auf das Gesichtsfeld des ersten Detektorsystems 14 so abgestimmt, daß
Laserstörungen im gesamten Abtastbereich des ersten Detektorsystems 14 erfaßt werden.On the
Die Verwendung von zwei Laser-Detektor-Modulen 18 und 20 hat den Vorteil, daß das
zweite Detektorsystem auch dann Laserstrahlung detektieren kann, wenn, je nach
Auslenkrichtung der Rahmenachse, das eine oder das andere Laser-Detektor-Modul 18
bzw. 20 bei hohen Schielwinkeln durch die Domhalterung oder andere Teile abgedeckt
wird.The use of two
Die Laser-Detektor-Module 18 und 20 enthalten je einen Vier-Quadranten-Detektor und
je eine Eintrittslinse 22 bzw. 24. Die empfangene Laserstrahlung wird nach
herkömmlicher Meßmethode unscharf auf die Vier-Quadranten-Detektoren abgebildet.The
In einem Gehäuse 26 an dem Innenrahmen 12 befindet sich die Elektronik des
Suchkopfes.The electronics of the are in a
In Fig.2 ist die Signalverarbeitung des Infrarot-Suchkopfes von Fig.1 in einem
Blockdiagramm dargestellt. Die Signale (Infrarot-Daten) des ersten Detektorsystems 14
werden einer Signalverarbeitungs-Einheit 28 zugeführt. In der Signalverarbeitungs-Einheit
28 werden diese Signale ausgewertet und Ausrichtsignale erzeugt. Die
Ausrichtsignale der Signalverarbeitungs-Einheit 28 werden einer Umschaltlogik 30
zugeführt, welche Nachführ- und Lenksignale für die Suchkopfnachführung und die
Flugkörperlenkung liefert. Dies ist durch einen Pfeil 34 angedeutet. In Figure 2, the signal processing of the infrared seeker head of Figure 1 in one
Block diagram shown. The signals (infrared data) of the
Von den beiden Laser-Detektor-Modulen 18 und 20 ist in Fig.2 nur das erste Laser-Detektor-Modul
18 dargestellt. Die Signale des Vier-Quadranten-Detektors des Laser-Detektor-Moduls
18 werden einer Signalverarbeitung 32 zugeführt. In der
Signalverarbeitung 32 werden diese Signale ausgewertet und Ausrichtsignale erzeugt.
Diese Ausrichtsignale werden ebenfalls der Umschaltlogik 30 zugeführt.Of the two
Im störungsfreien Fall, d.h. wenn keine Laserstrahlung von dem zweiten Detektorsystem
detektiert wird, stützt sich die Suchkopfnachfilhrung und die Flugkörperlenkung auf das
Ausrichtsignal von der Signalverarbeitungs-Einheit 28 des ersten Detektorsystems 14.
Wird bei Erkennung der Bedrohung vom Ziel aus ein Laserstahl auf den anfliegenden
Flugkörper ausgerichtet, dann kann durch dieses Ausrichtsignal die Signalverarbeitung
28 gestört und für die Lenkung des Flugkörpers unbrauchbar werden. Beim Einsetzen der
Laserstörung wird sowohl das Signal des zweiten Detektorsystems als auch das Signal
des ersten Detektorsystems 14 plötzlich verändert. Diese Veränderung wird durch die
Umschaltlogik 30 erkannt. Die Umschaltlogik 30 schaltet dann um, so daß die
Suchkopfnachführung und die Flugkörperlenkung sich auf das Ausrichtsignal der
Signalverarbeitungs-Einheit 32 des zweiten Detektorsystems stützt. Dies kann dadurch
erfolgen, daß die analogen Ausgangsdaten der Quadranten-Detektoren in der Elektronik
aufbereitet und digitalisiert werden, wenn sie einen vorgegebenen Schwellwert
überschreiten.In the trouble-free case, i.e. if there is no laser radiation from the second detector system
is detected, the seeker tracking and the missile guidance are based on the
Alignment signal from the
Mit dem Einsetzen der Laserstrahlung wird von der Umschaltlogik 30 weiterhin ein
Schutzsignal 36 erzeugt, durch welches Maßnahmen zum Schutz des ersten
Detektorsystems 14 eingeleitet werden. Wie in Fig.2 dargestellt, kann das Schutzsignal
36 einer Schutzsignal-Verarbeitungseinheit 38 zugeführt werden, welche an einem
