EP0881035B1 - Method for material removing machining of a wafer edge - Google Patents

Method for material removing machining of a wafer edge Download PDF

Info

Publication number
EP0881035B1
EP0881035B1 EP97115333A EP97115333A EP0881035B1 EP 0881035 B1 EP0881035 B1 EP 0881035B1 EP 97115333 A EP97115333 A EP 97115333A EP 97115333 A EP97115333 A EP 97115333A EP 0881035 B1 EP0881035 B1 EP 0881035B1
Authority
EP
European Patent Office
Prior art keywords
semiconductor wafer
machining
edge
tools
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97115333A
Other languages
German (de)
French (fr)
Other versions
EP0881035A1 (en
Inventor
Alexander Rieger
Simon Ehrenschwendtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Wacker Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Siltronic AG filed Critical Wacker Siltronic AG
Publication of EP0881035A1 publication Critical patent/EP0881035A1/en
Application granted granted Critical
Publication of EP0881035B1 publication Critical patent/EP0881035B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0076Other grinding machines or devices grinding machines comprising two or more grinding tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/04Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/02Lapping machines or devices; Accessories designed for working surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Definitions

  • the invention relates to a method for material-removing processing of the edge of a semiconductor wafer for the purpose of creating a smooth edge surface with a specific profile.
  • the untreated edge of a semiconductor wafer separated from a single crystal has a comparatively rough and non-uniform surface. It breaks out frequently under mechanical stress and is a source of disruptive particles. It is therefore common to smooth the edge and give it a certain profile. This is done by machining the edge with a suitable processing tool.
  • DE-195 35 616 A1 describes a grinding device with which such processing can be carried out.
  • the semiconductor wafer is fixed on a rotating table during processing and is fed with the edge against the likewise rotating work surface of a processing tool.
  • An advantage of this device is that it is suitable for being able to process the edge of the semiconductor wafer step by step with various processing tools.
  • the aim of the present invention is to remove material from the edge of a material Semiconductor wafer to make it even more effective.
  • this goal is achieved by a process for the removal of material Edge of a semiconductor wafer, the semiconductor wafer on a rotatable Table rests, is rotated about a central axis and with a plurality of rotating Editing tools is edited, and each of the editing tools one remove a certain amount of material from the edge of the semiconductor wafer, the machining tools in the course of a 360 ° rotation the semiconductor wafer are successively fed against the edge of the semiconductor wafer and finally process the edge of the semiconductor wafer simultaneously, using a processing tool, that is being delivered, a smaller amount from the edge of the wafer to remove, as a previously delivered machining tool, and being the machining the edge of the semiconductor wafer with a processing tool at the earliest will, after the semiconductor wafer, from the infeed of this machining tool counted, turned 360 °, characterized in that adjacent editing tools with be rotated in opposite directions and the edge of the semiconductor wafer during processing at least one point with a liquid detergent, which if necessary is exposed to ultrasound or mega
  • the process saves an enormous amount of time because the edge is processed with different types Machining tools sometimes done simultaneously and after less than two revolutions of the semiconductor wafer can already be completed. It can two or more, preferably 2 to 5 different processing tools be used.
  • the processing tools used in the process are preferably disks formed, which are attached to a spindle and have peripheral surfaces that as Work surfaces serve to process the edge of the semiconductor wafer.
  • the peripheral surfaces to the spindle axis be curved and form recesses corresponding to the desired edge profile.
  • several slices can lie on top of each other in a stack, with one stack the same or different types of processing tools can be combined.
  • Preferred processing tools are grinding tools, polishing tools and tools for ductile grinding.
  • the material-removing abrasive grain of grinding tools is usually firmly anchored in the working surface of the grinding tool.
  • Other polishing tools cause material removal on chemical-mechanical Way, optionally with a polishing agent to the work surface of the Polishing tool must be fed.
  • the material to be processed can be ductile (without Crack formation). With this ductile grinding particularly smooth surfaces can be created (M.Kerstan et al. in: Proc. American Soc. for Precision Engineering, Cincinatti 1994).
  • the amount of material removed by a machining tool when machining the edge of a semiconductor wafer is usually caused by specifying the thickness of the removed material layer expressed.
  • Two editing tools are different in the sense of the invention (similar) considered if they are different under the same conditions cause (same) material removal.
  • At Grinding tools determine the size of the abrasive grain used decisive is the material removal that the grinding tool should cause.
  • the material removal with a grinding tool usually larger be as the material removal that with a polishing tool or with a tool for ductile grinding becomes.
  • a semiconductor wafer is used to carry out the method fixed on a rotating table, a so-called chuck.
  • the edge of the semiconductor wafer protrudes over the edge of the Table out so that it is easily accessible for machining tools is. It is preferred that the table be the wafer holds and movable in a horizontal plane is stored so that the semiconductor wafer if necessary can be transported to the processing tools.
  • An indispensable feature of the invention is that two or several different processing tools are used and these during one turn of the semiconductor wafer are successively fed to the edge.
  • the order of delivery depends on the amount of material removed using a processing tool is intended to achieve. First the processing tool is delivered, that should cause the highest material removal. The infeed is then done with the processing tool continued, which cause the next lower material removal should, and so on.
  • the method could be used to deal with two Grinding tools a rough and a fine grinding of the edge of a semiconductor wafer to be carried out at the same time at least temporarily.
  • the edge could also be processed using which are used in the appropriate order in one operation ground and polished, or ground and ductile ground.
  • the edge has a liquid cleaning agent at at least one point, which may be subjected to ultrasound or megasound.
  • the supply of cleaning agent is preferably at a point on the edge that is already was processed by a grinding tool and shortly before processing by a polishing tool or a tool for ductile grinding.
  • All processing tools used are fed in during a 360 ° rotation of the semiconductor wafer.
  • All processing tools have been delivered, they process the edge of the semiconductor wafer at the same time.
  • the processing of the edge of the semiconductor wafer with a specific processing tool is ended at the earliest after the semiconductor wafer has rotated through 360 ° from the infeed of this processing tool.
  • the smoothing angle ⁇ need only be a few degrees. This ensures that a step that may have formed on the surface of the edge when the machining tool is engaged is removed.
  • the end of the processing of the edge of the semiconductor wafer with a processing tool is brought about by withdrawing this processing tool from the edge.
  • the processing tools can be withdrawn at the same time or in the order in which the processing tools were delivered against the edge.
  • the sequence of the method is shown below using a figure using the example of the use of three different processing tools explained in more detail.
  • the figure shows schematically the top view of a semiconductor wafer and the three various editing tools with which the edge the semiconductor wafer is processed. They are just such Features shown for understanding the invention contribute.
  • the semiconductor wafer is transported along a y-axis to a processing position.
  • a table on which the semiconductor wafer 4 is fixed rotates it around a central axis M at a specific feed rate.
  • the processing of the edge 5 of the semiconductor wafer 4 begins with the infeed of a first processing tool 1 along a y 1 axis.
  • the machining tool 1 rotating about an axis N engages with its working surface 6 in a contact zone I in the edge 5 of the semiconductor wafer 4.
  • a second machining tool 2 which rotates about an axis O, is delivered as the next machining tool along a y 2 axis. With its working surface 7, it takes up the processing of the edge 5 in a contact zone II.
  • the semiconductor wafer rotates by the feed angle ⁇ 1.
  • This marks the position of the contact zone II and has the value ⁇ 1 90 ° in the example shown.
  • a third machining tool 3 which rotates about an axis P, is finally delivered along a y 3 axis.
  • a device 8 for supplying a cleaning agent R, for example a megasonic nozzle, is located between the processing tool 2 and the processing tool 3.
  • the machining tool 3 takes up the machining of the edge 5 in a contact zone III with its working surface 9.
  • the semiconductor wafer rotates by the feed angle ⁇ 1 + ⁇ 2 .
  • This marks the position of contact zone III and has the value in the example shown ⁇ 1 + ⁇ 2nd 180 ° .
  • each additional processing tool n (not shown in the figure) would be fed along a y n axis and the processing of the edge would start in a contact zone X n .
  • the location of the contact zone X n would again result from the feed angle by which the semiconductor wafer rotates between the infeed of the first and the infeed of the nth machining tool.
  • the processing tool 3 is withdrawn along the y 3 axis from the edge 5 of the semiconductor wafer after the semiconductor wafer has made a rotation of 360 ° and the smoothing angle ⁇ since the delivery of this processing tool. If the processing tools 1 and 2 have not yet been withdrawn from the edge by this time, they are withdrawn along the y 1 and y 2 axes simultaneously with the withdrawal of the treatment tool 3. Then the table on which the semiconductor wafer is placed lies, moved along the y-axis into an unloading position, and the semiconductor wafer 4 is replaced by another with a not yet machined edge for a new machining cycle.
  • the diameter of the machining tools also plays an important role in minimizing the duration of machining the edge of a semiconductor wafer.
  • the semiconductor wafer rotates through a certain total feed angle during the processing of the edge. The smaller this total feed angle, the shorter the processing time.
  • the preferred total feed angle is made up of a feed angle by which the semiconductor wafer rotates (counting from the infeed of the processing tool delivered first) until all processing tools have been delivered and the previously mentioned feed angle of 360 ° + ⁇ , around which the semiconductor wafer then turns until the end of processing.
  • the value of the feed angle mentioned first depends on the distances between the machining tools and thus also on the diameter of the machining tools.
  • the distance between adjacent processing tools can be specified by an offset angle.
  • the offset angle between the machining tool 1 and the machining tool 2 corresponds to the feed angle ⁇ 1 and is 90 °.
  • the offset angle between the machining tool 2 and the machining tool 3 corresponds to ⁇ 2 and also has the value of 90 °.
  • the semiconductor wafer has rotated by a feed angle of 180 °.
  • the processing of the semiconductor wafer would accordingly take a total of the time required for the rotation of the semiconductor wafer by an overall feed angle of 180 ° + 360 ° + ⁇ corresponds. Small offset angles are possible when using machining tools with smaller diameters.
  • the diameters of the machining tools 1 to 3 and the offset angles between them could be selected such that these tools can be advanced by a feed angle of 90 ° while the semiconductor wafer is rotating. Then the processing of the semiconductor wafer would only take the time that a rotation of the semiconductor wafer by a total feed angle of 90 ° + 360 ° + ⁇ corresponds. It is therefore preferred to use machining tools with small diameters, if possible, and to keep the offset angles between the machining tools as small as possible. However, it should also be borne in mind that machining tools with relatively small diameters also have smaller work surfaces and therefore wear out earlier.

