EP0882307B1 - Sintering electrode - Google Patents

Sintering electrode Download PDF

Info

Publication number
EP0882307B1
EP0882307B1 EP97951066A EP97951066A EP0882307B1 EP 0882307 B1 EP0882307 B1 EP 0882307B1 EP 97951066 A EP97951066 A EP 97951066A EP 97951066 A EP97951066 A EP 97951066A EP 0882307 B1 EP0882307 B1 EP 0882307B1
Authority
EP
European Patent Office
Prior art keywords
powder
sintered
particle size
sintered electrode
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97951066A
Other languages
German (de)
French (fr)
Other versions
EP0882307A1 (en
Inventor
Dietrich Fromm
Bernhard Altmann
Wolfram Graser
Peter Schade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0882307A1 publication Critical patent/EP0882307A1/en
Application granted granted Critical
Publication of EP0882307B1 publication Critical patent/EP0882307B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12819Group VB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12833Alternative to or next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/1284W-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component

Definitions

  • the invention is based on a sintered electrode according to the preamble of claim 1. It is a sintered electrode for high-pressure discharge lamps such as metal halide lamps or High-pressure sodium discharge lamps.
  • DE-OS 42 06 909 describes a thermionically emitting cathode element known for vacuum electron tubes, which consist of spherical particles 5 to 90% of the total volume is produced with an average grain size of less than 1 ⁇ m the sintered electrode consist of unfilled, to the environment open pores. The distances between neighboring particles (grains) are smaller than 1 ⁇ m.
  • XP002062073 is a thermionically emitting cathode known, which comprises a sintered body with porosity of about 20%
  • the sintered body consists of tungsten powder with a grain size distribution from 2 to 14 ⁇ m.
  • the use of a very narrow grain size distribution is considered proposed a way to achieve controlled porosity.
  • a dispenser cathode which has a sintered body made of porous tungsten, which reaches 83% of theoretical density It is made from tungsten powder, the grains of which have a radius in the area May have 1.5 to 6.1 microns.
  • a sintered electrode is known from US Pat. No. 3,244,929 which, in addition to tungsten Proportions of emitter material such as oxides of aluminum, barium, calcium or Thorium contains The sintered body sits on a solid solid core pin Material.
  • DD-PS 292 764 is a cermet sintered body consisting of a mixture known from tungsten and thorium oxide or alkaline earth oxide, in which the porosity of the sintered body through the defined use of a binder is controlled during production.
  • the particle size of the cermet powder is 80 to 550 ⁇ m.
  • a major problem with known sintered electrodes is that their porosity does not remain constant over the lifespan because of the sintering process the high temperature load during the operation of the electrode progresses. Therefore, such lamps have poor maintenance during the lifespan.
  • sintered electrodes have so far been used for high-pressure lamps cannot prevail across the board. Rather, it was up to now instructed to use spiral electrodes with a core pin made of thoriated tungsten or pin electrodes made of thoriated tungsten. The production So far, each was made of compact solid material.
  • the sintered electrode according to the invention for high-pressure discharge lamps consists of a sintered body made of one of the high-melting metals Tungsten, tantalum, osmium, iridium, molybdenum or rhenium or an alloy of these metals.
  • a metal or alloy known oxidic doping (up to 5% by weight) can be added, for example an oxide of lanthanum or yttrium.
  • the sintered body is made of a metallic powder, essentially spherical or the alloy, the average grain size between 2 and 100 microns, the grain size distribution by a maximum of 20% the mean fluctuates and is between 10 and 40 vol .-% of the total volume the sintered electrode consists of pores open to the environment
  • the pores can be unfilled or contain emitter additives.
  • Emitter additives are oxides of alkaline earth, for example barium, calcium, Strontium and mixtures thereof.
  • Aluminates are also suitable Oxides of hafnium or zirconium or rare earth metals (in particular Sc, Y, La, Ce, Nd, Gd, Dy and Yb).
  • the average grain size of the spherical powder is preferably between 5 and 70 ⁇ m.
  • the grain size distribution fluctuates by a maximum of 10% around the mean.
  • the sintered body is on a in a manner known per se Solid metal core pin attached
  • connection techniques such as No soldering or welding can be.
  • the mechanical connection is only by shrinking or sintering
  • the material of the sintered body and of the core pin is preferably essentially the same, for example pure tungsten.
  • the sintered body can be unfilled or contain emitter additives (e.g. lanthanum oxide). Pure tungsten doped with potassium is also suitable for the core pin or a rhenium-tungsten alloy.
  • the electrode can do without thorium and is then radioactive.
  • the service life of the high-pressure discharge lamps equipped with it is lengthened, the increase in lamp lamp voltage is reduced and the Maintenance of the luminous flux significantly improved
  • the blackening the wall of the discharge vessel is reduced when the lamps are in operation, there is a reduction in the restlessness of the arc and flickering
  • the manufacture of the electrode is considerably simplified Compared to conventional electrodes, the electrode coil can be saved become.
  • the powder is single crystal.
  • Powder in particular be pressed around a core pin.
  • Method step c) can be preferred, for example, in the case of tungsten at temperatures from 2500 to 2800 K. In the event of of an alloy is the lowest with melting temperature melting component meant.
  • Another advantageous process is the metal injection molding process.
  • This Technology is described in more detail in DE-OS 197 49 908. You can in modified form can also be used for the present invention.
  • the course of the procedure can be summarized as follows: A suitable one Metal powder is mixed with so much plastic (the so-called binder) that this starting material, which is in the form of granules, has the flow properties of the plastic and analogous to plastic injection molding can be further machined by placing it in an injection mold with the contour of the desired future component. Then a metallic one To obtain the component, the green body is removed from the injection mold; the binder is then removed by heat or by solvent removed from the so-called green body. This process is called Dewaxing. Then the component is made accordingly classic powder metallurgy sintered to a very high density component.
  • the essentially spherical metal powder is produced in known way, being rounded or almost exactly spherical Particles can arise.
  • One example is the carbonyl process (New Types of Metal Powders, Ed. H. Hausner, Gordon and Breach Science Publishers, New York 1963, published in the series Metallurgical Society Conferences as volume 23). Particularly good results are obtained with single crystal Metal powder achieved.
  • the spherical powder grains of homogeneous size develop during sintering Equilibrium surfaces in the form of polyhedra. For example, it is around [110] or [111] faces. Surprisingly, it turned out that these polyhedron surfaces do not sinter further, so that the porosity of this new sintered body is practically constant over the service life remains. It is a so-called sponge body with an open Porosity.
  • the mode of operation of the sintered body is explained in more detail below using an example in which the sintered body is produced from pure (that is to say ThO 2- free) tungsten.
  • the starting material is spherical W powder with a diameter that is as uniform as possible, i.e. with a narrow distribution width of the grain size.
  • This homogeneity of the powder ultimately results in great stability of the sintered body at high temperatures and leads to correspondingly stable conditions during the life of the lamp.
  • the powder can be pressed directly around a ThO 2 -free core pin. Sintering is then carried out at the relatively low temperature of around 2350 ( ⁇ 100) ° C. This low temperature, which corresponds approximately to 0.7 times the melting temperature of the tungsten, means considerable energy savings compared to the usual sintering temperatures of 2800-3000 ° C for compact tungsten material.
  • the residual porosity of the finished sintered sponge electrode can be targeted can be set via the ball size of the starting material. Preferably are ball sizes from 5 to 70 ⁇ m for the sponge electrode used. A residual porosity of about 15 to 30% by volume can thus be achieved.
  • the discharge starts at a large one Area.
  • the point-like approach known from conventional electrodes who often there at very high temperatures and for hiking of the focal spot is avoided.
  • the temperature distribution on the whole sponge body is largely even.
  • one conventional electrode has a high temperature gradient. It has in particular at the top a typically 500 K higher temperature than in rear part of the electrode.
  • the transition from glow to glow occurs Arc discharge faster when using the sintered electrode than when conventional solid electrode because the heat dissipation from the top the electrode in the direction of crushing due to the small contact area between the sintered grains of the sintered body is greatly reduced.
  • any reflective coating may be present the piston ends are dimensioned smaller or omitted entirely, whereby a higher luminous flux is achieved.
  • the sintered electrode 1 shown in FIG. 1 for a 150 W lamp consists of a cylindrical sintered body 2, in its half facing away from the discharge a solid core pin 5 made of tungsten is pressed axially.
  • the sintered body 2 consists of tungsten, which is made of spherical metal powder with a medium Grain size of 10 microns is made. The grain size distribution fluctuates by 10% around the mean. The residual porosity is approximately 15% by volume.
  • the diameter of the core pin is approximately 0.5 mm, the outer diameter the sintered body is approximately 1.5 mm.
  • FIG. 2 shows an example of a metal halide lamp 9 with a Power of 150 W. It consists of a quartz glass vessel 10, which is a metal halide filling contains. There are external power supplies at both ends 11 and molybdenum foils 12 embedded in bruises 13. On The core pins 5 of the electrodes 1 are fastened to the molybdenum foils 12. Latter protrude into the discharge vessel 10. The two ends of the outlet tion vessel are each with a heat reflective coating 14th made of zirconium oxide.
  • the electrode consists of a sintered body, which is rounded on the discharge side or tapered to a point
  • the sintered body consists of tungsten, while the pressed core pin is made of rhenium, rhenium-plated tungsten or molybdenum.
  • a particularly advantageous method for producing a sintered electrode according to the invention is based on the metal injection molding method known per se. The principle is explained in detail in DE-OS 197 49 908. An overview can be found in the article “Overview of Powder Injection Molding” by PJ Vervoort et al., In: Advanced Performance Materials 3 , pp. 121-151 (1996).
  • the mixture in the Injection mold injected around a core pin and with this during sintering connected.
  • Such electrodes show a much better life behavior.
  • Studies on metal halide lamps with 150 W output show that maintenance of the luminous flux after 1000 hours of use of metal powders with a grain size of 5 or 20 ⁇ m to 95% each of the initial luminous flux.
  • the state of the Technology conventional stick electrode made of doped tungsten material
  • Luminous flux drops to values between 83 and 90% after 1000 hours to observe.