Ausgang 40 einen Schutzbefehl an das erste Detektorsystem 14 gibt. In dem dargestellten
Ausführungsbeispiel wird das Gesichtsfeld des ersten Detektorsystems 14 mit einer
Abtastvorrichtung abgetastet. Als Schutzmaßnahme wir hier das bewegliche optische
Ablenkglied der Abtastvorrichtung beim Auftreten des Schutzsignals in einer Stellung
angehalten, in welcher die Detektorzeile des ersten Detektorsystems 14 von der
Laserstrahlung nicht beaufschlagt wird. With the onset of the laser radiation, the switching
Das ist in Fig.4 schematisch dargestellt. Dort ist mit 16 wieder das abbildende optische
System bezeichnet, das hier einfach als Linse dargestellt ist. Das abbildende optische
System 16 bildet ein im Unendlichen liegendes Gesichtsfeld über eine bewegliche
optische Ablenkvorrichtung 60 in der Ebene einer Detektorzeile 62 ab. Die optische
Ablenkvorrichtung 60 wird durch einen Antrieb 64 bewegt. Die Ablenkvorrichtung 60 ist
in Fig.4 als Schwingspiegel dargestellt. Die Schwingbewegung ist durch einen
Doppelpfeil angedeutet. Die Detektorzeile 62 ist eine lineare Anordnung von Detektor-Elementen,
die sich senkrecht zur Papierebene in Fig.4 erstreckt. Bei Auftreten eines
Schutzbefehls am Ausgang 40 (Fig.2) wird die Ablenkvorrichtung 60 durch den Antrieb
64 in die in Fig.4 gestrichelt dargestellte Stellung gebracht. In dieser Stellung leitet die
Ablenkvorrichtung 60 alle Strahlung aus dem vom System 16 erfaßten Gesichtsfeld an
der Detektorzeile 62 vorbei.This is shown schematically in Figure 4. At 16 there is the imaging optical again
System called, which is simply shown here as a lens. The imaging
Die Schutzmaßnahmen können jedoch auch anderer Natur sein:
- Das erste Detektorsystem kann durch Abblendmittel geschützt werden. Hierbei kann es
sich sowohl um eine mechanische als auch um eine trägheitslose Blende (z.B. eine
elektro-optische Kerr-Zelle) handeln.
Das ist in Fig.5 schematisch dargestellt. Bei der Ausführung von Fig.5, die im übrigen
ähnlich ausgebildet sein kann wie die Ausführung von Fig.1 bis 3, erzeugt das abbildende
optische
System 16 ein Bild des Gesichtsfeldes in der Ebene eines infrarotempfindlichen CCD-Matrixdetektors 66. Vor dem CCD-Matrixdetektor 66 sitzen Abblendmittel 68, die von demSchutzbefehl am Ausgang 40 ansteuerbar sind und in Fig.5 von einer Kerrzelle gebildet werden. - Es können auch Strahlablenkmittel vorgesehen sein, welche die Strahlung von dem Haupt-Detektor beim Auftreten des Schutzsignals ablenken. Dies kann in einfacher Weise durch einen verschwenkbaren Umlenkspiegel realisiert sein, welcher beim Auftreten des Schutzsignals so verschwenkt wird, daß die Strahlung nicht mehr auf den Haupt-Detektor fällt.
- The first detector system can be protected by shielding agents. This can be both a mechanical and an inertia-free diaphragm (eg an electro-optical Kerr cell). This is shown schematically in Fig.5. In the embodiment of FIG. 5, which can be configured similarly to the embodiment of FIGS. 1 to 3, the imaging
optical system 16 generates an image of the field of view in the plane of an infrared-sensitiveCCD matrix detector 66. In front of theCCD matrix detector 66 are dimmingmeans 68, which can be controlled by the protection command at theoutput 40 and are formed by a Kerr cell in FIG. - Beam deflecting means can also be provided which deflect the radiation from the main detector when the protective signal occurs. This can be implemented in a simple manner by means of a pivotable deflecting mirror, which is pivoted when the protective signal occurs so that the radiation no longer falls on the main detector.