Description

Gegenstand der Erfindung ist ein Verfahren zur materialabtragenden Bearbeitung der Kante einer Halbleiterscheibe zum Zweck der Schaffung einer glatten und ein bestimmtes Profil aufweisenden Kantenoberfläche.
Die unbehandelte Kante einer von einem Einkristall abgetrennten Halbleiterscheibe hat eine vergleichsweise rauhe und uneinheitliche Oberfläche. Sie bricht bei mechanischer Belastung häufig aus und ist eine Quelle störender Partikel. Es ist daher üblich, die Kante zu glätten und ihr ein bestimmtes Profil zu geben. Dies geschieht durch eine materialabtragende Bearbeitung der Kante mit einem geeigneten Bearbeitungswerkzeug. In der DE-195 35 616 A1 ist eine Schleifvorrichtung beschrieben, mit der eine solche Bearbeitung vorgenommen werden kann. Die Halbleiterscheibe ist während der Bearbeitung auf einem sich drehenden Tisch fixiert und wird mit der Kante gegen die sich ebenfalls drehende Arbeitsfläche eines Bearbeitungswerkzeugs zugestellt. Ein Vorteil dieser Vorrichtung besteht darin, daß sie geeignet ist, die Kante der Halbleiterscheibe schrittweise mit verschiedenartigen Bearbeitungswerkzeugen bearbeiten zu können.
The invention relates to a method for material-removing processing of the edge of a semiconductor wafer for the purpose of creating a smooth edge surface with a specific profile.
The untreated edge of a semiconductor wafer separated from a single crystal has a comparatively rough and non-uniform surface. It breaks out frequently under mechanical stress and is a source of disruptive particles. It is therefore common to smooth the edge and give it a certain profile. This is done by machining the edge with a suitable processing tool. DE-195 35 616 A1 describes a grinding device with which such processing can be carried out. The semiconductor wafer is fixed on a rotating table during processing and is fed with the edge against the likewise rotating work surface of a processing tool. An advantage of this device is that it is suitable for being able to process the edge of the semiconductor wafer step by step with various processing tools.