Description

Technisches GebietTechnical field

Die Erfindung geht aus von einer Sinterelektrode gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei um eine Sinterelektrode für Hochdruckentladungslampen wie beispielsweise Metallhalogenidlampen oder Natriumhochdruckentladungslampen.The invention is based on a sintered electrode according to the preamble of claim 1. It is a sintered electrode for high-pressure discharge lamps such as metal halide lamps or High-pressure sodium discharge lamps.

Stand der TechnikState of the art

Aus der DE-OS 42 06 909 ist ein thermionisch emittierendes Kathodenelement für Vakuumelektronenröhren bekannt, das aus sphärischen Partikeln mit einer mittleren Korngröße unter 1 µm hergestellt ist 5 bis 90 % des Gesamtvolumens der Sinterelektrode bestehen aus ungefüllten, zur Umgebung hin offenen Poren. Die Abstände zwischen benachbarten Partikeln (Körnern) sind kleiner als 1 µm.DE-OS 42 06 909 describes a thermionically emitting cathode element known for vacuum electron tubes, which consist of spherical particles 5 to 90% of the total volume is produced with an average grain size of less than 1 µm the sintered electrode consist of unfilled, to the environment open pores. The distances between neighboring particles (grains) are smaller than 1 µm.

Aus IEE Proceedings-1/Solid-state and Electron Devices, Bd. 128, Nr. 1, Februar 1981, Seiten 19-32, XP002062073 ist eine thermionisch emittierende Kathode bekannt, die einen Sinterkörper mit Porosität von etwa 20 % umfasst Der Sinterkörper besteht aus Wolframpulver mit einer Korngrößenverteilung von 2 bis 14 µm. Die Verwendung einer sehrenger Korngrößen verteilung wird als eine Möglichkeit zur Erztelung einer kontrollierten Porosität vorgeschlagen.From IEE Proceedings-1 / Solid-state and Electron Devices, Vol. 128, No. 1, February 1981, pages 19-32, XP002062073 is a thermionically emitting cathode known, which comprises a sintered body with porosity of about 20% The sintered body consists of tungsten powder with a grain size distribution from 2 to 14 µm. The use of a very narrow grain size distribution is considered proposed a way to achieve controlled porosity.

Aus US-A 2 721 372 ist eine Dispenserkathode bekannt, die einen Sinterkörper aus porösem Wolfram umfaßt, der 83% der theoretischen Dichte erreicht Er ist aus Wolframpulver hergestellt, dessen Körner einen Radius im Bereich 1,5 bis 6,1 µm besitzen können.From US-A 2 721 372 a dispenser cathode is known which has a sintered body made of porous tungsten, which reaches 83% of theoretical density It is made from tungsten powder, the grains of which have a radius in the area May have 1.5 to 6.1 microns.

Aus der US-A 3 244 929 ist eine Sinterelektrode bekannt, die neben Wolfram Anteile an Emittermaterial wie Oxide des Aluminium, Barium, Calcium oder Thorium enthält Der Sinterkörper sitzt auf einem festen Kernstift aus massivem Material.A sintered electrode is known from US Pat. No. 3,244,929 which, in addition to tungsten Proportions of emitter material such as oxides of aluminum, barium, calcium or Thorium contains The sintered body sits on a solid solid core pin Material.