Das ist in Fig.6 dargestellt. Dort ist wieder mit 16 das abbildende optische System
bezeichnet und mit 66 ein CCD-Matrixdetektor (oder eine andere zweidimensionale
Anordnung von Detektor-Elementen). Bei Auftreten eines Schutzbefehls wird in den
Abbildungs-Strahlengang ein Umlenkspiegel 70 eingeschwenkt, der in Fig.6 gestrichelt
gezeichnet ist.This is shown in Fig. 6. At 16 there is the imaging optical system again
and a 66 CCD matrix detector (or other two-dimensional
Arrangement of detector elements). If a protection command occurs, the
Imaging beam path a
Wenn Laserstrahlung detektiert worden ist und der Suchkopf sich in dem lasergesteuerten Betrieb befindet, wird kontinuierlich geprüft, ob die Lasereinstrahlung unterbrochen wird. Falls dies der Fall ist, dann wird wieder auf den regulären Infrarot-Betrieb zurückgeschaltet.When laser radiation has been detected and the seeker head is in the laser-controlled one Operation, it is continuously checked whether the laser radiation is interrupted becomes. If this is the case, then it will go back to regular infrared operation switched back.
In Fig.3 ist der Ablauf des Umschaltens zwischen den beiden Betriebsmoden in einem
Flußdiagramm dargestellt: Weiterhin ist ein optionaler Ablauf bei kurzer Entfernung
zwischen Suchkopf und Ziel dargestellt. Zunächst wird davon ausgegangen, daß der
Suchkopf in den regulären Infrarot-Betrieb geschaltet ist. Dies ist durch Block 42
dargestellt. Es findet eine Abfrage statt (Block 44), ob Laserstrahlung empfangen wird
oder nicht. Wenn keine Laserstrahlung empfangen wird ("NEIN"), dann bleibt der
Suchkopf in diesem Infrarot-Betrieb. Falls Laserstrahlung empfangen wird ("JA"),
werden die Schutzmaßnahmen für das erste Detektorsystem 14 eingeleitet (vgl.
Umschaltlogik 30 in Fig.2). Dies ist durch Block 46 dargestellt. Gleichzeitig wird der
Suchkopf in den laser-gesteuerten Betrieb umgeschaltet (Block 48). Es findet eine
erneute Abfrage statt (Block 50), ob Laserstrahlung weiterhin empfangen wird. Falls
keine Laserstrahlung mehr empfangen wird ("NEIN"), wird der Suchkopf in den Infrarot-Betrieb
(Block 42) zurückgeschaltet. Falls Laserstrahlung empfangen wird ("JA"), dann
bleibt der Suchkopf in dem lasergesteuerten Betrieb (Block 46). Dieser Ablauf entspricht
der Darstellung in Fig.2 und ist in Fig.3 mit durchgezogenen Linien dargestellt.3 shows the sequence of switching between the two operating modes in one
Flow chart shown: Furthermore, there is an optional process at short distance
shown between search head and target. First, it is assumed that the
Search head is switched to regular infrared mode. This is through
Optional kann bei dem Infrarot-Suchkopf noch geprüft werden, ob das Ziel sich in kurzer
Entfernung befindet. In diesem Fall ist nämlich das Zielbild größer als die Laserstörung
im Bild, so daß mindestens Teile des Ziels in der Signalverarbeitung-Einheit 28 der
ersten Detektormittel 14 erkannt und "gültige" Ausrichtsignale erzeugt werden können.
Dieser Ablauf ist in Fig.3 durch gestrichelte Linien dargestellt. Wenn in dem
lasergesteuerten Betrieb (Block 48) bei der Abfrage (Block 50) weiterhin Laserstrahlung
detektiert wird ("JA"), findet in diesem Fall eine Abfrage statt, ob sich das Ziel in kurzer
Entfernung befindet. Dies ist durch Block 52 dargestellt. Wenn dies nicht der Fall ist
("NEIN"), dann bleibt der Suchkopf in dem lasergesteuerten Betrieb (Block 48). Wenn
sich das Ziel in kurzer Entfernung befindet ("JA"), dann wird der Suchkopf in den
Infrarot-Betrieb geschaltet (Block 54).Optionally, the infrared search head can also be used to check whether the target is within a short time
Distance. In this case, the target image is larger than the laser interference
in the picture, so that at least parts of the target in the
Bei der Ausführung nach Fig.7 und 8 erzeugt ein abbildendes optisches System 72, das
durch eine Linse dargestellt ist, ein Bild des Gesichtsfeldes auf einem CCD-Matrixdetektor
74. In dem Strahlengang ist ein Paar von komplementären Prismen 76
und 78 angeordnet.7 and 8, an imaging