In den Patent Abstracts Of Japan vol. 009, no. 252 (M-420), veröffentlicht am 10.6.85, ist eine Vorrichtung zum Schleifen und Anfasen der Kante einer Halbleiterscheibe mit den Merkmalen des Oberbegriffs des Anspruchs 1 beschrieben.In the Patent Abstracts Of Japan vol. 009, no. 252 (M-420), published June 10, 1985 a device for grinding and chamfering the edge of a semiconductor wafer described with the features of the preamble of claim 1.

Ziel der vorliegenden Erfindung ist es, die materialabtragende Bearbeitung der Kante einer Halbleiterscheibe noch effektiver zu gestalten.The aim of the present invention is to remove material from the edge of a material Semiconductor wafer to make it even more effective.

Erfindungsgemäß wird dieses Ziel erreicht durch ein Verfahren zur materialabtragenden Bearbeitung der Kante einer Halbleiterscheibe, wobei die Halbleiterscheibe auf einem drehbeweglichen Tisch aufliegt, um eine Mittelachse gedreht wird und mit einer Mehrzahl von sich drehenden Bearbeitungswerkzeugen bearbeitet wird, und jedes der Bearbeitungswerkzeuge eine bestimmte Menge an Material von der Kante der Halbleiterscheibe abtragen soll, wobei die Bearbeitungswerkzeuge im Verlauf einer 360°-Drehung der Halbleiterscheibe nacheinander gegen die Kante der Halbleiterscheibe zugestellt werden und die Kante der Halbleiterscheibe schließlich gleichzeitig bearbeiten, wobei ein Bearbeitungswerkzeug, das gerade zugestellt wird, eine geringere Menge von der Kante der Halbleiterscheibe abtragen soll, als ein zuvor zugestelltes Bearbeitungswerkzeug, und wobei die Bearbeitung der Kante der Halbleiterscheibe mit einem Bearbeitungswerkzeug frühestens beendet wird, nachdem sich die Halbleiterscheibe, von der Zustellung dieses Bearbeitungswerkzeugs an gerechnet, um 360° gedreht hat, dadurch gekennzeichnet, daß benachbarte Bearbeitungswerkzeuge mit gegensinnigen Drehsinn gedreht werden und die Kante der Halbleiterscheibe während der Bearbeitung an mindestens einer Stelle mit einem flüssigen Reinigungsmittel, das gegebenenfalls mit Ultra- oder Megaschall beaufschlagt ist, in Kontakt gebracht wird.According to the invention, this goal is achieved by a process for the removal of material Edge of a semiconductor wafer, the semiconductor wafer on a rotatable Table rests, is rotated about a central axis and with a plurality of rotating Editing tools is edited, and each of the editing tools one remove a certain amount of material from the edge of the semiconductor wafer, the machining tools in the course of a 360 ° rotation the semiconductor wafer are successively fed against the edge of the semiconductor wafer and finally process the edge of the semiconductor wafer simultaneously, using a processing tool, that is being delivered, a smaller amount from the edge of the wafer to remove, as a previously delivered machining tool, and being the machining the edge of the semiconductor wafer with a processing tool at the earliest will, after the semiconductor wafer, from the infeed of this machining tool counted, turned 360 °, characterized in that adjacent editing tools with be rotated in opposite directions and the edge of the semiconductor wafer during processing at least one point with a liquid detergent, which if necessary is exposed to ultrasound or megasound.

Das Verfahren bringt eine enorme Zeitersparnis, da die Bearbeitung der Kante mit verschiedenartigen Bearbeitungswerkzeugen zeitweise gleichzeitig erfolgt und nach weniger als zwei Umdrehungen der Halbleiterscheibe bereits abgeschlossen werden kann. Es können zwei oder mehrere, vorzugsweise 2 bis 5 verschiedenartige Bearbeitungswerkzeuge eingesetzt werden.The process saves an enormous amount of time because the edge is processed with different types Machining tools sometimes done simultaneously and after less than two revolutions of the semiconductor wafer can already be completed. It can two or more, preferably 2 to 5 different processing tools be used.

Die im Verfahren eingesetzten Bearbeitungswerkzeuge sind vorzugsweise als Scheiben ausgebildet, die an einer Spindel befestigt sind und Umfangsflächen aufweisen, die als Arbeitsflächen zur Bearbeitung der Kante der Halbleiterscheibe dienen. Wie in der bereits genannten DE-195 35 616 A1 offenbart ist, können die Umfangsflächen zur Spindelachse gewölbt sein und dem angestrebten Kantenprofil entsprechende Ausnehmungen bilden. Außerdem können mehrere Scheiben in einem Stapel aufeinanderliegen, wobei im Stapel gleichartige oder verschiedenartige Bearbeitungswerkzeuge zusammengefaßt sein können.The processing tools used in the process are preferably disks formed, which are attached to a spindle and have peripheral surfaces that as Work surfaces serve to process the edge of the semiconductor wafer. As in the already DE-195 35 616 A1 is disclosed, the peripheral surfaces to the spindle axis be curved and form recesses corresponding to the desired edge profile. In addition, several slices can lie on top of each other in a stack, with one stack the same or different types of processing tools can be combined.

Bevorzugte Bearbeitungswerkzeuge sind Schleifwerkzeuge, Polierwerkzeuge und Werkzeuge zum duktilen Schleifen. Das materialabtragende Schleifkorn von Schleifwerkzeugen ist normalerweise fest in der Arbeitsfläche des Schleifwerkzeugs verankert. Darüber hinaus sind auch mit Schleifkorn imprägnierte Tücher bekannt, in denen das Schleifkorn weniger fest eingebettet ist. Sie können auch zum Polieren der Kante einer Halbleiterscheibe verwendet werden. Andere Polierwerkzeuge verursachen einen Materialabtrag auf chemisch-mechanische Weise, wobei gegebenenfalls ein Poliermittel zur Arbeitsfläche des Polierwerkzeugs zugeführt werden muß. Bei Verwendung von Schleifwerkzeugen mit hinreichend kleiner Schleifkörnung und einer äußerst präzisen Zustellung, die ein Unterschreiten einer kritischen Eindringtiefe erlaubt (die beispielsweise in Silicium 100 nm beträgt (K.Puttik, Proc. of the Spring Topical Meeting of the American Society for Precision Engineering, Tucson 1993)), kann das zu bearbeitenden Material duktil (ohne Rißbildung) zerspant werden. Mit diesem duktilen Schleifen können besonders glatte Oberflächen erzeugt werden (M.Kerstan et al. in: Proc. American Soc. for Precission Engineering, Cincinatti 1994).Preferred processing tools are grinding tools, polishing tools and tools for ductile grinding. The material-removing abrasive grain of grinding tools is usually firmly anchored in the working surface of the grinding tool. Furthermore are also known cloths impregnated with abrasive grain, in which the abrasive grain is less is firmly embedded. You can also use it to polish the edge of a semiconductor wafer be used. Other polishing tools cause material removal on chemical-mechanical Way, optionally with a polishing agent to the work surface of the Polishing tool must be fed. When using Grinding tools with a sufficiently small grit and an extremely precise delivery, which is below a critical depth of penetration allowed (e.g. in Silicon is 100 nm (K.Puttik, Proc. Of the Spring Topical Meeting of the American Society for Precision Engineering, Tucson 1993)), the material to be processed can be ductile (without Crack formation). With this ductile grinding particularly smooth surfaces can be created (M.Kerstan et al. in: Proc. American Soc. for Precision Engineering, Cincinatti 1994).