Aus der US-A 5 418 070 ist eine Kathode bekannt, die aus einer porösen Wolfram-Matrix besteht, in deren Poren Emittermaterial eingebaut ist Die Poren der gesinterten Matrix werden mit flüssigem Kupfer gefüllt das später wieder herausgelöst wird. Der Nachteil dieser Methode ist, daß die Poren unregelmäßig geformt sind und ihre Eigenschaften undefiniert sind. Die Herstellung ist kompliziert und zeitaufwendig.From US-A 5 418 070 a cathode is known which consists of a porous Tungsten matrix exists, in whose pores emitter material is built Pores of the sintered matrix are filled with liquid Copper filled which will later be removed. The disadvantage This method is that the pores are irregular in shape and their properties are undefined. Manufacturing is complicated and time consuming.

Aus der DD-PS 292 764 ist ein Cermet-Sinterkörper bestehend aus einer Mischung aus Wolfram und Thoriumoxid bzw. Erdalkalioxid bekannt, bei dem die Porosität des Sinterkörpers durch die definierte Verwendung eines Bindemittels bei der Herstellung gesteuert wird. Die Teilchengröße des Cermetpulvers liegt bei 80 bis 550 µm.DD-PS 292 764 is a cermet sintered body consisting of a mixture known from tungsten and thorium oxide or alkaline earth oxide, in which the porosity of the sintered body through the defined use of a binder is controlled during production. The particle size of the cermet powder is 80 to 550 µm.

Ein großes Problem bei bekannten Sinterelektroden ist, daß deren Porosität nicht über die Lebensdauer konstant bleibt, da der Sinterprozeß aufgrund der hohen Temperaturbelastung während des Betriebs der Elektrode weiter voranschreitet. Deshalb haben derartige Lampen eine schlechte Maintenance während der Lebensdauer.A major problem with known sintered electrodes is that their porosity does not remain constant over the lifespan because of the sintering process the high temperature load during the operation of the electrode progresses. Therefore, such lamps have poor maintenance during the lifespan.

Wegen dieses gravierenden Nachteils haben sich für Hochdrucklampen Sinterelektroden bisher nicht auf breiter Front durchsetzen können. Vielmehr war man bisher darauf angewiesen, Wendelelektroden mit einem Kernstift aus thoriertem Wolfram oder Stiftelektroden aus thoriertem Wolfram einzusetzen. Die Herstellung erfolgte bisher jeweils aus kompaktem massivem Material.Because of this serious disadvantage, sintered electrodes have so far been used for high-pressure lamps cannot prevail across the board. Rather, it was up to now instructed to use spiral electrodes with a core pin made of thoriated tungsten or pin electrodes made of thoriated tungsten. The production So far, each was made of compact solid material.

Darstellung der ErfindungPresentation of the invention

Es ist Aufgabe der vorliegenden Erfindung, eine Sinterelektrode gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die auf Thorium verzichtet und die eine längere Lebensdauer erreicht sowie eine geringere Bogenunruhe zeigt It is an object of the present invention to provide a sintered electrode according to the Provide preamble of claim 1 which dispenses with thorium and which achieves a longer lifespan and less bow unrest shows

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.This object is achieved by the characterizing features of claim 1 solved Particularly advantageous configurations can be found in the dependent Claims.

Die erfindungsgemäße Sinterelektrode für Hochdruckentladungslampen besteht aus einem Sinterkörper aus einem der hochschmelzenden Metalle Wolfram, Tantal, Osmium, Iridium, Molybdän oder Rhenium oder einer Legierung dieser Metalle. Zusätzlich kann dem Metall bzw. der Legierung eine an sich bekannte oxidische Dotierung (bis zu 5 Gew.-%) zugesetzt werden, zum Beispiel ein Oxid des Lanthan oder Yttrium.The sintered electrode according to the invention for high-pressure discharge lamps consists of a sintered body made of one of the high-melting metals Tungsten, tantalum, osmium, iridium, molybdenum or rhenium or an alloy of these metals. In addition, a metal or alloy known oxidic doping (up to 5% by weight) can be added, for example an oxide of lanthanum or yttrium.

Der Sinterkörper ist aus einem ein Kurstallinen, im wesentlichen sphärischen, Pulver des Metalls bzw. der Legierung hergestellt, deren mittlere Korngröße zwischen 2 und 100 µm beträgt, wobei die Korngrößenverteilung um maximal 20 % um den Mittelwert schwankt und wobei zwischen 10 und 40 Vol.-% des Gesamtvolumens der Sinterelektrode aus zur Umgebung offenen Poren bestehtThe sintered body is made of a metallic powder, essentially spherical or the alloy, the average grain size between 2 and 100 microns, the grain size distribution by a maximum of 20% the mean fluctuates and is between 10 and 40 vol .-% of the total volume the sintered electrode consists of pores open to the environment

Die Poren können ungefüllt sein oder Emitterzusätze enthalten. Typische Emitterzusätze sind Oxide der Erdalkalien, beispielsweise des Barium, Calcium, Strontium und Mischungen davon. Geeignet sind auch Aluminate sowie Oxide des Hafnium oder Zirkon oder der Seltenerd-Metalle (insbesondere Sc, Y, La, Ce, Nd, Gd, Dy und Yb).The pores can be unfilled or contain emitter additives. typical Emitter additives are oxides of alkaline earth, for example barium, calcium, Strontium and mixtures thereof. Aluminates are also suitable Oxides of hafnium or zirconium or rare earth metals (in particular Sc, Y, La, Ce, Nd, Gd, Dy and Yb).

Die mittlere Komgröße des sphärischen Pulvers beträgt bevorzugt zwischen 5 und 70 µm.The average grain size of the spherical powder is preferably between 5 and 70 µm.

In einer besonders bevorzugten Ausführungsform schwankt die Korngrößenverteilung maximal um 10 % um den Mittelwert.In a particularly preferred embodiment, the grain size distribution fluctuates by a maximum of 10% around the mean.

Insbesondere ist der Sinterkörper in an sich bekannter Weise auf einem Kernstift aus massivem Metall befestigt Ein besonderer Vorteil dabei ist, daß auf Verbindungstechniken wie z.B. Löten oder Schweißen verzichtet werden kann. Die mechanische Verbindung wird lediglich durch Aufschrumpfen bzw. Aufsintern hergestelltIn particular, the sintered body is on a in a manner known per se Solid metal core pin attached A particular advantage is that connection techniques such as No soldering or welding can be. The mechanical connection is only by shrinking or sintering

Bevorzugt ist das Material des Sinterkörpers und des Kernstifts im wesentlichen das gleiche, beispielsweise reines Wolfram. Der Sinterkörper kann dabei ungefüllt sein oder Emitterzusätze (beispielsweise Lanthanoxid) enthalten. Für den Kernstift eignet sich auch reines, mit Kalium dotiertes Wolfram oder eine Rhenium-Wolfram-Legierung.The material of the sintered body and of the core pin is preferably essentially the same, for example pure tungsten. The sintered body can be unfilled or contain emitter additives (e.g. lanthanum oxide). Pure tungsten doped with potassium is also suitable for the core pin or a rhenium-tungsten alloy.