Die Prismen 76 und 78 bilden im Querschnitt gleichschenklig-rechtwinklige Dreiecke,
wobei die Hypothenusen der Dreiecke einander zugewandt sind. Das Prisma 76 weist
eine Eintrittsfläche 80 und eine dem Prisma 78 zugewandte Schrägfläche 82 auf. Das
Prisma 78 weist eine dem Prisma 76 zugewandte, zu der Schrägfläche 82 parallele
Schrägfläche 84 und eine zu der Eintrittsfläche 80 parallele Austrittsfläche 86 auf. Die
Schrägfläche 84 ist mit einer Halbleiterschicht 88 beschichtet. Die Halbleiterschicht 88
ist für die von dem CCD-Matrixdetektor 74 empfangene, infrarote Strahlung durchlässig,
zeigt aber ein nichtlineares Absorptionsverhalten. Dieses nichtlineare
Absorptionsverhalten kann beispielsweise durch Zweiphotonen-Prozesse hervorgerufen
sein. Das nichtlineare Absorptionsverhalten hat zur Folge, daß die Halbleiterschicht für
die geringen Intensitäten der Infrarot-Strahlung, mit denen der CCD-Matrixdetektor 74
als Haupt-Detektor üblicherweise beaufschlagt ist, eine hohe Transmission aufweist,
hohe Intensitäten, wie sie von einem vom Ziel auf den Flugkörper gerichteten Laser
erzeugt werden, stark absorbiert.The
Die beiden Prismen 76 und 78 sind durch einen Piezosteller 90 gegeneinander senkrecht
zu den Ebenen der beiden Schrägflächen 82 und 84 zwischen einer in Fig.7 dargestellten
ersten Stellung und einer in Fig.8 dargestellten zweiten Stellung bewegbar. Senkrecht zu
der Eintrittsfläche 80 weist das Prisma 76 eine Austrittsfläche 92 auf. Die Ebene der
Austrittsfläche 92 ist senkrecht zu der Ebene der Austrittsfläche 86 des Prismas 78. The two
Gegenüber der Austrittsfläche 92 ist ein zweiter Detektor 94 angeordnet. Der zweite
Detektor 94 spricht auf die hochintensive Strahlung, nämlich den vom Ziel her auf den
Flugkörper gerichteten Laserstrahl, an. Der zweite Detektor 94 ist dabei ein Detektor, der
gegen Strahlung unempfindlicher ist als der Haupt-Detektor 74. Der zweite Detektor 94
soll den Einfall hochintensiver Strahlung erkennen. Er braucht nicht auf die schwache
Eigenstrahlung eines entfernten Zieles anzusprechen wie der Haupt-Detektor. Der zweite
Detektor 94 ist ein Vierquadranten-Detektor.A
Das abbildende optische System 72 bildet in der ersten Stellung der Prismen 76 und 78
(Fig.7) das Gesichtsfeld durch die beiden Prismen 76 und 78 und die Schicht 88 hindurch
scharf auf dem CCD-Matrixdetektor 74 ab. In der zweiten Stellung der Prismen 76 und
78 (Fig.8) ist durch die Piezosteller 90 zwischen der Schrägflächen 82 des Prismas 76
und der auf die Schrägfläche 84 aufgebrachten Halbleiterschicht 88 ein enger Luftspalt 96
gebildet. Die Breite des Luftspaltes 96 kann in der Größenordnungen von Licht-Wellenlängen
liegen. Der Luftspalt 96 führt dazu, daß an der Schrägfläche 82 des
Prismas 76 eine Totalreflexion erfolgt. Das optische System 72 erzeugt ein Bild nicht auf
dem CCD-Matrixdetektor 74 sondern auf dem zweiten Detektor 94. Abgebildet wird
dabei im wesentlichen die Quelle der hochintensiven Strahlung. Diese Abbildung erfolgt
etwas unscharf auf dem als Vierquadranten-Detektor ausgebildeten Detektor 94.The imaging
An den einzelnen Detektor-Elementen des CCD-Matrixdetektors bauen sich während
einer "Integrationszeit" durch das darauf fallende Licht analoge Signale auf, die jeweils
dem Zeitintegral des auf das Detektor-Element fallenden Licht entspricht. Während einer
anschließenden "Auslesezeit" werden die Detektor-Elemente Zeile für Zeile ausgelesen.
Dieser Wechsel von Integrations- und Auslesezeit erfolgt zyklisch. Nutzinformation des
CCD-Matrixdetektors liefert daher nur jeweils das während der Integrationszeit
einfallende Licht. Während der Auslesezeit kann daher das Abbildungs-Lichtbündel von
dem CCD-Matrixdetektor 74 abgelenkt werden, ohne daß dadurch die Empfindlichkeit
des CCD-Matrixdetektors beeinträchtigt wird. The individual detector elements of the CCD matrix detector build during
an "integration time" due to the light falling on analog signals, each
corresponds to the time integral of the light falling on the detector element. During one
After the "readout time", the detector elements are read out line by line.