Der Materialabtrag, den ein Bearbeitungswerkzeug beim Bearbeiten der Kante einer Halbleiterscheibe verursacht, wird üblicherweise durch die Angabe der Dicke der entfernten Materialschicht ausgedrückt. Typischerweise wird bei der Bearbeitung der Kante einer Halbleiterscheibe Material in der Größenordnung von 0,5 bis 500 µm abgetragen. Zwei Bearbeitungswerkzeuge werden im Sinne der Erfindung als verschiedenartig (gleichartig) betrachtet, wenn sie unter gleichen Bedingungen einen unterschiedlichen (gleichen) Materialabtrag verursachen. Bei Schleifwerkzeugen bestimmt die Größe des verwendeten Schleifkorns maßgeblich den Materialabtrag, den das Schleifwerkzeug verursachen soll. Außerdem wird der Materialabtrag, der mit einem Schleifwerkzeug angestrebt wird, normalerweise größer sein, als der Materialabtrag, der mit einem Polierwerkzeug oder mit einem Werkzeug zum duktilen Schleifen angestrebt wird.The amount of material removed by a machining tool when machining the edge of a semiconductor wafer is usually caused by specifying the thickness of the removed material layer expressed. Typically when editing the edge of a wafer material in the order of magnitude removed from 0.5 to 500 µm. Two editing tools are different in the sense of the invention (similar) considered if they are different under the same conditions cause (same) material removal. At Grinding tools determine the size of the abrasive grain used decisive is the material removal that the grinding tool should cause. In addition, the material removal with a grinding tool, usually larger be as the material removal that with a polishing tool or with a tool for ductile grinding becomes.

Zur Durchführung des Verfahrens wird eine Halbleiterscheibe auf einem drehbeweglichen Tisch, einem sogenannten Chuck, fixiert. Die Kante der Halbleiterscheibe ragt über den Rand des Tisches hinaus, so daß sie für Bearbeitungswerkzeuge gut zugänglich ist. Es ist bevorzugt, daß der Tisch die Halbleiterscheibe in einer horizontal verlaufenden Ebene hält und verfahrbar gelagert ist, damit die Halbleiterscheibe gegebenenfalls zu den Bearbeitungswerkzeugen transportiert werden kann. Unverzichtbares Merkmal der Erfindung ist, daß zwei oder mehrere verschiedenartige Bearbeitungswerkzeuge verwendet werden und diese während einer Umdrehung der Halbleiterscheibe nacheinander zur Kante zugestellt werden. Die Reihenfolge der Zustellung hängt vom Materialabtrag ab, der mit einem Bearbeitungswerkzeug zu erzielen beabsichtigt ist. Zuerst wird das Bearbeitungswerkzeug zugestellt, das den höchsten Materialabtrag verursachen soll. Die Zustellung wird dann mit dem Bearbeitungswerkzeug fortgesetzt, das den nächst niedrigeren Materialabtrag verursachen soll, und so weiter. Beispielsweise könnte das Verfahren genutzt werden, um mit zwei Schleifwerkzeugen einen Grob- und einen Feinschliff der Kante einer Halbleiterscheibe zumindest zeitweise zeitgleich auszuführen. Ebenso könnte die Kante mit Bearbeitungswerkzeugen, die in entsprechender Reihenfolge eingesetzt werden, in einem Arbeitsgang geschliffen und poliert, oder geschliffen und duktil geschliffen werden.A semiconductor wafer is used to carry out the method fixed on a rotating table, a so-called chuck. The edge of the semiconductor wafer protrudes over the edge of the Table out so that it is easily accessible for machining tools is. It is preferred that the table be the wafer holds and movable in a horizontal plane is stored so that the semiconductor wafer if necessary can be transported to the processing tools. An indispensable feature of the invention is that two or several different processing tools are used and these during one turn of the semiconductor wafer are successively fed to the edge. The The order of delivery depends on the amount of material removed using a processing tool is intended to achieve. First the processing tool is delivered, that should cause the highest material removal. The infeed is then done with the processing tool continued, which cause the next lower material removal should, and so on. For example, the method could be used to deal with two Grinding tools a rough and a fine grinding of the edge of a semiconductor wafer to be carried out at the same time at least temporarily. The edge could also be processed using which are used in the appropriate order in one operation ground and polished, or ground and ductile ground.

Unverzichtbar ist auch, daß sich Bearbeitungswerkzeuge, die nach ihrer Zustellung benachbart sind, gegensinnig drehen. Damit soll vermieden werden, daß loses Material, das von einem Bearbeitungswerkzeug fortgeschleudert wurde, vom benachbarten Bearbeitungswerkzeug zur Kante der Halbleiterscheibe zurücktransportiert wird. Ferner ist vorgesehen, der Kante an mindestens einer Stelle ein flüssiges Reinigungsmittel, das gegebenenfalls mit Ultra- oder Megaschall beaufschlagt ist, zuzuführen. Die Zufuhr von Reinigungsmittel erfolgt vorzugsweise an einer Stelle der Kante, die bereits von einem Schleifwerkzeug bearbeitet wurde und kurz vor der Bearbeitung durch ein Polierwerkzeug oder ein Werkzeug zum duktilen Schleifen steht.It is also indispensable that there are processing tools according to are adjacent to their delivery, turn in opposite directions. This is to avoid that loose material that has been thrown away by a processing tool from the neighboring one Processing tool transported back to the edge of the semiconductor wafer becomes. It is also provided that the edge has a liquid cleaning agent at at least one point, which may be subjected to ultrasound or megasound. The supply of cleaning agent is preferably at a point on the edge that is already was processed by a grinding tool and shortly before processing by a polishing tool or a tool for ductile grinding.