Die Elektrode kann insbesondere auf Thorium verzichten und ist dann radioaktivitätsfrei.In particular, the electrode can do without thorium and is then radioactive.

Die erfindungsgemäße Elektrode hat eine Reihe von Vorteilen:The electrode according to the invention has a number of advantages:

Die Lebensdauer der damit bestückten Hochdruckentladungslampen wird verlängert, der Anstieg der Lampenbrennspannung wird verringert und die Maintenance des Lichtstroms deutlich verbessert Außerdem ist die Schwärzung der Wand des Entladungsgefäßes verringert Des weiteren zeigt sich im Betrieb der Lampen eine Verringerung der Bogenunruhe und des Flickerns. Zudem wird die Herstellung der Elektrode wesentlich vereinfacht Gegenüber konventionellen Elektroden kann die Elektrodenwendel eingespart werden.The service life of the high-pressure discharge lamps equipped with it is lengthened, the increase in lamp lamp voltage is reduced and the Maintenance of the luminous flux significantly improved In addition, the blackening the wall of the discharge vessel is reduced when the lamps are in operation, there is a reduction in the restlessness of the arc and flickering In addition, the manufacture of the electrode is considerably simplified Compared to conventional electrodes, the electrode coil can be saved become.

Ein besonders vorteilhaftes Verfahren zur Herstellung eines Sinterkörpers gemäß Anspruch 1 besteht aus folgenden Verfahrensschritten:

  • a) Bereitstellen eines im wesentlichen sphärischen Metallpulvers aus einem der hochschmelzenden Metalle Wolfram, Tantal, Molybdän, Iridium, Osmium oder Rhenium oder einer Legierung dieser Metalle, wobei das Pulver folgende Eigenschaften besitzt
  • die mittlere Korngröße des Metallpulvers beträgt zwischen 2 und 100 µm;
  • die Korngrößenverteilung schwankt um maximal 20 % (typisch 10 %) um den Mittelwert; die dafür verwendeten sphärischen Partikel des Metallpulvers sind einkristallin;
  • b) Pressen des Pulvers; ein typischer Wert des dabei angewendeten Drucks ist 100 bis 400 MPa;
  • . c) Sintern des Preßlings bei einer Temperatur von etwa dem 0,6 bis 0,8-fachen der Schmelztemperatur des verwendeten Metalls (angegeben in Kelvin).
  • A particularly advantageous method for producing a sintered body according to claim 1 consists of the following method steps:
  • a) Providing an essentially spherical metal powder made of one of the refractory metals tungsten, tantalum, molybdenum, iridium, osmium or rhenium or an alloy of these metals, the powder having the following properties
  • the average grain size of the metal powder is between 2 and 100 µm;
  • the grain size distribution fluctuates by a maximum of 20% (typically 10%) around the mean value; the spherical particles of the metal powder used for this are single-crystalline;
  • b) pressing the powder; a typical value of the pressure used is 100 to 400 MPa;
  • , c) sintering the compact at a temperature of about 0.6 to 0.8 times the melting temperature of the metal used (specified in Kelvin).
  • Das Pulver ist einkristallin. Beim Verfahrensschritt b) kann das Pulver insbesondere um einen Kernstift gepreßt werden.The powder is single crystal. In process step b) Powder in particular be pressed around a core pin.

    Der Verfahrensschritt c) kann beispielsweise im Falle des Wolfram bevorzugt bei Temperaturen von 2500 bis 2800 K durchgeführt werden. Im Falle einer Legierung ist mit Schmelztemperatur diejenige der am niedrigsten schmelzenden Komponente gemeint.Method step c) can be preferred, for example, in the case of tungsten at temperatures from 2500 to 2800 K. In the event of of an alloy is the lowest with melting temperature melting component meant.

    Aufgrund der Kugelform des Metallpulvers ergeben sich beim Füllen der Preßform (Matrize) günstige Fließeigenschaften. Dadurch kann das Pressen vorteilhaft ohne Zugabe eines Binders erfolgen. Dies erspart einen zusätzlichen Verarbeitungsschritt und beugt möglichen Verunreinigungen vor.Due to the spherical shape of the metal powder, the result when filling Mold (die) favorable flow properties. This allows the pressing advantageously done without the addition of a binder. This saves an additional one Processing step and prevents possible contamination.

    Ein anderes vorteilhaftes Verfahren ist das Metallspritzgußverfahren. Diese Technik ist in der Parallelanmeldung DE-OS 197 49 908 näher beschrieben. Sie kann in abgewandelter Form auch für die vorliegende Erfindung verwendet werden. Der Ablauf des Verfahrens läßt sich in Kürze so zusammenfassen: Ein geeignetes Metallpulver wird mit soviel Kunststoff (dem sog. Binder) vermischt, daß dieses Ausgangsmaterial, das als Granulat vorliegt, die Fließeigenschaften des Kunststoffs annimmt und analog zum Kunststoffspritzguß weiter bearbeitet werden kann, indem es in eine Spritzgußform mit der Kontur des gewünschten zukünftigen Bauteils eingebracht wird. Um dann ein metallisches Bauteil zu erhalten, wird der Grünkörper aus der Spritzgußform entnommen; der Binder wird anschließend durch Wärme oder durch Lösungsmittel aus dem sog. Grünkörper entfernt. Dieser Vorgang wird als Entwachsen (dewaxing) bezeichnet. Danach wird das Bauteil entsprechend der klassischen Pulvermetallurgie zu einem Bauteil sehr hoher Dichte gesintert.Another advantageous process is the metal injection molding process. This Technology is described in more detail in DE-OS 197 49 908. You can in modified form can also be used for the present invention. The course of the procedure can be summarized as follows: A suitable one Metal powder is mixed with so much plastic (the so-called binder) that this starting material, which is in the form of granules, has the flow properties of the plastic and analogous to plastic injection molding can be further machined by placing it in an injection mold with the contour of the desired future component. Then a metallic one To obtain the component, the green body is removed from the injection mold; the binder is then removed by heat or by solvent removed from the so-called green body. This process is called Dewaxing. Then the component is made accordingly classic powder metallurgy sintered to a very high density component.