This change of integration and readout time takes place cyclically. Useful information of
CCD matrix detectors therefore only deliver that during the integration period
incident light. During the readout time, the imaging light beam from
the
Bei der in Fig.7 und 8 dargestellten Anordnung werden die Prismen 76 und 78 während
der Integrationszeit in die in Fig.7 gezeigte erste Stellung und während der Auslesezeit in
die in Fig.8 gezeigte Auslesestellung gebracht. Das Licht beaufschlagt dadurch den CCD-Matrixdetektor
nur während der Integrationszeit. Während der Auslesezeit wird das Licht
durch die Totalreflexion an der Schrägfläche 82 auf den zweiten Detektor 94 geleitet.
Damit wird -ohne Einbuße an Empfindlichkeit bei normalem Betrieb- die auf den CCD-Matrixdetektor
74 fallende Strahlung im Verhältnis von Integrationszeit zu
Gesamttaktzeit (Integrations- plus Auslesezeit) vermindert. Das spielt bei normalem
Betrieb keine Rolle, vermindert aber die Beaufschlagung des CCD-Matrixdetektors 74
bei Einfall hochintensiver Strahlung wie eines vom Ziel ausgesandten Laserstrahls. Bei
einem Dauerstrich-Laser kann dadurch die am CCD-Matrixdetektor 74 wirksame
hochintensive Strahlung auf einen Wert verringert werden, bei welchem weniger die
Gefahr einer Beschädigung oder Zerstörung des CCD-Matrixdetektors 74 besteht.In the arrangement shown in FIGS. 7 and 8, the
Die Umschaltung zwischen der ersten Stellung von Fig.7 und der zweiten Stellung von
Fig.8 kann durch die Piezosteller 90 mit hoher Frequenz erfolgen.Switching between the first position of Fig.7 and the second position of
Fig.8 can be done by the
Die beschriebene Anordnung hat noch einen weiteren Vorteil: Das Licht wird periodisch,
nämlich während der Auslesezeiten, auch auf den zweiten Detektor 94 geleitet. Der
zweite Detektor 94 stellt das Auftreten hochintensiver Strahlung fest. Wenn solche
Strahlung festgestellt wird, können die Prismen 76 und 78 in ihrer zweiten Stellung
gehalten werden. Dann wird der CCD-Matrixdetektor 74 vollständig gegen die
einfallende Strahlung abgeschirmt.The arrangement described has another advantage: the light is periodic,
namely during the readout times, also directed to the
Jetzt wird auf dem als Vierquadranten-Detektor ausgebildeten zweiten Detektor 94 ein
Bild der Lichtquelle der hochintensiven Strahlung erzeugt. Der Vierquadranten-Detektor
liefert jetzt aus dem Laserstrahl Zielablage-Signale, mittels derer der Flugkörper in das
Ziel geführt wird. Der Laserstrahl setzt damit zwar den hochempfindlichen CCD-Matrixdetektor
74 außer Funktion. Dafür liefert er jetzt selbst ein Mittel, um den
Flugkörper in das Ziel zu führen. Now a
Wenn der Laserstrahl wegfällt, dann erfolgt sofort wieder eine Umschaltung auf den
normalen Betrieb: Die Prismen werden in die Stellung von Fig.7 gebracht, und der CCD-Matrixdetektor
74 übernimmt wieder die Beobachtung des Ziels. Das geschieht auch,
wenn der Laserstrahl gepulst wird.If the laser beam is no longer present, the system is immediately switched back to
normal operation: the prisms are brought into the position of Fig. 7, and the
Eine Prismen-Anordnung mit Piezostellern, wie sie in Fig.7 und 8 beschrieben ist, kann auch an Stelle des Spiegels 7 in Fig.6 verwendet werden.A prism arrangement with piezo actuators, as described in FIGS. 7 and 8, can can also be used in place of the mirror 7 in FIG.