Die Zustellung aller verwendeten Bearbeitungswerkzeuge erfolgt während einer 360°-Drehung der Halbleiterscheibe. Sind alle Bearbeitungswerkzeuge zugestellt worden, bearbeiten sie gleichzeitig die Kante der Halbleiterscheibe. Die Bearbeitung der Kante der Halbleiterscheibe mit einen bestimmten Bearbeitungswerkzeug wird frühestens beendet, nachdem sich die Halbleiterscheibe, von der Zustellung dieses Bearbeitungswerkzeugs an gerechnet, um 360° gedreht hat. Im Fall des Bearbeitungswerkzeugs, das zuletzt zugestellt worden ist, ist es bevorzugt, daß die Bearbeitung der Kante durch dieses Bearbeitungswerkzeug frühestens beendet wird, nachdem sich die Halbleiterscheibe seit der Zustellung dieses Bearbeitungswerkzeugs um einen Vorschubwinkel von α = 360°+ Δα gedreht hat. Der überschliffwinkel Δα braucht nur einige Grad zu betragen. Damit wird sichergestellt, daß eine Stufe, die sich auf der Oberfläche der Kante beim Eingriff des Bearbeitungswerkzeugs ausgebildet haben könnte, entfernt wird.All processing tools used are fed in during a 360 ° rotation of the semiconductor wafer. When all processing tools have been delivered, they process the edge of the semiconductor wafer at the same time. The processing of the edge of the semiconductor wafer with a specific processing tool is ended at the earliest after the semiconductor wafer has rotated through 360 ° from the infeed of this processing tool. In the case of the machining tool that was last delivered, it is preferred that the machining of the edge by this machining tool is ended at the earliest after the semiconductor wafer has deviated by a feed angle of since the machining tool has been delivered α = 360 ° + Δα turned. The smoothing angle Δα need only be a few degrees. This ensures that a step that may have formed on the surface of the edge when the machining tool is engaged is removed.

Das Ende der Bearbeitung der Kante der Halbleiterscheibe mit einem Bearbeitungswerkzeug wird herbeigeführt, indem dieses Bearbeitungswerkzeug von der Kante zurückgenommen wird. Die Zurücknahme der Bearbeitungswerkzeuge kann gleichzeitig erfolgen oder in der Reihenfolge, in der die Bearbeitungswerkzeuge gegen die Kante zugestellt worden waren. Vorzugsweise wird die Bearbeitung der Kante beendet, bevor die Halbleiterscheibe, von der Zustellung des ersten Bearbeitungswerkzeugs an gerechnet, zwei volle Drehungen um 360° vollzogen hat. Besonders bevorzugt ist es, daß die Bearbeitung der Kante der Halbleiterscheibe beendet wird, indem entweder alle Bearbeitungswerkzeuge gleichzeitig zurückgenommen werden oder das zuletzt zugestellte Bearbeitungswerkzeug als letztes zurückgenommen wird, und nachdem sich die Halbleiterscheibe seit der Zustellung des zuletzt zugestellten Bearbeitungswerkzeugs um einen Vorschubwinkel von α = 360°+ Δα gedreht hat.The end of the processing of the edge of the semiconductor wafer with a processing tool is brought about by withdrawing this processing tool from the edge. The processing tools can be withdrawn at the same time or in the order in which the processing tools were delivered against the edge. The processing of the edge is preferably ended before the semiconductor wafer has completed two full rotations by 360 °, counting from the infeed of the first processing tool. It is particularly preferred that the processing of the edge of the semiconductor wafer is ended by either taking back all the processing tools at the same time or the last processing tool delivered to be withdrawn last, and after the semiconductor wafer has moved by a feed angle of since the last processing tool delivered α = 360 ° + Δα turned.

Der Ablauf des Verfahrens wird nachfolgend an Hand einer Figur am Beispiel der Verwendung von drei verschiedenartigen Bearbeitungswerkzeugen näher erläutert. Die Figur zeigt schematisch die Draufsicht auf eine Halbleiterscheibe und die drei verschiedenartigen Bearbeitungswerkzeuge, mit denen die Kante der Halbleiterscheibe bearbeitet wird. Es sind nur solche Merkmale dargestellt, die zum Verständnis der Erfindung beitragen. The sequence of the method is shown below using a figure using the example of the use of three different processing tools explained in more detail. The figure shows schematically the top view of a semiconductor wafer and the three various editing tools with which the edge the semiconductor wafer is processed. They are just such Features shown for understanding the invention contribute.