    Die Herstellung des im wesentlichen sphärischen Metallpulvers erfolgt in an sich bekannter Weise, wobei verrundete oder nahezu exakt kugelförmige Partikel entstehen können. Ein Beispiel ist der Carbonyl-Prozeß (New Types of Metal Powders, Ed. H. Hausner, Gordon and Breach Science Publishers, New York 1963, erschienen in der Reihe Metallurgical Society Conferences als Volume 23). Besonders gute Ergebnisse werden mit einkristallinem Metallpulver erzielt.The essentially spherical metal powder is produced in known way, being rounded or almost exactly spherical Particles can arise. One example is the carbonyl process (New Types of Metal Powders, Ed. H. Hausner, Gordon and Breach Science Publishers, New York 1963, published in the series Metallurgical Society Conferences as volume 23). Particularly good results are obtained with single crystal Metal powder achieved.

    Die kugelähnlichen Pulverkörner homogener Größe entwickeln beim Sintern Gleichgewichtsflächen in Gestalt von Polyedern. Beispielsweise handelt es sich um [110] - oder [111]-Flächen. Überraschenderweise hat sich herausgestellt, daß diese Polyederflächen nicht weiter versintern, so daß die Porosität dieses neuartigen Sinterkörpers über die Lebensdauer praktisch konstant bleibt. Es handelt sich dabei um einen sog. Schwammkörper mit offener Porosität.The spherical powder grains of homogeneous size develop during sintering Equilibrium surfaces in the form of polyhedra. For example, it is around [110] or [111] faces. Surprisingly, it turned out that these polyhedron surfaces do not sinter further, so that the porosity of this new sintered body is practically constant over the service life remains. It is a so-called sponge body with an open Porosity.

    Die Wirkungsweise des Sinterkörpers wird im folgenden anhand eines Beispiels näher erläutert, bei dem der Sinterkörper aus reinem (also ThO2freiem) Wolfram hergestellt wird.The mode of operation of the sintered body is explained in more detail below using an example in which the sintered body is produced from pure (that is to say ThO 2- free) tungsten.

    Ausgangsmaterial ist sphärisches W-Pulver mit möglichst einheitlichem Durchmesser, also mit geringer Verteilungsbreite der Korngröße. Diese Homogenität des Pulvers hat letztlich eine große Stabilität des Sinterkörpers bei hohen Temperaturen zur Folge und führt zu entsprechend stabilen Verhältnissen während der Lebensdauer der Lampe. Das Pulver kann insbesondere direkt um einen ThO2-freien Kernstift gepreßt werden. Anschließend wird bei der relativ niedrigen Temperatur von etwa 2350 (± 100) °C gesintert. Diese niedrige Temperatur, die in etwa dem 0,7-fachen der Schmelztemperatur des Wolfram entspricht, bedeutet eine erhebliche Energieersparnis gegenüber den üblichen Sintertemperaturen von 2800-3000 °C für kompaktes Wolfram-Material.The starting material is spherical W powder with a diameter that is as uniform as possible, i.e. with a narrow distribution width of the grain size. This homogeneity of the powder ultimately results in great stability of the sintered body at high temperatures and leads to correspondingly stable conditions during the life of the lamp. In particular, the powder can be pressed directly around a ThO 2 -free core pin. Sintering is then carried out at the relatively low temperature of around 2350 (± 100) ° C. This low temperature, which corresponds approximately to 0.7 times the melting temperature of the tungsten, means considerable energy savings compared to the usual sintering temperatures of 2800-3000 ° C for compact tungsten material.

    Weitere Emitter-Zusätze sind in vielen Anwendungen nicht notwendig, können aber bei Bedarf in die Hohlräume oder Poren eingebracht werden.Further emitter additives are not necessary in many applications, but can be introduced into the cavities or pores if necessary.

    Die Restporosität der fertig gesinterten Schwamm-Elektrode kann gezielt über die Kugelgröße des Ausgangsmaterials eingestellt werden. Vorzugsweise werden bei der Schwamm-Elektrode Kugelgrößen von 5 bis 70 µm verwendet. Damit läßt sich eine Restporosität von etwa 15 bis 30 Vol.-% erzielen.The residual porosity of the finished sintered sponge electrode can be targeted can be set via the ball size of the starting material. Preferably are ball sizes from 5 to 70 µm for the sponge electrode used. A residual porosity of about 15 to 30% by volume can thus be achieved.

    Die besonderen Vorteile der Schwamm-Elektrode in der Lampe werden im folgenden aufgeführt:The special advantages of the sponge electrode in the lamp are in the listed the following:

    Die Entladung setzt bei einer erfindungsgemäßen Elektrode an einer großen Fläche an. Der von herkömmlichen Elektroden bekannte punktförmige Ansatz, der dort häufig zu lokal sehr hohen Temperaturen und zum Wandern des Brennflecks führt, wird vermieden. Die Temperaturverteilung auf dem ganzen Schwammkörper ist weitgehend gleichmäßig. Dagegen weist eine herkömmliche Elektrode einen hohen Temperaturgradienten auf. Sie hat insbesondere an der Spitze eine um typisch 500 K höhere Temperatur als im hinteren Teil der Elektrode.With an electrode according to the invention, the discharge starts at a large one Area. The point-like approach known from conventional electrodes, who often there at very high temperatures and for hiking of the focal spot is avoided. The temperature distribution on the whole sponge body is largely even. On the other hand, one conventional electrode has a high temperature gradient. It has in particular at the top a typically 500 K higher temperature than in rear part of the electrode.

    Nach der Zündung der Lampe erfolgt der Übergang von der Glimm- zur Bogenentladung bei Verwendung der Sinterelektrode schneller als bei der herkömmlichen massiven Elektrode, da die Wärmeableitung von der Spitze der Elektrode in Richtung Quetschung infolge der geringen Kontaktfläche zwischen den versinterten Körnern des Sinterkörpers stark herabgesetzt ist. After the lamp has ignited, the transition from glow to glow occurs Arc discharge faster when using the sintered electrode than when conventional solid electrode because the heat dissipation from the top the electrode in the direction of crushing due to the small contact area between the sintered grains of the sintered body is greatly reduced.

    Bei der Schwamm-Elektrode wird zudem, insbesondere bei senkrechter Betriebslage, ein besseres Aufheizen des quetschungsnahen Bereichs des Entladungsgefäßes erreicht. Die Ursache ist die größere Oberfläche der Elektrode, die mehr Licht abstrahlt. Daher kann eine etwaige Reflexionsbeschichtung an den Kolbenenden kleiner dimensioniert oder ganz weggelassen werden, wodurch ein höherer Lichtstrom erzielt wird.With the sponge electrode, especially in the vertical operating position, better heating of the area of the discharge vessel close to the pinch reached. The cause is the larger surface of the electrode, that emits more light. Therefore, any reflective coating may be present the piston ends are dimensioned smaller or omitted entirely, whereby a higher luminous flux is achieved.