Durch die periodische Umschaltung zwischen den Positionen von Fig.7 und Fig.8
während der Integrationszeit und der Auslesezeit des CCD-Matrixdetektors 74 und/oder
die Vorschaltung der Halbleiterschicht 88 mit nichtlinearem Absorptionsverhalten kann
u.U. die hochintensive Strahlung so weit abgeschwächt werden, daß der CCD-Matrixdetektor
74 selbst ohne Umschaltung auf einen Detektor 94 weiterhin die Führung
des Flugkörpers in die Quelle dieser hochintensiven Strahlung übernehmen kann, ohne
dabei selbst geblendet oder beschädigt zu werden.The periodic switching between the positions of Fig. 7 and Fig. 8
during the integration time and the readout time of the
Claims (10)
- Infrared seeker head for target seeking missiles, wherein a field of view is adapted to be imaged by imaging optical means (16; 72) on a main detector (62; 66; 74), the main detector being adapted to detect. targets in the field of view, wherein a second detector (18; 94) is provided responsive to high intensity radiation and wherein the seeker head further comprises means (18, 60, 68, 70, 30, 38) for counteracting the high intensity interference radiation emitted by said target towards said missile and which is activatable by the second detector, characterized in that the second detector (18; 94) is a position sensitive detector which is responsive to the position of a source of said high-intensity radiation, and the function of the second detector is not adversely affected by high intensity radiation.
- Infrared seeker head according to claim 1, characterized in that(a) guidance signals for guiding the missile can be derived from the first and the second detector (14; 18) and(b) a switching means (30) is provided whereby the generation of the guidance signals can be switched from the signals of the first detector (14) to the signals of the second detector (18) if the infrared seeker head is exposed to high-intensity radiation,(c) whereby the missile is then guided towards the source of the high intensity radiation.
- Infrared seeker head according to claim 1 or 2, characterized in that a blocking means (68) in front of the main detector (66) is arranged to be activated by the second detector as a protective measure when it is exposed to high intensity radiation.
- Infrared seeker head as claimed in claim 1, characterized in that(a) the field of view is adapted to be periodically scanned by means of a linear detector array (62) through a movable, optical, deflecting element (60) arranged in the optical path,(b) the moving of the optical deflecting element (60) is stopped in a position, in which the linear detector array (62) is not exposed to the radiation from the imaging optical system as a protective measure by the second detector (18) when it is exposed to high intensive radiation.
- Infrared seeker head according to claim 1, characterized in that a beam deflecting means (70) in front of the main detector (66) is arranged to be activated by the second detector as a protective measure when it is exposed to high intensity radiation.
- Infrared seeker head according to claim 1, characterized in that(a) the main detector (74) is a CCD matrix detector wherein pixel-signals are periodically built up during an integration period and read out during a read-out period,(b) a controlled, optical, beam-deflecting element (76, 78) for deflecting the optical path is arranged in front of the main detector (74), and(c) the optical, beam-deflecting element (76, 78) is adapted to be periodically activated during the read-out period in synchronization with the read-out of the CCD matrix detector.
- Infrared seeker head according to claim 6, characterized in that the beam deflecting element comprises a pair of complementary prisms (76, 78), which are arranged such that an air gap can be generated therebetween by means of a piezoelectric actuator element (90) and where the incident light is reflected in total reflection.
- Infrared seeker head according to any of claims 1 to 7, characterized in that a filter layer (88) is arranged in the imaging optical path in front of the main detector (74), the layer having a transparency decreasing with increasing intensity of the incident radiation.
- Infrared seeker head according to claim 8, characterized in that the filter layer (88) is mounted on inclined surface (84) of the prism (78) on the side of the detector limiting the air gap (96) and being on the side of the incident beam.