Die Halbleiterscheibe wird entlang einer y-Achse in eine Bearbeitungsposition transportiert. Ein Tisch, auf dem die Halbleiterscheibe 4 fixiert ist, dreht diese um eine Mittelachse M mit einer bestimmten Vorschubgeschwindigkeit. Die Bearbeitung der Kante 5 der Halbleiterscheibe 4 beginnt mit der Zustellung eines ersten Bearbeitungswerkzeugs 1 entlang einer y1-Achse. Das sich um eine Achse N drehende Bearbeitungswerkzeug 1 greift mit seiner Arbeitsfläche 6 in einer Kontaktzone I in die Kante 5 der Halbleiterscheibe 4 ein. Ein zweites Bearbeitungswerkzeug 2, das sich um eine Achse O dreht, wird als nächstes Bearbeitungswerkzeug entlang einer y2-Achse zugestellt. Es nimmt mit seiner Arbeitsfläche 7 die Bearbeitung der Kante 5 in einer Kontaktzone II auf. Zwischen der Zustellung des ersten Bearbeitungswerkzeugs 1 und der Zustellung des zweiten Bearbeitungswerkzeugs 2 dreht sich die Halbleiterscheibe um den Vorschubwinkel α1. Dieser markiert die Lage der Kontaktzone II und hat im dargestellten Beispiel den Wert α1=90°. Entsprechend wird zuletzt ein drittes Bearbeitungswerkzeug 3, das sich um eine Achse P dreht, entlang einer y3-Achse zugestellt. Zwischen dem Bearbeitungswerkzeug 2 und dem Bearbeitungswerkzeug 3 befindet sich eine Einrichtung 8 zur Zuführung eines Reinigungsmittels R, beispielsweise eine Megaschalldüse. Das Bearbeitungswerkzeug 3 nimmt mit seiner Arbeitsfläche 9 die Bearbeitung der Kante 5 in einer Kontaktzone III auf. Zwischen der Zustellung des ersten Bearbeitungswerkzeugs 1 und der Zustellung des dritten Bearbeitungswerkzeugs 3 dreht sich die Halbleiterscheibe um den Vorschubwinkel α12. Dieser markiert die Lage der Kontaktzone III und hat im dargestellten Beispiel den Wert α12=180°.The semiconductor wafer is transported along a y-axis to a processing position. A table on which the semiconductor wafer 4 is fixed rotates it around a central axis M at a specific feed rate. The processing of the edge 5 of the semiconductor wafer 4 begins with the infeed of a first processing tool 1 along a y 1 axis. The machining tool 1 rotating about an axis N engages with its working surface 6 in a contact zone I in the edge 5 of the semiconductor wafer 4. A second machining tool 2, which rotates about an axis O, is delivered as the next machining tool along a y 2 axis. With its working surface 7, it takes up the processing of the edge 5 in a contact zone II. Between the infeed of the first machining tool 1 and the infeed of the second machining tool 2, the semiconductor wafer rotates by the feed angle α 1. This marks the position of the contact zone II and has the value α 1 = 90 ° in the example shown. Accordingly, a third machining tool 3, which rotates about an axis P, is finally delivered along a y 3 axis. A device 8 for supplying a cleaning agent R, for example a megasonic nozzle, is located between the processing tool 2 and the processing tool 3. The machining tool 3 takes up the machining of the edge 5 in a contact zone III with its working surface 9. Between the infeed of the first machining tool 1 and the infeed of the third machining tool 3, the semiconductor wafer rotates by the feed angle α 1 + α 2 . This marks the position of contact zone III and has the value in the example shown α 1 + α 2nd = 180 ° .

Entsprechend würde jedes weitere Bearbeitungswerkzeug n (in der Figur nicht dargestellt) entlang einer yn-Achse zugestellt werden und die Bearbeitung der Kante in einer Kontaktzone Xn aufnehmen. Der Ort der Kontaktzone Xn ergäbe sich wieder aus dem Vorschubwinkel, um den sich die Halbleiterscheibe zwischen der Zustellung des ersten und der Zustellung des n-ten Bearbeitungswerkzeugs dreht. Accordingly, each additional processing tool n (not shown in the figure) would be fed along a y n axis and the processing of the edge would start in a contact zone X n . The location of the contact zone X n would again result from the feed angle by which the semiconductor wafer rotates between the infeed of the first and the infeed of the nth machining tool.

Gemäß der bevorzugten Ausführungsform des Verfahrens wird das Bearbeitungswerkzeug 3 entlang der y3-Achse von der Kante 5 der Halbleiterscheibe zurückgenommen, nachdem die Halbleiterscheibe seit der Zustellung dieses Bearbeitungswerkzeugs eine Drehung von 360° und dem Überschliffwinkel Δα vollzogen hat. Falls die Bearbeitungswerkzeuge 1 und 2 bis zu diesem Zeitpunkt von der Kante noch nicht zurückgenommen worden sind, erfolgt ihre Zurücknahme entlang der y1- beziehungsweise der y2-Achse gleichzeitig mit der Zurücknahme des Behandlungswerkzeugs 3. Danach wird der Tisch, auf dem die Halbleiterscheibe liegt, entlang der y-Achse in eine Entladeposition gefahren, und die Halbleiterscheibe 4 für einen neuen Bearbeitungszyklus durch eine andere mit noch nicht bearbeiteter Kante ersetzt.According to the preferred embodiment of the method, the processing tool 3 is withdrawn along the y 3 axis from the edge 5 of the semiconductor wafer after the semiconductor wafer has made a rotation of 360 ° and the smoothing angle Δα since the delivery of this processing tool. If the processing tools 1 and 2 have not yet been withdrawn from the edge by this time, they are withdrawn along the y 1 and y 2 axes simultaneously with the withdrawal of the treatment tool 3. Then the table on which the semiconductor wafer is placed lies, moved along the y-axis into an unloading position, and the semiconductor wafer 4 is replaced by another with a not yet machined edge for a new machining cycle.