    Figurencharacters

    Im folgenden soll die Erfindung anhand eines Ausführungsbeispiels näher erläutert werden. Es zeigen:

    Figur 1
    eine Sinterelektrode, im Schnitt
    Figur 2
    eine Metallhalogenidlampe mit Sinterelektrode
    In the following, the invention will be explained in more detail using an exemplary embodiment. Show it:
    Figure 1
    a sintered electrode, on average
    Figure 2
    a metal halide lamp with a sintered electrode

    Beschreibung der ZeichnungenDescription of the drawings

    Die in Fig. 1 gezeigte Sinterelektrode 1 für eine 150 W-Lampe besteht aus einem zylindrischen Sinterkörper 2, in dessen entladungsabgewandter Hälfte ein massiver Kernstift 5 aus Wolfram axial eingepreßt ist. Der Sinterkörper 2 besteht aus Wolfram, das aus sphärischem Metallpulver mit einer mittleren Korngröße von 10 µm hergestellt ist. Die Korngrößenverteilung schwankt um 10 % um den Mittelwert. Die Restporosität ist etwa 15 Vol.-%.The sintered electrode 1 shown in FIG. 1 for a 150 W lamp consists of a cylindrical sintered body 2, in its half facing away from the discharge a solid core pin 5 made of tungsten is pressed axially. The sintered body 2 consists of tungsten, which is made of spherical metal powder with a medium Grain size of 10 microns is made. The grain size distribution fluctuates by 10% around the mean. The residual porosity is approximately 15% by volume.

    Der Durchmesser des Kernstifts beträgt etwa 0,5 mm, der Außendurchmesser des Sinterkörpers ist ca. 1,5 mm.The diameter of the core pin is approximately 0.5 mm, the outer diameter the sintered body is approximately 1.5 mm.

    Fig. 2 zeigt als Anwendungsbeispiel eine Metallhalogenidlampe 9 mit einer Leistung von 150 W. Sie besteht aus einem Quarzglasgefäß 10, das eine Metallhalogenidfüllung enthält. An ihren beiden Enden sind äußere Stromzuführungen 11 und Molybdänfolien 12 in Quetschungen 13 eingebettet. An den Molybdänfolien 12 sind die Kernstifte 5 der Elektroden 1 befestigt. Letztere ragen in das Entladungsgefäß 10 hineim. Die beiden Enden des Entläß dungsgefäßes sind jeweils mit einer wärmereflektierenden Beschichtung 14 aus Zirkonoxid versehen.2 shows an example of a metal halide lamp 9 with a Power of 150 W. It consists of a quartz glass vessel 10, which is a metal halide filling contains. There are external power supplies at both ends 11 and molybdenum foils 12 embedded in bruises 13. On The core pins 5 of the electrodes 1 are fastened to the molybdenum foils 12. Latter protrude into the discharge vessel 10. The two ends of the outlet tion vessel are each with a heat reflective coating 14th made of zirconium oxide.

    In einem anderen Ausführungsbeispiel besteht die Elektrode aus einem Sinterkörper, der entladungsseitig abgerundet ist oder spitz zuläuft Der Sinterkörper besteht aus Wolfram, während der eingepreßte Kernstift aus Rhenium, rheniumplattiertem Wolfram oder Molybdän besteht.In another embodiment, the electrode consists of a sintered body, which is rounded on the discharge side or tapered to a point The sintered body consists of tungsten, while the pressed core pin is made of rhenium, rhenium-plated tungsten or molybdenum.

    Ein besonders vorteilhaftes Verfahren zur Herstellung einer erfindungsgemäßen Sinterelektrode beruht auf dem an sich bekannten Metallspritzgußverfahren. Das Prinzip ist in der Parallelanmeldung DE-OS 197 49 908 ausführlich erläutert. Einen Überblick findet man in dem Artikel "Overview of Powder Injection Molding" von P.J. Vervoort et al., in: Advanced Performance Materials 3, S. 121-151 (1996).A particularly advantageous method for producing a sintered electrode according to the invention is based on the metal injection molding method known per se. The principle is explained in detail in DE-OS 197 49 908. An overview can be found in the article "Overview of Powder Injection Molding" by PJ Vervoort et al., In: Advanced Performance Materials 3 , pp. 121-151 (1996).

    Für die erfindungsgemäße Sinterelektrode werden im einzelnen die folgenden Verfahrensschritte verwendet:

    • Bereitstellen eines im wesentlichen sphärischen, einkristallinen, Metallpulvers aus hochschmelzendem Metall wie Wolfram, Tantal, Molybdän, Osmium, Iridium oder Rhenium oder einer Legierung dieser Metalle, wobei das Pulver folgende Eigenschaften besitzt:
    • die mittlere Korngröße des Metallpulvers beträgt zwischen 2 und 100 µm;
    • die Korngrößenverteilung schwankt um maximal 20 % um den Mittelwert;
    • Herstellen einer Mischung (sog. "feedstock") aus Pulver und Binder (oft auch als "Wachs" bezeichnet) und evtl. Polymer;
    • Spritzen der Mischung in eine Spritzgußform;
    • chemisches und thermisches Entfernen des Binders ("Entwachsen", sog. "dewaxing")
    • Sintern bei einer Temperatur von etwa.dem 0,6 bis 0,8-fachen der Schmelztemperatur des verwendeten Metalls.
    The following process steps are used in detail for the sintered electrode according to the invention:
    • Provision of an essentially spherical, single-crystalline, metal powder made of refractory metal such as tungsten, tantalum, molybdenum, osmium, iridium or rhenium or an alloy of these metals, the powder having the following properties:
    • the average grain size of the metal powder is between 2 and 100 µm;
    • the grain size distribution fluctuates by a maximum of 20% around the mean;
    • Producing a mixture (so-called "feedstock") from powder and binder (often also referred to as "wax") and possibly polymer;
    • Injecting the mixture into an injection mold;
    • chemical and thermal removal of the binder ("dewaxing")
    • Sintering at a temperature of about 0.6 to 0.8 times the melting temperature of the metal used.

    In einer besonders bevorzugten Ausführungsform wird die Mischung in der Spritzgußform um einen Kernstift gespritzt und mit diesem beim Sintern verbunden.In a particularly preferred embodiment, the mixture in the Injection mold injected around a core pin and with this during sintering connected.

    Derartige Elektroden zeigen ein wesentlich besserer Lebensdauerverhalten. Untersuchungen an Metallhalogenidlampen mit 150 W Leistung zeigen, daß sich die Maintenance des Lichtstroms nach 1000 Stunden bei Verwendung von Metallpulvem mit einer Korngröße von 5 bzw. 20 µm auf jeweils 95% des anfänglichen Lichtstroms beläuft. Im Vergleich dazu ist beim Stand der Technik (konventionelle Stabelektrode aus dotiertem Wolframmaterial) ein Abfall des Lichtstroms nach 1000 Stunden auf Werte zwischen 83 und 90% zu beobachten.Such electrodes show a much better life behavior. Studies on metal halide lamps with 150 W output show that maintenance of the luminous flux after 1000 hours of use of metal powders with a grain size of 5 or 20 µm to 95% each of the initial luminous flux. In comparison, the state of the Technology (conventional stick electrode made of doped tungsten material) Luminous flux drops to values between 83 and 90% after 1000 hours to observe.

    Claims (12)

    1. Sintered electrode (1) for high-pressure discharge lamps, which comprises a sintered body (2), where the sintered body (2) has a cylindrical external contour and has been produced from an essentially spherical powder of one of the high-melting metals tungsten, tantalum, osmium, iridium, molybdenum or rhenium or an alloy of these metals, where the mean particle size of the powder is from 2 to 100 µm, and from 10 to 40% by volume of the total volume of the sintered electrode consists of pores which are open to the surroundings, characterized in that the sintered body (2) is made up homogeneously of single-crystalline powder and the particle size distribution of the powder covers a range from at most 20% below to at most 20% above the mean.
    2. Sintered electrode according to Claim 1, characterized in that the pores are unfilled or contain emitter additives.
    3. Sintered electrode according to Claim 1, characterized in that the mean particle size is from 5 to 70 µm.
    4. Sintered electrode according to any of the preceding claims, characterized in that the particle size distribution covers a range from at most 10% below to at most 10% above the mean.
    5. Sintered electrode according to Claim 1, characterized in that the sintered body (2) is fixed on a core pin (5) of solid metal.
    6. Sintered electrode according to Claim 5, characterized in that the material of the sintered body (2) and the core pin (5) is the same.
    7. Sintered electrode according to Claim 1, characterized in that the metal contains up to 5% by weight of dopants.
    8. Process for producing a sintered electrode according to Claim 1, comprising the following process steps:
      provision of an essentially spherical, monocrystalline, metal powder of one of the high-melting metals tungsten, tantalum, molybdenum, osmium, iridium or rhenium or an alloy of these metals, where the powder has the following properties:
      the mean particle size of the metal powder is from 2 to 100 µm;
      the particle size distribution covers a range from at most 20% below to at most 20% above the mean;
      pressing the powder;
      sintering at a temperature of 0.6 to 0.8 times the melting point of the metal used.
    9. Process according to Claim 8, characterized in that the powder is pressed around a core pin (5) and is joined to the latter during sintering.
    10. Process according to Claim 8, characterized in that pressing is carried out without addition of a binder.
    11. Process for producing a sintered electrode according to Claim 1, comprising the following process steps:
      provision of an essentially spherical, monocrystalline, metal powder of one of the high-melting metals tungsten, tantalum, molybdenum, osmium, iridium or rhenium or an alloy of these metals, where the powder has the following properties:
      the mean particle size of the metal powder is from 2 to 100 µm;
      the particle size distribution covers a range from at most 20% below to at most 20% above the mean;
      preparation of a mixture, often referred to as feedstock, of powder and binder, often also referred to as wax;
      injection of the feedstock into an injection moulding tool;
      chemical and thermal removal of the binder;
      sintering at a temperature of from 0.6 to 0.8 times the melting point of the metal used.
    12. Process according to Claim 11, characterized in that the mixture is injected around a core pin in the injection moulding tool and is joined to this core pin during sintering.
    EP97951066A 1996-12-18 1997-11-11 Sintering electrode Expired - Lifetime EP0882307B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19652822 1996-12-18
    DE19652822A DE19652822A1 (en) 1996-12-18 1996-12-18 Sintered electrode
    PCT/DE1997/002640 WO1998027575A1 (en) 1996-12-18 1997-11-11 Sintering electrode

    Publications (2)

    Publication Number Publication Date
    EP0882307A1 EP0882307A1 (en) 1998-12-09
    EP0882307B1 true EP0882307B1 (en) 2004-01-28

    Family

    ID=7815235

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97951066A Expired - Lifetime EP0882307B1 (en) 1996-12-18 1997-11-11 Sintering electrode

    Country Status (9)

    Country Link
    US (1) US6218025B1 (en)
    EP (1) EP0882307B1 (en)
    JP (1) JP2000505939A (en)
    KR (1) KR19990082364A (en)
    CN (1) CN1123053C (en)
    CA (1) CA2246517C (en)
    DE (2) DE19652822A1 (en)
    HU (1) HU223302B1 (en)
    WO (1) WO1998027575A1 (en)

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6705914B2 (en) * 2000-04-18 2004-03-16 Matsushita Electric Industrial Co., Ltd. Method of forming spherical electrode surface for high intensity discharge lamp
    DE10307716B4 (en) * 2002-03-12 2021-11-18 Taniobis Gmbh Valve metal powders and processes for their manufacture
    EP1649492A2 (en) * 2003-05-26 2006-04-26 Philips Intellectual Property & Standards GmbH Thorium-free electrode with improved color stability
    JP2008519394A (en) * 2004-11-02 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Discharge lamp, electrode, and method of manufacturing electrode part of discharge lamp
    EP1815497A2 (en) * 2004-11-02 2007-08-08 Koninklijke Philips Electronics N.V. Discharge lamp with a shaped refractory electrode, and method of manufacturing a shaped component for a discharge lamp
    US7825603B2 (en) * 2005-01-03 2010-11-02 Koninklijke Philips Electronics N.V. Lighting assembly and method of operating a discharge lamp
    JP4454527B2 (en) * 2005-03-31 2010-04-21 日本碍子株式会社 Arc tube and high pressure discharge lamp
    JP2006283077A (en) * 2005-03-31 2006-10-19 Ngk Insulators Ltd Compound object
    JP4614908B2 (en) * 2005-05-11 2011-01-19 日立粉末冶金株式会社 Cold cathode fluorescent lamp electrode
    DE102005035190A1 (en) * 2005-07-27 2007-02-01 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH retaining bar
    JP2007095665A (en) 2005-09-02 2007-04-12 Sony Corp Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods
    US7652415B2 (en) * 2005-10-20 2010-01-26 General Electric Company Electrode materials for electric lamps and methods of manufacture thereof
    KR100682313B1 (en) * 2005-12-13 2007-02-15 안의현 Electrode of cold cathode fluorescent lamp and method for thereof
    JP5100632B2 (en) * 2006-03-16 2012-12-19 株式会社東芝 Sintered electrode for cold cathode tube, cold cathode tube and liquid crystal display device using the same
    US20070236125A1 (en) * 2006-04-07 2007-10-11 Federal-Mogul World Wide, Inc. Spark plug
    DE102007013990A1 (en) * 2007-03-23 2008-09-25 Osram Gesellschaft mit beschränkter Haftung Material for electrodes or filament and electrode or filament
    WO2010001316A1 (en) * 2008-07-04 2010-01-07 Philips Intellectual Property & Standards Gmbh Mercury-free and zinc-free high intensity gas-discharge lamp
    JP5224281B2 (en) * 2008-09-16 2013-07-03 独立行政法人物質・材料研究機構 Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
    DE102009005446A1 (en) 2009-01-21 2010-07-22 Schott Ag Granules, process for its preparation and its use
    WO2011018741A2 (en) * 2009-08-13 2011-02-17 Koninklijke Philips Electronics N.V. Mercury-free high intensity gas-discharge lamp
    DE102009055123A1 (en) 2009-12-22 2011-06-30 Osram Gesellschaft mit beschränkter Haftung, 81543 Ceramic electrode for a high-pressure discharge lamp
    CN101831568A (en) * 2010-05-21 2010-09-15 西北有色金属研究院 Method for preparing superhigh temperature resistant iridium alloy by using powder metallurgy method
    CN102366837A (en) * 2011-08-10 2012-03-07 厦门虹鹭钨钼工业有限公司 Method for manufacturing thorium tungsten-tungsten composite electrode used for high pressure gas discharge lamp
    WO2014021154A1 (en) * 2012-07-31 2014-02-06 東芝マテリアル株式会社 Negative electrode for discharge lamp and method for manufacturing same
    US20140041589A1 (en) * 2012-08-07 2014-02-13 Veeco Instruments Inc. Heating element for a planar heater of a mocvd reactor
    AT16085U1 (en) * 2017-09-22 2019-01-15 Plansee Se cathode

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2700000A (en) * 1952-02-27 1955-01-18 Philips Corp Thermionic cathode and method of manufacturing same
    US2721372A (en) * 1951-06-30 1955-10-25 Philips Corp Incandescible cathodes
    US5418070A (en) * 1988-04-28 1995-05-23 Varian Associates, Inc. Tri-layer impregnated cathode

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE292764C (en)
    GB816135A (en) 1955-01-28 1959-07-08 Ass Elect Ind Workable alloys of molybdenum and tungsten containing rhenium
    GB639797A (en) * 1947-08-14 1950-07-05 Gen Electric Co Ltd Improvements in and relating to oxide-coated electrodes for electric discharge lamps
    NL272981A (en) 1961-01-02
    GB977545A (en) * 1961-12-09 1964-12-09 Hitachi Ltd Improvements relating to the production of hollow cathodes
    AU527753B2 (en) * 1978-09-07 1983-03-24 Tokyo Shibaura Denki Kabushiki Kaisha Discharge lamp electrode
    US4303848A (en) * 1979-08-29 1981-12-01 Toshiba Corporation Discharge lamp and method of making same
    US4415835A (en) * 1981-06-22 1983-11-15 General Electric Company Electron emissive coatings for electric discharge devices
    US4830822A (en) * 1985-08-26 1989-05-16 Gte Products Corporation Variable density article and method for producing same
    NL8700935A (en) * 1987-04-21 1988-11-16 Philips Nv IMPREGNATED CATHODES WITH A CHECKED POROSITY.
    DE4206909A1 (en) 1992-03-05 1993-09-09 Philips Patentverwaltung THERMIONIC EMITTING CATHODE ELEMENT
    GB9413973D0 (en) * 1994-07-11 1994-08-31 Rank Brimar Ltd Electrode structure
    JPH09231946A (en) * 1996-02-23 1997-09-05 Ushio Inc Short arc electric discharge lamp

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2721372A (en) * 1951-06-30 1955-10-25 Philips Corp Incandescible cathodes
    US2700000A (en) * 1952-02-27 1955-01-18 Philips Corp Thermionic cathode and method of manufacturing same
    US5418070A (en) * 1988-04-28 1995-05-23 Varian Associates, Inc. Tri-layer impregnated cathode

    Also Published As

    Publication number Publication date
    CA2246517C (en) 2005-08-09
    HUP9901361A3 (en) 2000-04-28
    CN1211341A (en) 1999-03-17
    HU223302B1 (en) 2004-05-28
    CA2246517A1 (en) 1998-06-25
    WO1998027575A1 (en) 1998-06-25
    KR19990082364A (en) 1999-11-25
    HUP9901361A2 (en) 1999-08-30
    US6218025B1 (en) 2001-04-17
    CN1123053C (en) 2003-10-01
    DE59711260D1 (en) 2004-03-04
    DE19652822A1 (en) 1998-06-25
    EP0882307A1 (en) 1998-12-09
    JP2000505939A (en) 2000-05-16

    Similar Documents

    Publication Publication Date Title
    EP0882307B1 (en) Sintering electrode
    DE19749908A1 (en) Electrode component for discharge lamps
    EP1481418B1 (en) Short arc high-pressure discharge lamp-
    EP0652586B1 (en) Metal-halide discharge lamp with a ceramic discharge tube and method of making the same
    US4923673A (en) Method for producing alloyed tungsten rods
    DE2245717A1 (en) ELECTRODE WITH A POROUS SINTER BODY
    EP2020018B1 (en) High-pressure discharge lamp
    EP0585797B1 (en) High-pressure discharge lamp
    DE69731374T2 (en) LOW PRESSURE DISCHARGE LAMP
    EP0713738A1 (en) Sintered article from high melting metal powder with dopants
    DE69921901T2 (en) Cermet and ceramic discharge lamp
    DE3002033A1 (en) SINTER ELECTRODE FOR DISCHARGE TUBES
    WO2010069678A2 (en) Ceramic discharge vessel for a high-pressure discharge lamp
    DE2655726C2 (en)
    EP0383108B1 (en) High-pressure discharge lamp for operation with an alternating current
    DE19616408A1 (en) Electrode for discharge lamps
    DE2519014C3 (en) Process for the production of electrodes for high pressure discharge lamps
    DE60112851T2 (en) Assembled parts and high pressure discharge lamps
    DE3519163A1 (en) ELECTRODE MATERIAL FOR A SPARK RANGE
    EP0559283B1 (en) Cathode with porous cathode element
    DE2935447C2 (en) Directly heated sintered electrode
    DE3807324A1 (en) Incandescent-cathode material for a replenishment reaction cathode for electron tubes, and method for preparing said material
    DE3708687A1 (en) STOCK CATHODE AND METHOD FOR THE PRODUCTION THEREOF
    DE10218827A1 (en) Low-pressure discharge lamp with switch-off device at the end of its service life
    DE19643157C1 (en) Production of chromium material used for part of fuel cell

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980805

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20010622

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR GB IT NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20040128

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040128

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040128

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59711260

    Country of ref document: DE

    Date of ref document: 20040304

    Kind code of ref document: P

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040128

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041029

    EN Fr: translation not filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20051109

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20051118

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070601

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070601

    BERE Be: lapsed

    Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

    Effective date: 20061130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090119

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100601