- Infrared seeker head according to claim 1, characterized in that the device for counteracting interferences is adapted to be deactivated if the target image on the main detector is substantially larger than the image of the source of the high intensive radiation at small distances between the missile and the target.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19724080A DE19724080A1 (en) | 1997-06-07 | 1997-06-07 | Infrared seeker head for target-seeking missiles |
DE19724080 | 1997-06-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0882941A1 EP0882941A1 (en) | 1998-12-09 |
EP0882941B1 true EP0882941B1 (en) | 2003-12-03 |
Family
ID=7831801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98109319A Expired - Lifetime EP0882941B1 (en) | 1997-06-07 | 1998-05-22 | Infrared seeker head for homing missile |
Country Status (3)
Country | Link |
---|---|
US (1) | US6196497B1 (en) |
EP (1) | EP0882941B1 (en) |
DE (2) | DE19724080A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL140232A (en) * | 2000-12-11 | 2010-04-29 | Rafael Advanced Defense Sys | Method and system for active laser imagery guidance of intercepting missiles |
DE102004029343B4 (en) * | 2004-06-17 | 2009-04-30 | Diehl Bgt Defence Gmbh & Co. Kg | Guidance device for an aircraft |
US8339580B2 (en) * | 2004-06-30 | 2012-12-25 | Lawrence Livermore National Security, Llc | Sensor-guided threat countermeasure system |
FR2882440B1 (en) * | 2005-02-23 | 2007-04-20 | Sagem | DEVICE FOR COUNTERMEASING AND CONTINUING A THREAT IN THE FORM OF A SELF-DIAGRAM MISSILE |
US8639394B2 (en) * | 2008-12-01 | 2014-01-28 | Lockheed Martin Corporation | Dynamic optical countermeasures for ground level threats to an aircraft |
FR2942554B1 (en) * | 2009-02-20 | 2014-08-01 | Sagem Defense Securite | DEVICE AND METHOD FOR GUIDING A MISSILE TO AN ASSOCIATED TARGET, MISSILE AND SELF-DIAGRAM. |
DE102010027189A1 (en) * | 2010-07-15 | 2012-01-19 | Lfk-Lenkflugkörpersysteme Gmbh | Seeker head for a missile |
US9632168B2 (en) | 2012-06-19 | 2017-04-25 | Lockheed Martin Corporation | Visual disruption system, method, and computer program product |
US9714815B2 (en) | 2012-06-19 | 2017-07-25 | Lockheed Martin Corporation | Visual disruption network and system, method, and computer program product thereof |
US8502128B1 (en) * | 2012-09-15 | 2013-08-06 | Raytheon Company | Dual-mode electro-optic sensor and method of using target designation as a guide star for wavefront error estimation |
US9103628B1 (en) | 2013-03-14 | 2015-08-11 | Lockheed Martin Corporation | System, method, and computer program product for hostile fire strike indication |
US9196041B2 (en) | 2013-03-14 | 2015-11-24 | Lockheed Martin Corporation | System, method, and computer program product for indicating hostile fire |
US9146251B2 (en) | 2013-03-14 | 2015-09-29 | Lockheed Martin Corporation | System, method, and computer program product for indicating hostile fire |
DE102015009359A1 (en) * | 2015-07-17 | 2017-01-19 | Diehl Bgt Defence Gmbh & Co. Kg | Method of protecting a vehicle from attack by a laser beam |
DE102015009365B4 (en) * | 2015-07-17 | 2023-07-27 | Diehl Defence Gmbh & Co. Kg | Method of protecting a vehicle from attack by a laser beam |
DE102016121698A1 (en) | 2016-11-11 | 2018-05-17 | Rheinmetall Waffe Munition Gmbh | Method and defense system to combat targets and threats |
DE102018122973A1 (en) * | 2018-09-19 | 2020-03-19 | Rheinmetall Landsysteme Gmbh | Protected gunner optics |
RU2756170C1 (en) * | 2020-11-06 | 2021-09-28 | Акционерное общество Научно-производственное предприятие "Авиационная и Морская Электроника" | Optoelectronic multi-channel homing head |
CN114543599A (en) * | 2020-11-24 | 2022-05-27 | 北京振兴计量测试研究所 | Laser target simulation measuring device and measuring method |
DE102021005406B4 (en) * | 2021-10-30 | 2023-06-22 | Diehl Defence Gmbh & Co. Kg | Optical device for detecting an object scene and seeker |
CN114459298B (en) * | 2022-02-25 | 2024-03-01 | 西安恒宇众科空间技术有限公司 | Miniature missile-borne active laser guide head and guide method thereof |
DE102022000894A1 (en) * | 2022-03-15 | 2023-09-21 | Diehl Defence Gmbh & Co. Kg | Device for optically detecting a target object |
CN117538961B (en) * | 2024-01-09 | 2024-07-09 | 中天引控科技股份有限公司 | Preparation method and device for realizing infrared seeker |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1177641A (en) * | 1961-02-03 | 1970-01-14 | Emi Ltd | Improvements relating to Automatic Tracking Apparatus. |
DE2655306C3 (en) * | 1976-12-07 | 1981-07-09 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Method and device for suppressing interference radiation in a device for the optical guidance of missiles |