Bei der Betrachtung der Figur wird klar, daß die Zahl der eingesetzten Bearbeitungswerkzeuge erhöht werden kann, wenn die Bearbeitungswerkzeuge kleinere Durchmesser aufweisen. Der Durchmesser der Bearbeitungswerkzeuge spielt auch eine wichtige Rolle im Hinblick auf eine Minimierung der Dauer der Bearbeitung der Kante einer Halbleiterscheibe. Die Halbleiterscheibe dreht sich während der Bearbeitung der Kante um einen bestimmten Gesamtvorschubwinkel. Je kleiner dieser Gesamtvorschubwinkel ist, desto kürzer ist die Dauer der Bearbeitung. Der bevorzugte Gesamtvorschubwinkel setzt sich zusammen aus einem Vorschubwinkel, um den sich die Halbleiterscheibe dreht (von der Zustellung des zuerst zugestellten Bearbeitungswerkzeugs an gerechnet) bis alle Bearbeitungswerkzeuge zugestellt sind und dem breits erwähnten Vorschubwinkel von 360°+ Δα, um den sich die Halbleiterscheibe dann noch bis zur Beendigung der Bearbeitung weiterdreht. Der Wert des erst genannten Vorschubwinkels hängt von den Abständen zwischen den Bearbeitungswerkzeugen ab und damit auch vom Durchmesser der Bearbeitungswerkzeuge. Der Abstand benachbarter Bearbeitungswerkzeuge läßt sich durch einen Versatzwinkel angeben. In der Figur entspricht der Versatzwinkel zwischen dem Bearbeitungswerkzeug 1 und dem Bearbeitungswerkzeug 2 dem Vorschubwinkel α1 und beträgt 90°. Der Versatzwinkel zwischen dem Bearbeitungswerkzeug 2 und dem Bearbeitungswerkzeug 3 entspricht α2 und hat ebenfalls den Wert von 90°. Bis das Bearbeitungswerkzeug 3 zugestellt ist, hat sich die Halbleiterscheibe um einen Vorschubwinkel von 180° gedreht. Die Bearbeitung der Halbleiterscheibe würde demnach insgesamt eine Zeit in Anspruch nehmen, die dem Zeitaufwand für eine Drehung der Halbleiterscheibe um einen Gesamtvorschubwinkel von 180°+360°+ Δα entspricht. Bei Verwendung von Bearbeitungswerkzeugen mit geringeren Durchmessern sind kleine Versatzwinkel möglich. So könnten beispielsweise die Durchmesser der Bearbeitungswerkzeuge 1 bis 3 und die Versatzwinkel zwischen ihnen so gewählt werden, daß diese Werkzeuge bereits während einer Drehung der Halbleiterscheibe um einen Vorschubwinkel von 90° zugestellt werden können. Dann wurde die Bearbeitung der Halbleiterscheibe nur noch die Zeit in Anspruch nehmen, die einer Drehung der Halbleiterscheibe um einen Gesamtvorschubwinkel von 90°+360°+ Δα entspricht. Es ist daher bevorzugt, möglichst Bearbeitungswerkzeuge mit kleinen Durchmessern zu verwenden und die Versatzwinkel zwischen den Bearbeitungswerkzeugen möglichst klein zu halten. Allerdings sollte auch berücksichtigt werden, daß Bearbeitungswerkzeuge mit verhältnismäßig kleinen Durchmessern auch kleinere Arbeitsflächen besitzen und deshalb früher verschleißen.Looking at the figure it becomes clear that the number of machining tools used can be increased if the machining tools have smaller diameters. The diameter of the machining tools also plays an important role in minimizing the duration of machining the edge of a semiconductor wafer. The semiconductor wafer rotates through a certain total feed angle during the processing of the edge. The smaller this total feed angle, the shorter the processing time. The preferred total feed angle is made up of a feed angle by which the semiconductor wafer rotates (counting from the infeed of the processing tool delivered first) until all processing tools have been delivered and the previously mentioned feed angle of 360 ° + Δα, around which the semiconductor wafer then turns until the end of processing. The value of the feed angle mentioned first depends on the distances between the machining tools and thus also on the diameter of the machining tools. The distance between adjacent processing tools can be specified by an offset angle. In the figure, the offset angle between the machining tool 1 and the machining tool 2 corresponds to the feed angle α 1 and is 90 °. The offset angle between the machining tool 2 and the machining tool 3 corresponds to α 2 and also has the value of 90 °. Until the machining tool 3 is delivered, the semiconductor wafer has rotated by a feed angle of 180 °. The processing of the semiconductor wafer would accordingly take a total of the time required for the rotation of the semiconductor wafer by an overall feed angle of 180 ° + 360 ° + Δα corresponds. Small offset angles are possible when using machining tools with smaller diameters. For example, the diameters of the machining tools 1 to 3 and the offset angles between them could be selected such that these tools can be advanced by a feed angle of 90 ° while the semiconductor wafer is rotating. Then the processing of the semiconductor wafer would only take the time that a rotation of the semiconductor wafer by a total feed angle of 90 ° + 360 ° + Δα corresponds. It is therefore preferred to use machining tools with small diameters, if possible, and to keep the offset angles between the machining tools as small as possible. However, it should also be borne in mind that machining tools with relatively small diameters also have smaller work surfaces and therefore wear out earlier.

Bei Verwendung von zwei verschiedenartigen Schleifwerkzeugen kann der Durchsatz an Halbleiterscheiben bei Anwendung des beschriebenen Verfahrens um ca 60% gegenüber der bisher üblichen, schrittweisen Kantenbearbeitung gesteigert werden.When using two different types of grinding tools the throughput of semiconductor wafers when using the described Process by about 60% compared to the usual gradual edge processing can be increased.

Claims (4)

  1. Process for the material-abrading machining of the edge of a semiconductor wafer, the semiconductor wafer resting on a rotationally movable table, being rotated about a central axis and being machined by a plurality of rotating machining tools, and it being intended for each of the machining tools to abrade a specific quantity of material from the edge of the semiconductor wafer, the machining tools, during the course of a 360° rotation of the semiconductor wafer, being successively advanced against the edge of the semiconductor wafer and ultimately simultaneously machining the edge of the semiconductor wafer, a machining tool which has just been advanced being intended to abrade a smaller quantity from the edge of the semiconductor wafer than a previously advanced machining tool, and the machining of the edge of the semiconductor wafer with one machining tool being terminated at the earliest once the semiconductor wafer has rotated through 360°, calculated from the advancement of this machining tool, characterized in that adjacent machining tools are rotated in opposite directions, and the edge of the semiconductor wafer is brought, during the machining, into contact at at least one point with a liquid cleaning agent, to which ultrasound or megasound has optionally been applied.
  2. Process according to Claim 1, characterized in that the machining tools are selected from a group which comprises grinding tools, polishing tools and tools for ductile grinding.
  3. Process according to Claim 1 or Claim 2, characterized in that the machining is terminated by withdrawing the machining tools from the edge of the semiconductor wafer in a sequence which corresponds to the sequence in which they were advanced.
  4. Process according to Claim 1 or Claim 2, characterized in that the machining is terminated by withdrawing the machining tools from the edge of the semiconductor wafer simultaneously.
EP97115333A 1996-09-05 1997-09-04 Method for material removing machining of a wafer edge Expired - Lifetime EP0881035B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19636055A DE19636055A1 (en) 1996-09-05 1996-09-05 Edge material removing machining method for semiconductor wafer
DE19636055 1996-09-05

Publications (2)

Publication Number Publication Date
EP0881035A1 EP0881035A1 (en) 1998-12-02
EP0881035B1 true EP0881035B1 (en) 1999-10-27

Family

ID=7804717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97115333A Expired - Lifetime EP0881035B1 (en) 1996-09-05 1997-09-04 Method for material removing machining of a wafer edge

Country Status (6)

Country Link
US (1) US6045436A (en)
EP (1) EP0881035B1 (en)
JP (1) JP2900253B2 (en)
KR (1) KR100273960B1 (en)
DE (2) DE19636055A1 (en)
TW (1) TW352354B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320363A (en) * 1998-05-18 1999-11-24 Tokyo Seimitsu Co Ltd Wafer chamferring device
DE19841492A1 (en) 1998-09-10 2000-03-23 Wacker Siltronic Halbleitermat Method and device for separating a large number of disks from a brittle hard workpiece
DE19928949A1 (en) * 1999-06-24 2001-01-04 Wacker Siltronic Halbleitermat Production of a semiconductor wafer used as the base material for a semiconductor component comprises removing the semiconductor from a single crystal, processing by ductile chip removal, and polishing and cleaning the surface
JP3510584B2 (en) * 2000-11-07 2004-03-29 スピードファム株式会社 Peripheral polishing device for disk-shaped workpiece
US20020058466A1 (en) * 2000-11-13 2002-05-16 Curran David M. Method and system for reducing thickness of spin-on glass on semiconductor wafers
US6860795B2 (en) 2001-09-17 2005-03-01 Hitachi Global Storage Technologies Netherlands B.V. Edge finishing process for glass or ceramic disks used in disk drive data storage devices
DE10147646C1 (en) * 2001-09-27 2002-12-19 Wacker Siltronic Halbleitermat Machining method for semiconductor disc edge calculates displacement rate for semiconductor disc by comparing overall material volume to be removed with volume removed per unit of time
US20070298240A1 (en) * 2006-06-22 2007-12-27 Gobena Feben T Compressible abrasive article
US9676114B2 (en) * 2012-02-29 2017-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer edge trim blade with slots
KR101414204B1 (en) * 2013-01-30 2014-07-01 주식회사 엘지실트론 Apparatus and method for grinding wafer edge
JP2014226767A (en) * 2013-05-27 2014-12-08 株式会社東京精密 Wafer chamfer device and wafer chamfer method
JP7222636B2 (en) * 2018-09-12 2023-02-15 株式会社ディスコ Edge trimming device
CN110605629B (en) * 2019-09-19 2022-11-18 西安奕斯伟材料科技有限公司 Grinding device
CN114643519B (en) * 2022-03-26 2022-12-09 浙江金连接科技股份有限公司 Palladium alloy sleeve barrel for semiconductor chip test probe and processing equipment thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104644A (en) * 1983-11-08 1985-06-10 Mitsubishi Metal Corp Device for grinding and chamfering outer periphery of wafer
JPH0637025B2 (en) * 1987-09-14 1994-05-18 スピードファム株式会社 Wafer mirror surface processing equipment
KR0185234B1 (en) * 1991-11-28 1999-04-15 가부시키 가이샤 토쿄 세이미쯔 Method of chamfering semiconductor wafer
JP2628424B2 (en) * 1992-01-24 1997-07-09 信越半導体株式会社 Polishing method and apparatus for wafer chamfer
JPH07205001A (en) * 1993-11-16 1995-08-08 Tokyo Seimitsu Co Ltd Wafer chamfering machine
US5595522A (en) * 1994-01-04 1997-01-21 Texas Instruments Incorporated Semiconductor wafer edge polishing system and method
JP3010572B2 (en) * 1994-09-29 2000-02-21 株式会社東京精密 Wafer edge processing equipment
US5816897A (en) * 1996-09-16 1998-10-06 Corning Incorporated Method and apparatus for edge finishing glass
US5725414A (en) * 1996-12-30 1998-03-10 Intel Corporation Apparatus for cleaning the side-edge and top-edge of a semiconductor wafer

Also Published As

Publication number Publication date
KR100273960B1 (en) 2001-01-15
JP2900253B2 (en) 1999-06-02
EP0881035A1 (en) 1998-12-02
TW352354B (en) 1999-02-11
US6045436A (en) 2000-04-04
KR19980024185A (en) 1998-07-06
JPH1080849A (en) 1998-03-31
DE59700621D1 (en) 1999-12-02
DE19636055A1 (en) 1998-03-12

Similar Documents

Publication Publication Date Title
EP0881035B1 (en) Method for material removing machining of a wafer edge
DE3707664C1 (en) Machine tool for fine machining the tooth flanks of pre-toothed gears
EP1597020B1 (en) Cylindrical grinding method for producing hard metal tools and cylindrical grinding machine for grinding cylindrical starting bodies during the production of hard metal tools
DE10211342B4 (en) Polishing tool and polishing method and apparatus using the same
DE10144644B4 (en) Method and device for grinding centric bearing points of crankshafts
DE2506519C3 (en) Wide belt sander with a motor-driven workpiece feed and holding device
DE19625520C1 (en) Precision finishing process for spur wheel gear clamped on workpiece spindle
EP2007548A1 (en) Method for grinding a machine part, and grinding machine for carrying out said method
EP0264700B1 (en) Method of making a rotary groove at the border of a semiconductor wafer of a power semiconductor device
DE60011822T2 (en) Method of positioning grinding wheels
DE10020800A1 (en) Device for finishing edge of glass plate has housing for grinding device with cooling fluid distributed round grinding device and removed with glass dust through vacuum device
EP1475188A2 (en) Apparatus for finishing plane surfaces
DE4107462C2 (en) Machine tool for machining workpieces
DE2121985A1 (en) Method and device for grinding tool cutting edges
DE3136372A1 (en) Planer-type grinding machine
DE2620477C2 (en) Vibratory grinding or polishing machine
DE69719459T2 (en) Process for splinterless processing of the edge area of a ceramic preform
DE10011454A1 (en) Grinding device for precision engineering has one swivel support with two spindles supporting internal and external finishing grinding stones to move up against workpiece
DE102020200540A1 (en) METHOD FOR MACHINING A WORKPIECE
DE3302881C2 (en) Machining of disk-shaped workpieces made of silicon
CH657557A5 (en) METHOD AND DEVICE FOR ROUND GRINDING WORKPIECES.
DE2651293A1 (en) METHOD FOR FINISHING OPTICAL SURFACES, TOOLS FOR CARRYING OUT THIS METHOD, AND METHOD FOR MANUFACTURING THE MACHINING TOOL
DE4219874C2 (en) Machine for grinding, lapping and polishing steel balls
DE4124417A1 (en) Sharpening hard metal drill bits - involves carrying out all three stages of operation with drill bit held in same chuck
DE3817453C1 (en) method and apparatus for the cylindrical-surface grinding of workpieces, in particular the rough-grinding thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17P Request for examination filed

Effective date: 19970904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AKX Designation fees paid

Free format text: DE GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 59700621

Country of ref document: DE

Date of ref document: 19991202

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020828

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030904

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120921

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59700621

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401