FR2740638B1 (en) * | 1986-07-02 | 1998-01-02 | Trt Telecom Radio Electr | PROCESS FOR PREVENTING THE DETECTION AND LURING OF A THERMAL CAMERA BY MEANS EXTERNAL TO THE CAMERA AND DEVICE IMPLEMENTING THIS METHOD |
DE3925942C2 (en) | 1989-08-07 | 1996-07-25 | Bodenseewerk Geraetetech | Gyro stabilized viewfinder |
DE3938705C2 (en) | 1989-08-07 | 1996-09-05 | Bodenseewerk Geraetetech | Gyro stabilized viewfinder |
US5062586A (en) * | 1990-05-17 | 1991-11-05 | Electronics & Space Corporation | Missile tracking, guidance and control apparatus |
FR2751479B1 (en) * | 1990-08-03 | 1998-11-06 | Thomson Csf | METHOD AND SYSTEM FOR PROTECTING OPTRONIC STANDBY OR TRACKING EQUIPMENT WITH REGARD TO ILLUMINATION |
DE4135260C1 (en) | 1991-10-25 | 1993-02-25 | Bodenseewerk Geraetetechnik Gmbh, 7770 Ueberlingen, De | |
DE4244480A1 (en) | 1992-12-30 | 1994-07-07 | Bodenseewerk Geraetetech | Sensor arrangement with cooled sensor |
DE19520318A1 (en) * | 1995-06-02 | 1996-12-05 | Bodenseewerk Geraetetech | Sensor arrangement with a sensor cooled by a Joule-Thomson cooler and electronic components |
-
1997
- 1997-06-07 DE DE19724080A patent/DE19724080A1/en not_active Withdrawn
-
1998
- 1998-05-22 EP EP98109319A patent/EP0882941B1/en not_active Expired - Lifetime
- 1998-05-22 DE DE59810311T patent/DE59810311D1/en not_active Expired - Lifetime
- 1998-06-02 US US09/088,369 patent/US6196497B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59810311D1 (en) | 2004-01-15 |
EP0882941A1 (en) | 1998-12-09 |
DE19724080A1 (en) | 1998-12-10 |
US6196497B1 (en) | 2001-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0882941B1 (en) | Infrared seeker head for homing missile | |
EP0578129B1 (en) | Imaging sensor unit | |
DE3828766C2 (en) | Electro-optical system for the detection of missiles | |
EP2533003B1 (en) | Optical device for guiding radiation of an object scene to a detector | |
EP1308748B1 (en) | Optical sensor with an optical path and a laser transmitting a beam parallel to the optical axis of the optical path | |
DE69109852T2 (en) | ALIGNMENT CONTROL DEVICE AND THEIR USE. | |
DE3329590A1 (en) | Method and device for harmonising a plurality of optical/optoelectronic axes of a sighting unit on a common reference axis | |
DE69803213T2 (en) | INFRA-RED IMAGING SYSTEMS AND OTHER OPTICAL SYSTEMS | |
DE2544975A1 (en) | FIRE CONTROL SYSTEM | |
DE2746076A1 (en) | ROUND VIEW PERISCOPE FOR DAY VIEW AND THERMAL IMAGE | |
DE3005427C2 (en) | All-round tracking system | |
DE4220993A1 (en) | OPTICAL SCAN SYSTEM WITH AUTOMATIC FOCUSING | |
DE1905605A1 (en) | Device for aligning two or more optical axes | |
DE102020003944B3 (en) | Laser beam device with coupling of an illuminating laser beam into an effective laser beam | |
EP2161533A1 (en) | Object measuring system with an image recording system | |
DE2533214A1 (en) | DEVICE FOR DETECTING THE DIRECTION OF INCIDENCE OF ELECTROMAGNETIC RADIATION | |
EP0402601A2 (en) | Optoelectronic viewing assembly | |
DE3428990C2 (en) | ||
EP2954364B1 (en) | Method and device for receiving and processing the optical signals coming from an extended object | |
DE69402849T2 (en) | METHOD FOR MONITORING THE ADJUSTMENT OF A TARGET OR MONITORING SENSOR SERIES | |
DE69111032T2 (en) | Self-calibrating optronic system for infrared observation and a pioneering basket containing such a system. | |
DE69819285T2 (en) | Adaptive focal plane for high contrast imaging | |
DE60030671T2 (en) | Tastjustierung | |
DE102017210683B4 (en) | Optical arrangement of a receiver optics of a scanning lidar system, lidar system and working device | |
DE102021005406B4 (en) | Optical device for detecting an object scene and seeker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19981110 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20020913 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59810311 Country of ref document: DE Date of ref document: 20040115 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040315 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20120522 Year of fee payment: 15 Ref country code: GB Payment date: 20120522 Year of fee payment: 15 Ref country code: FR Payment date: 20120601 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120531 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120725 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130523 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59810311 Country of ref document: DE Effective date: 20131203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130522 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |