EP0875319A1 - Répartiteur de coulée continue des métaux, du type comportant au moins une torche à plasma pour le réchauffage du métal - Google Patents

Répartiteur de coulée continue des métaux, du type comportant au moins une torche à plasma pour le réchauffage du métal Download PDF

Info

Publication number
EP0875319A1
EP0875319A1 EP98400563A EP98400563A EP0875319A1 EP 0875319 A1 EP0875319 A1 EP 0875319A1 EP 98400563 A EP98400563 A EP 98400563A EP 98400563 A EP98400563 A EP 98400563A EP 0875319 A1 EP0875319 A1 EP 0875319A1
Authority
EP
European Patent Office
Prior art keywords
distributor
torch
metal
refractory
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98400563A
Other languages
German (de)
English (en)
Other versions
EP0875319B1 (fr
Inventor
Philippe Chapellier
Robert Grangier
Michel Henryon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0875319A1 publication Critical patent/EP0875319A1/fr
Application granted granted Critical
Publication of EP0875319B1 publication Critical patent/EP0875319B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Definitions

  • the invention relates to the field of continuous casting of metals, such as steel. It relates more precisely to continuous casting machines which include a torch plasma to heat the metal during its stay in the distributor.
  • the liquid steel contained in the casting does not flow directly into the bottomless ingot molds with cooled walls where it begins to solidify. It passes first in a container called “distributor", internally coated with refractories, the there are multiple functions.
  • the bottom of the distributor is provided with one or generally several orifices called “nozzles" each overhanging an ingot mold, which allows to distribute the liquid metal in the different ingot molds while the pocket There is only one metal flow hole.
  • the dispatcher constitutes a metal reserve which allows, when a pocket is emptied, to continue the pouring of the metal during the evacuation of the empty pocket and the positioning and opening a new pocket.
  • the dispatcher constitutes a privileged site for the settling of undesirable non-metallic inclusions present in the liquid steel, and this the more so as the average residence time of the metal is higher there.
  • low overheating allows to shorten the duration of solidification of the product: we can take advantage of this to pour the produced at a higher speed, resulting in a productivity gain in the steelworks, or for build a relatively compact continuous casting machine, saving on investments to put into play.
  • a first mode of supply of thermal energy to the metal passing through the distributor consists of scrolling at least part of said metal inside a channel surrounded by an inductor with appropriate characteristics, the currents induced in the metal causing it to heat up by the Joule effect.
  • This solution is quite expensive, and the size of the inductor makes it difficult to apply to small installations size, or which were not originally designed to be equipped with it.
  • WO 95/32069 describes a distributor thus equipped.
  • gas plasmagen such as nitrogen or argon
  • the gas is thus partially ionized and is brought to very high temperature (4000 to 15000 K). It has a thermal conductivity and a power of very high radiation, which makes it suitable for achieving rapid heat transfers and intense with the material to be heated.
  • the cathode and the anode are both integrated into the torch.
  • the cathode is integrated into the torch, and the anode is consisting of the liquid metal to be heated.
  • the sole of the distributor contains a electrically conductive element which is brought into contact with liquid metal during casting and connected to the positive terminal of the torch power supply. he is also possible to provide opposite polarities from those previously specified.
  • the area of the distributor in which the torch is installed must be covered by an internally coated refractory cover.
  • This cover prevents the radiation from the arc does not blind the personnel working on the installation. Else hand, it is imperative that the torch acts on bare liquid metal, therefore not covered by the heat-insulating powder which it is usual to spread on its surface to protect it from atmospheric reoxidation and stop its radiation.
  • the cover under which you can inject a neutral gas such as argon in addition to the plasma gas (or in its place for periods when the torch is not used), allows to keep in the vicinity of the torch an almost oxygen-free atmosphere, therefore non-polluting for the metal liquid.
  • the refractories lining the distributor and its cover receive a share significant radiation from the arc emitted by the torch, and their surface is, therefore, carried at very high temperatures which can be higher than 1800 ° C when the torch is used at high power. At these temperatures, magnesia or alumina, which are the materials usually used, reaches its melting point, and the coatings deteriorate rapidly, which means that the restoration of the cover coating. In addition, the refractory which has become liquid tends to flow on the surface. of the metal bath, where it forms an insulating crust which hinders the heat transfers between the plasma and metal, and may even end up defusing the arc (in the case of a transferred plasma torch).
  • This molten refractory can also flow from the cover on the metal tube surrounding the torch and degrade it. So we are forced to find a torch operating point which achieves a compromise between heating the sufficient metal and tolerable deterioration in refractories, to the detriment of the effectiveness of the heating that theoretically could offer the torch.
  • the object of the invention is to propose an economical means for limiting the damage to the refractory lining of the distributor and the cover in the area of action plasma torch, without compromising the efficiency of the metal heating by this same torch.
  • the invention relates to a piece of refractory material, of shape ring, intended to be installed in a continuous metal flow distributor comprising at least one plasma torch for reheating the liquid metal, and the inner wall defines a downwardly flared space having an upper opening and a lower opening and allowing penetration of the lower end of said torch in said space.
  • the subject of the invention is also a distributor for continuous casting of metals.
  • a distributor for continuous casting of metals of the type comprising at least one plasma torch for reheating the liquid metal, and at least one cover crossed by said torch, characterized in that it comprises a part of refractory material of annular shape as defined above, said part being fixed to said cover, or to the refractory wall of said distributor and / or possibly to a or partitions delimiting a reheating compartment inside said distributor, and the flaring of its internal wall being turned towards the bottom of the distributor.
  • the invention consists in attaching to the distributor or to its cover an annular refractory piece whose inner wall surrounds the end of the plasma torch and deflects the radiation it receives towards the metal.
  • This piece ring protects the coverings of the distributor and the cover, and can be the only part of the distributor to be made of a material having particularly resistance elevated to the radiation of the arc. It can be designed to be used during casting or a single sequence and therefore be changed with each repair of the coating of the distributor. It can also, especially if it is ceramic, be recoverable and usable during several flows or several sequences.
  • annular part Another notable advantage of this annular part is that the return to the metal liquid from the arc radiation it receives improves the thermal efficiency of the plasma torch by increasing the share of radiation that actually reaches the metal.
  • FIGS. 1a and 1b show a distributor of continuous casting of steel 1 according to prior art.
  • a continuous casting machine (not shown) equipped with two ingot molds.
  • he comprises an external metal carcass 2, internally coated with a refractory 3.
  • the interior space of the distributor 1 has a flared shape upwards to allow after the casting easy removal of the refractory lining 1 by simply reversing the distributor 1.
  • the liquid steel 4 (not shown in FIG. 1a) reaches distributor 1 coming from a pocket (not shown), and is introduced into it via a tube in refractory 5 connected to the outlet orifice of the pocket. This tube 5 protects the liquid steel 4 against atmospheric reoxidation.
  • nozzles 6, 6 ' Draining of liquid steel 4 in the molds not shown is carried out by nozzles 6, 6 '.
  • Refractory tubes 7 connected to nozzles 6, 6 ' protect the liquid steel 4 against atmospheric reoxidation during its path between the distributor 1 and the mold which corresponds to each nozzle 6 6 '.
  • the example of distributor 1 shown is generally rectangular in shape and is internally divided into four compartments by refractory walls 8, 9, 10.
  • Two walls 8, 9 are oriented perpendicular to the long sides of the distributor 1; the wall 10 is oriented parallel to the long sides of the distributor and connects the other two walls 8, 9.
  • the walls 8, 9, 10 first define a first compartment 11 for the arrival of the metal liquid 4, into which opens the tube 5 connected to the bag.
  • Liquid steel 4 crosses then the wall 10 which, for this purpose, is perforated by a pipe 12, and thus enters a second compartment 13 which, in the example shown, constitutes a projection side of the distributor 1 located opposite the liquid metal inlet tube 5 4.
  • He passes then in the third and fourth compartments 14 and 15, thanks to pipes 16, 17 which perforate the walls 8, 9, 10. It is in these compartments 14, 15 that are located the nozzles 6, 6 'overhanging the molds of the continuous casting machine.
  • the liquid steel reheating device 4 comprises a plasma torch 18 of a type known in itself. Schematically, it comprises a cathode 19 in one material such as thoriated tungsten, connected to the negative pole of the generator supplying the torch, and surrounded by a metallic envelope 20, for example made of copper, which can play the role of anode.
  • a plasma torch 18 of a type known in itself.
  • it comprises a cathode 19 in one material such as thoriated tungsten, connected to the negative pole of the generator supplying the torch, and surrounded by a metallic envelope 20, for example made of copper, which can play the role of anode.
  • the metal casing 20 only behaves as an anode when striking the arc; but if the torch is of the blown plasma type, this metal casing 20 is constantly connected to the positive pole of the generator supplying the torch.
  • anode 22 is installed, for example, by a steel bar cooled over at least part of its length, and connected to the positive pole of the generator supplying the torch. Between cathode 19 and metal liquid 4 which is in contact with anode 22 therefore creates an electric arc 23 through which passes plasma gas, so as to heat the liquid steel 4 present in the second compartment 13, which will be called "heating compartment".
  • the radiation of the arc 23 causes rapid wear of the refractory 3 covering the distributor 1 in the heating compartment 13, wall 10 and refractories 25 covering the cover 24.
  • This wear can eventually go to their superficial melting, with all the previously mentioned problems it causes.
  • the distributor according to the invention shown in Figures 2a and 2b is a improvement of the previous distributor (their common elements are designated by same references in FIGS. 1 and 2), in which the above problem is solved by economically.
  • the heating compartment 13 was placed in the distributor 1 an annular piece 28 of a refractory material having a resistance high to the radiation of the electric arc 23.
  • this part annular 28 bears on the refractory lining 3 of the casing of the distributor 1 and on the wall 10 which separates the heating compartment 13 from the compartment 11 for the arrival of the liquid steel 4 in the distributor 1. It could also be made integral with the coating 25 of the cover 24.
  • the internal wall 29 of the annular part 28 has a frustoconical shape, and has its inclined slope turned towards the surface of the metal liquid 4.
  • the placement and dimensions of this annular part 28 are such that the lower end of the plasma torch 18, when in use, is located below of the upper opening 30 of the annular part 28, and preferably substantially lower than said upper opening 30. In this way, the part of the radiation from the electric arc 23 which would normally strike the partition 10 and the refractories 3, 25 covering the heating compartment 13 and the cover 24 is very largely stopped by the internal wall 29 of the annular part 28, and is returned towards the metal liquid 4 present in the heating compartment 13.
  • the annular part 28 was made of tabular alumina. Under the same conditions, it was found that equal torch usage power (about 300 kW), it could be increased by 14 ° C the temperature of the liquid steel 4 in the heating compartment 13, against 10 ° C. when the annular part 28 is not used.
  • the annular part 28 is made of a solid refractory capable of resist the radiation from the arc 23 for the entire duration of the use of the distributor 1 and of its coating 3, either a casting from a single pocket or a casting in sequence of several consecutive pockets. Materials such as tabular alumina, spinel alumina, silicon carbide are well suited for this use.
  • the use of the annular part 28 avoids having to coat the entire heating compartment 13 of the distributor 1 and its cover 24 with such refractories, and thus decreases the overall cost of refractories the installation.
  • a material with radiation resistance for example a ceramic with a melting temperature of around 2000 ° C
  • a ceramic would, moreover, the advantage of having an excellent reflection power of the radiation of the arc 23, which would further improve the thermal performance of the installation.
  • the interior and exterior shape of the annular part 28 shown in FIG. 2 is, of course, just one example. It is clear that its interior space can have, for example, the shape of a pyramid trunk and not a cone trunk. Its external shape is likewise to be adapted to the geometry of the heating compartment 13 of the distributor 1.
  • the distributor according to the invention shown in FIG. 3 constitutes an example adaptation of the invention to a distributor 31 of generally strictly rectangular shape, in which it is not possible, for reasons of space, to provide a single reheating compartment through which all the cast metal would pass, as in the example in FIGS. 1 and 2. It is provided, like the preceding distributor 1, two nozzles 32, 32 ', each extended by a refractory tube 33, 33' which plunges in an ingot mold not shown.
  • the distributor 31 is supplied with liquid steel 34 by a refractory tube 35 connected by its upper end to a pocket, not shown.
  • the liquid steel 34 leaving the tube 35 opens into a central compartment 36 materialized by a first pair of refractory partitions 37, 37 ′ blocking the distributor 31 over its entire width and located on either side of the tube 35.
  • These first partitions 37, 37 ′ are provided perforations 38, 38 'which allow the passage of the liquid steel 34 in two heating compartments 39, 39 ′ contiguous to the central compartment 36.
  • These heating compartments 39, 39 ' are each delimited by one of the first partitions 37, 37 'and by another refractory partition forming part of a second pair 40, 40'.
  • these torches 44, 44 ′ are of the plasma transferred, the floor 45 of the distributor 31 is crossed, in line with the compartments of reheating 39, 39 ', by anodes 46, 46' similar to those described above.
  • the refractory elements materializing the compartments of reheating 39, 39 ' are completed by annular parts 49, 49' similar in their functions and their design in the annular part 28 previously described and represented on Figure 2.
  • their interior space is frustoconical, with a wall oriented towards the liquid metal 34 present in the compartment reheating 39, 39 'corresponding.
  • the annular parts 49, 49 ' are mounted integral with partitions 37, 40, 37 ', 40' delimiting the compartments of reheating 39, 39 ', but they could also be fixed only to the refractory lining of the distributor 31, or to the covers 43, 43 '.
  • the distributors which have been described and represented are only examples of implementation of the invention, which can easily be adapted to other types of distributors for continuous casting of steel or other metals.
  • the distributor has one or more compartments space clearly delimited by one or more partitions: it is enough to stay in the spirit of the invention that the part of the arc radiation from the plasma torch which would come normally strike the cover crossed by the torch and the side walls of the distributor is stopped by the internal wall of the annular part and returned to the metal, therefore in direction of the dispatcher bottom.
  • the annular part or parts may only be attached to the refractory wall of the distributor or to the cover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Plasma Technology (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Discharge Heating (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

L'invention a pour objet une pièce en matériau réfractaire (28), de forme annulaire, destinée à être implantée dans un répartiteur de coulée continue des métaux (1) comportant une torche à plasma (18) pour le réchauffage du métal liquide (4), et dont la paroi interne (29) définit un espace évasé vers le bas comportant une ouverture supérieure (30) et une ouverture inférieure et autorisant la pénétration de l'extrémité inférieure de ladite torche (18) dans ledit espace. L'invention a également pour objet un répartiteur de coulée continue des métaux (1) du type comportant au moins une torche à plasma (18) pour le réchauffage du métal liquide (4), et au moins un couvercle (24) traversé par ladite torche (18), caractérisé en ce qu'il comporte une pièce en matériau réfractaire (28) de forme annulaire telle que définie précédemment, ladite pièce (28) étant fixée audit couvercle (24), ou à la paroi réfractaire (3) dudit répartiteur (1) et/ou éventuellement à une ou des cloisons (10) délimitant un compartiment de réchauffage (13) à l'intérieur dudit répartiteur (1), et l'évasement de sa paroi interne (29) étant tourné en direction du fond du répartiteur (1). <IMAGE>

Description

L'invention concerne le domaine de la coulée continue des métaux, tels que l'acier. Elle concerne plus précisément les machines de coulée continue qui comportent une torche à plasma destinée à réchauffer le métal lors de son séjour dans le répartiteur.
Lors de l'opération de coulée continue, l'acier liquide contenu dans la poche de coulée, où sa composition a été ajustée, ne s'écoule pas directement dans la ou les lingotières sans fond à parois refroidies où il amorce sa solidification. Il transite d'abord dans un récipient appelé "répartiteur", intérieurement revêtu de réfractaires, dont les fonctions sont multiples. En premier lieu, le fond du répartiteur est muni d'un ou généralement plusieurs orifices dits "busettes" surplombant chacun une lingotière, ce qui lui permet de distribuer le métal liquide dans les différentes lingotières alors même que la poche de coulée ne comporte qu'un seul orifice d'écoulement du métal. D'autre part, le répartiteur constitue une réserve de métal qui permet, lorsqu'une poche est vidée, de continuer la coulée du métal pendant l'évacuation de la poche vide et la mise en place et l'ouverture d'une nouvelle poche. On peut ainsi couler sans interruption plusieurs poches successives (opération dite "coulée en séquence"). Enfin, le répartiteur constitue un site privilégié pour la décantation des inclusions non-métalliques indésirables présentes dans l'acier liquide, et ce d'autant plus que le temps de séjour moyen du métal y est plus élevé.
Sur certaines installations de coulée continue, on se donne la possibilité d'agir sur la température de l'acier liquide au moyen d'un dispositif de réchauffage. Cette action peut permettre:
  • de diminuer l'amplitude des variations de la température de l'acier liquide sortant du répartiteur pendant la coulée: une poche met en général plusieurs dizaines de minutes à se vider, et pendant cette période l'acier liquide qu'elle contient peut perdre quelques dizaines de degrés; un apport d'énergie dans le répartiteur, notamment en fin de coulée, permet de compenser au moins en partie ces pertes thermiques, de manière à limiter les variations de la température du métal sortant du répartiteur dans une plage de quelques degrés pendant l'ensemble de la coulée;
  • d'abaisser la température imposer au métal lors des étapes antérieures de son élaboration, d'où un gain de productivité de l'aciérie (on peut raccourcir les périodes de réchauffage du métal lors du traitement au convertisseur, au four électrique ou au four-poche) et des économies sur la consommation des matériaux réfractaires revêtant les divers récipients métallurgiques.
De manière générale, cette maítrise accrue de la température rend plus aisée l'obtention d'une température de l'acier en répartiteur relativement proche de la température de liquidus de la nuance coulée. L'écart entre ces deux températures est appelé "surchauffe". D'un point de vue métallurgique, une basse surchauffe est favorable à l'obtention d'un produit solidifié présentant dans sa section de faibles ségrégations en éléments d'alliage tels que le carbone, le manganèse et le soufre, et donc une bonne homogénéité de ses propriétés mécaniques. Cet avantage est particulièrement important lorsque l'on coule des nuances d'acier fortement chargées en éléments d'alliage. D'autre part, une basse surchauffe permet de raccourcir la durée de la solidification du produit: on peut en profiter pour couler le produit à une vitesse plus élevée, d'où un gain de productivité de l'aciérie, ou pour construire une machine de coulée continue relativement compacte, d'où une économie sur les investissements à mettre en jeu.
Un premier mode d'apport d'énergie thermique au métal transitant dans le répartiteur consiste à faire défiler au moins une partie dudit métal à l'intérieur d'un canal entouré par un inducteur de caractéristiques appropriées, les courants induits dans le métal provoquant son réchauffement par effet Joule. Cette solution est assez coûteuse, et l'encombrement de l'inducteur la rend difficilement applicable aux installations de petite taille, ou qui n'ont pas été initialement conçues pour en être équipées.
Une autre solution consiste à implanter au-dessus du métal en répartiteur une, voire plusieurs torches à plasma. Le document WO 95/32069 notamment décrit un répartiteur ainsi équipé. On rappelle que le principe de fonctionnement d'une torche à plasma consiste à insuffler sur le matériau à réchauffer un gaz sous pression (gaz plasmagène), tel que de l'azote ou de l'argon, auquel on fait traverser un arc électrique créé entre une cathode et une anode. Le gaz est ainsi partiellement ionisé et est porté à très haute température (4000 à 15000 K). Il possède une conductivité thermique et un pouvoir de rayonnement très élevés, qui le rendent apte à réaliser des transferts thermiques rapides et intenses avec le matériau à réchauffer. En faisant varier la pression du gaz et l'intensité du courant, il est aisé d'obtenir les puissances de plusieurs centaines de kW nécessaires au réchauffage de l'acier en répartiteur, tout en conservant à la torche un encombrement suffisamment réduit pour rendre possible son implantation même sur un répartiteur de taille réduite. Deux conceptions de torche peuvent être utilisées pour cette application. Dans les torches à plasma "soufflé", la cathode et l'anode sont toutes deux intégrées à la torche. Dans les torches à plasma "transféré", seule la cathode est intégrée à la torche, et l'anode est constituée par le métal liquide à réchauffer. A cet effet, la sole du répartiteur renferme un élément conducteur de l'électricité qui est mis au contact du métal liquide pendant la coulée et connecté à la borne positive de l'alimentation électrique de la torche. Il est également possible de prévoir des polarités inverses de celles précédemment précisées.
La zone du répartiteur dans laquelle la torche est implantée doit être recouverte par un couvercle revêtu intérieurement de réfractaire. Ce couvercle permet d'éviter que le rayonnement de l'arc ne vienne aveugler le personnel travaillant sur l'installation. D'autre part, il est impératif que la torche agisse sur du métal liquide nu, donc non recouvert par la poudre thermoisolante qu'il est habituel de répandre sur sa surface pour le protéger des réoxydations atmosphériques et arrêter son rayonnement. Le couvercle, sous lequel on peut insuffler un gaz neutre tel que de l'argon en plus du gaz plasmagène (ou à sa place pendant les périodes où la torche n'est pas utilisée), permet de conserver dans le voisinage de la torche une atmosphère pratiquement exempte d'oxygène, donc non polluante pour le métal liquide.
Les réfractaires revêtant le répartiteur et son couvercle reçoivent une part importante du rayonnement de l'arc émis par la torche, et leur surface est, de ce fait, portée à des températures très élevées qui peuvent être supérieures à 1800°C lorsque la torche est utilisée à forte puissance. A ces températures, la magnésie ou l'alumine, qui sont les matériaux habituellement utilisés, parvient à son point de fusion, et les revêtements se détériorent rapidement, ce qui oblige notamment à restaurer trop fréquemment le revêtement du couvercle. De plus, le réfractaire devenu liquide tend à couler sur la surface du bain métallique, où il forme une croûte isolante qui gêne les transferts thermiques entre le plasma et le métal, et peut même finir par provoquer le désamorçage de l'arc (dans le cas d'une torche à plasma transféré). Ce réfractaire fondu peut aussi couler à partir du couvercle sur le tube métallique entourant la torche et le dégrader. On est donc forcé de trouver un point de fonctionnement de la torche qui réalise un compromis entre un réchauffage du métal suffisant et une détérioration des réfractaires tolérable, au détriment de l'efficacité du réchauffage que pourrait théoriquement offrir la torche.
On peut concevoir de réaliser les revêtements du répartiteur et du couvercle en un matériau réfractaire possédant une température de fusion encore plus élevée que les matériaux classiques, par exemple en carbure de silicium ou en une céramique. Mais comme le revêtement du répartiteur doit être intégralement renouvelé entre chaque coulée ou entre chaque séquence, cela augmenterait considérablement le coût d'utilisation de l'installation, et annulerait une grande partie des avantages économiques procurés par la torche.
Le but de l'invention est de proposer un moyen économique pour limiter les détériorations du revêtement réfractaire du répartiteur et du couvercle dans la zone d'action de la torche à plasma, sans compromettre l'efficacité du réchauffage du métal par cette même torche.
A cet effet, l'invention a pour objet une pièce en matériau réfractaire, de forme annulaire, destinée à être implantée dans un répartiteur de coulée continue des métaux comportant au moins une torche à plasma pour le réchauffage du métal liquide, et dont la paroi interne définit un espace évasé vers le bas comportant une ouverture supérieure et une ouverture inférieure et autorisant la pénétration de l'extrémité inférieure de ladite torche dans ledit espace.
L'invention a également pour objet un répartiteur de coulée continue des métaux du type comportant au moins une torche à plasma pour le réchauffage du métal liquide, et au moins un couvercle traversé par ladite torche, caractérisé en ce qu'il comporte une pièce en matériau réfractaire de forme annulaire telle que définie précédemment, ladite pièce étant fixée audit couvercle, ou à la paroi réfractaire dudit répartiteur et/ou éventuellement à une ou des cloisons délimitant un compartiment de réchauffage à l'intérieur dudit répartiteur, et l'évasement de sa paroi interne étant tourné en direction du fond du répartiteur.
Comme on l'aura compris, l'invention consiste à fixer au répartiteur ou à son couvercle une pièce annulaire en réfractaire dont la paroi intérieure entoure l'extrémité de la torche à plasma et dévie en direction du métal le rayonnement qu'elle reçoit. Cette pièce annulaire protège les revêtements du répartiteur et du couvercle, et peut être la seule partie du répartiteur à être réalisée en un matériau possédant une résistance particulièrement élevée au rayonnement de l'arc. Elle peut être conçue pour être utilisée pendant une coulée ou une séquence unique et être donc changée à chaque réfection du revêtement du répartiteur. Elle peut aussi, notamment si elle est en céramique, être récupérable et utilisable pendant plusieurs coulées ou plusieurs séquences.
Un autre avantage notable de cette pièce annulaire est que le renvoi vers le métal liquide du rayonnement de l'arc qu'elle reçoit permet d'améliorer le rendement thermique de la torche à plasma en augmentant la part du rayonnement qui parvient effectivement au métal.
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes:
  • les figures 1a et 1b qui montrent respectivement vu de dessus et de profil en coupe transversale selon Ib-Ib un exemple de répartiteur de coulée continue de l'acier selon l'art antérieur;
  • les figures 2a et 2b qui montrent vu de dessus et de profil en coupe transversale selon IIb-IIb le même répartiteur, modifié selon l'invention;
  • la figure 3 qui montre vu de profil en coupe longitudinale un autre exemple de répartiteur selon l'invention.
Les figures 1a et 1b montrent un répartiteur de coulée continue de l'acier 1 selon l'art antérieur. Dans l'exemple représenté, qui n'est bien sûr pas limitatif, il permet d'alimenter une machine de coulée continue (non représentée) équipée de deux lingotières. Il comporte une carcasse métallique extérieure 2, revêtue intérieurement d'un réfractaire 3. L'espace intérieur du répartiteur 1 a une forme évasée vers le haut pour permettre après la coulée une dépose facile du revêtement réfractaire 1 par simple renversement du répartiteur 1. L'acier liquide 4 (non représenté sur la figure la) parvient dans le répartiteur 1 en provenance d'une poche non représentée, et y est introduit par l'intermédiaire d'un tube en réfractaire 5 connecté à l'orifice de sortie de la poche. Ce tube 5 protège l'acier liquide 4 contre les réoxydations atmosphériques. La vidange de l'acier liquide 4 dans les lingotières non représentées s'effectue par des busettes 6, 6'. Des tubes en réfractaire 7 connectés aux busettes 6, 6' protègent l'acier liquide 4 contre les réoxydations atmosphériques lors de son trajet entre le répartiteur 1 et la lingotière qui correspond à chaque busette 6 6'.
L'exemple de répartiteur 1 représenté est de forme générale rectangulaire et est divisé intérieurement en quatre compartiments par des parois réfractaires 8, 9, 10. Deux parois 8, 9 sont orientées perpendiculairement aux grands côtés du répartiteur 1; la paroi 10 est orientée parallèlement aux grands côtés du répartiteur et relie les deux autres parois 8, 9. Les parois 8, 9, 10 délimitent d'abord un premier compartiment 11 d'arrivée du métal liquide 4, dans lequel débouche le tube 5 connecté à la poche. L'acier liquide 4 traverse ensuite la paroi 10 qui, à cet effet, est perforée par une conduite 12, et pénètre ainsi dans un deuxième compartiment 13 qui, dans l'exemple représenté, constitue une excroissance latérale du répartiteur 1 située face au tube 5 d'arrivée du métal liquide 4. Comme on le verra, c'est dans ce deuxième compartiment 13 que l'acier liquide 4 est réchauffé. Il passe ensuite dans les troisième et quatrième compartiments 14 et 15, grâce à des conduites 16, 17 qui perforent les parois 8, 9, 10. C'est dans ces compartiments 14, 15 que se situent les busettes 6, 6' surplombant les lingotières de la machine de coulée continue.
Le dispositif de réchauffage de l'acier liquide 4 comporte une torche à plasma 18 d'un type connu en lui-même. Schématiquement, elle comporte une cathode 19 en un matériau tel que du tungstène thorié, reliée au pôle négatif du générateur alimentant la torche, et entourée par une enveloppe métallique 20, par exemple en cuivre, qui peut jouer le rôle d'anode. Dans le cas où la torche 19 est du type à plasma transféré comme dans l'exemple représenté, l'enveloppe métallique 20 ne se comporte en anode qu'à l'occasion de l'amorçage de l'arc; mais si la torche est du type à plasma soufflé, cette enveloppe métallique 20 est constamment reliée au pôle positif du générateur alimentant la torche. Entre l'enveloppe 20 et la cathode 19 on insuffle le gaz plasmagène qui peut être de l'argon, ou éventuellement de l'azote si la nuance d'acier coulée peut tolérer une teneur en azote relativement élevée. Dans la sole 21 du répartiteur 1 est implantée une anode 22 constituée, par exemple, par une barre en acier refroidie sur une partie au moins de sa longueur, et connectée au pôle positif du générateur alimentant la torche. Entre la cathode 19 et le métal liquide 4 qui est au contact de l'anode 22 se crée donc un arc électrique 23 dans lequel passe le gaz plasmagène, de manière à réchauffer l'acier liquide 4 présent dans le deuxième compartiment 13, qu'on appellera "compartiment de réchauffage".
Il est nécessaire de coiffer le compartiment de réchauffage 13 par un couvercle 24 (non représenté sur la figure la) que traverse la torche 18. Ce couvercle 24 est revêtu intérieurement d'une couche de réfractaire 25, afin que l'arc électrique 23 ne vienne pas aveugler le personnel travaillant à proximité de la machine de coulée. De plus, ce couvercle 24 permet de confiner l'atmosphère environnant le compartiment de réchauffage 13 en le mettant à l'abri de l'atmosphère extérieure et en permettant de conserver au-dessus du métal liquide 4 l'argon injecté par la torche 18. On supprime ainsi les réoxydations atmosphériques qui, sans cela, se produiraient inévitablement, d'autant plus que dans ce compartiment de réchauffage 13, il n'est pas possible de recouvrir la surface du métal liquide 4 par une poudre isolante qui gênerait les transferts thermiques et électriques entre la torche 18 et le métal 4. Une telle poudre 26 est présente à la surface du métal liquide 4 dans les autres compartiments 11, 14, 15 du répartiteur. Au moins pendant les périodes où la torche 18 n'est pas utilisée, on peut également injecter de l'argon sous le couvercle 24 à travers un orifice 27.
Comme on l'a dit, avec un répartiteur ainsi configuré, le rayonnement de l'arc électrique 23 provoque une usure rapide du réfractaire 3 recouvrant le répartiteur 1 dans le compartiment de réchauffage 13, de la paroi 10 et des réfractaires 25 revêtant le couvercle 24. Cette usure peut, à terme, aller jusqu'à leur fusion superficielle, avec tous les problèmes précédemment évoqués qu'elle entraíne. Il faudrait donc réaliser l'intégralité des réfractaires exposés à l'arc 23 en un matériau présentant une résistance très élevée à son rayonnement, avec tous les coûts supplémentaires que cela entraínerait.
Le répartiteur selon l'invention représenté sur les figures 2a et 2b est un perfectionnement du répartiteur précédent (leurs éléments communs sont désignés par les mêmes références sur les figures 1 et 2), dans lequel le problème ci-dessus est résolu de façon économique. A cet effet, on a placé dans le compartiment de réchauffage 13 du répartiteur 1 une pièce annulaire 28 en un matériau réfractaire présentant une résistance élevée au rayonnement de l'arc électrique 23. Dans l'exemple représenté, cette pièce annulaire 28 prend appui sur le revêtement réfractaire 3 de la carcasse du répartiteur 1 et sur la paroi 10 qui sépare le compartiment de réchauffage 13 du compartiment 11 d'arrivée de l'acier liquide 4 dans le répartiteur 1. On pourrait également la rendre solidaire du revêtement 25 du couvercle 24. La paroi interne 29 de la pièce annulaire 28 présente une forme tronconique, et a sa pente inclinée tournée en direction de la surface du métal liquide 4. Le placement et les dimensions de cette pièce annulaire 28 sont tels que l'extrémité inférieure de la torche à plasma 18 , lorsqu'elle est en service, est située en-dessous de l'ouverture supérieure 30 de la pièce annulaire 28, et de préférence sensiblement plus bas que ladite ouverture supérieure 30. De cette façon, la partie du rayonnement de l'arc électrique 23 qui, normalement, viendrait frapper la cloison 10 et les réfractaires 3, 25 revêtant le compartiment de réchauffage 13 et le couvercle 24 est très majoritairement arrêtée par la paroi interne 29 de la pièce annulaire 28, et est renvoyée en direction du métal liquide 4 présent dans le compartiment de réchauffage 13. On prolonge ainsi considérablement la durée de vie des réfractaires 25 du couvercle 24, et on atténue de même la dégradation au cours de la coulée des réfractaires 3 revêtant les parois du répartiteur et de la cloison 10 dans le compartiment de réchauffage 13. On a pu ainsi faire passer la durée d'utilisation du revêtement 25 du couvercle 24 de 20-30 heures à plus de 100 heures. La pièce annulaire 28 était en alumine tabulaire. Dans les mêmes conditions, on a constaté qu'à puissance d'utilisation de la torche égale (environ 300 kW), on pouvait augmenter de 14°C la température de l'acier liquide 4 dans le compartiment de réchauffage 13, contre 10°C lorsqu'on n'utilise pas la pièce annulaire 28. Cette amélioration est due à la moindre dégradation des réfractaires qui réduit la formation d'une croûte à la surface du métal liquide 4, mais aussi au fait que la pièce annulaire 28 telle qu'elle est configurée renvoie directement sur ladite surface la part du rayonnement de l'arc qui, normalement, viendrait frapper le revêtement 25 du couvercle 24 et le revêtement 3 du répartiteur 1, et ne parviendrait sur le métal liquide 4 qu'après avoir été atténuée par de multiples réflexions.
La pièce annulaire 28 selon l'invention est en un réfractaire massif capable de résister au rayonnement de l'arc 23 pendant toute la durée de l'utilisation du répartiteur 1 et de son revêtement 3, soit une coulée d'une poche unique ou une coulée en séquence de plusieurs poches consécutives. Des matériaux tels que l'alumine tabulaire, l'alumine spinelle, le carbure de silicium sont bien adaptés à cet usage. L'utilisation de la pièce annulaire 28 évite de devoir revêtir l'ensemble du compartiment de réchauffage 13 du répartiteur 1 et son couvercle 24 avec de tels réfractaires, et diminue ainsi le coût global des réfractaires de l'installation. De plus, si on utilise un matériau présentant une résistance au rayonnement particulièrement élevée, par exemple une céramique dont la température de fusion est de l'ordre de 2000°C, on peut envisager que la pièce annulaire puisse être réutilisable après avoir été séparée du revêtement du répartiteur usagé. Une céramique aurait, en outre, l'avantage d'avoir un excellent pouvoir de réflexion du rayonnement de l'arc 23, ce qui améliorerait encore les performances thermiques de l'installation.
La forme intérieure et extérieure de la pièce annulaire 28 représentée sur la figure 2 n'est, bien entendu, qu'un exemple. Il est clair que son espace intérieur peut avoir, par exemple, la forme d'un tronc de pyramide et non d'un tronc de cône. Sa forme extérieure est, de même, à adapter à la géométrie du compartiment de réchauffage 13 du répartiteur 1.
Le répartiteur selon l'invention représenté sur la figure 3 constitue un exemple d'adaptation de l'invention à un répartiteur 31 de forme générale strictement rectangulaire, dans lequel il n'est pas possible, pour des raisons d'encombrement, de ménager un compartiment de réchauffage unique par lequel transiterait l'ensemble du métal coulé, comme dans l'exemple des figures 1 et 2. Il est pourvu, comme le répartiteur 1 précédent, de deux busettes 32, 32', prolongées chacune par un tube en réfractaire 33, 33' qui plonge dans une lingotière non représentée. Le répartiteur 31 est alimenté en acier liquide 34 par un tube réfractaire 35 connecté par son extrémité supérieure à une poche non représentée. L'acier liquide 34 sortant du tube 35 débouche dans un compartiment central 36 matérialisé par une première paire de cloisons en réfractaire 37, 37' barrant le répartiteur 31 sur toute sa largeur et situées de part et d'autre du tube 35. Ces premières cloisons 37, 37' sont munies de perforations 38, 38' qui permettent le passage de l'acier liquide 34 dans deux compartiments de réchauffage 39, 39' contigus au compartiment central 36. Ces compartiments de réchauffage 39, 39' sont chacun délimités par l'une des premières cloisons 37, 37' et par une autre cloison en réfractaire faisant partie d'une seconde paire 40, 40'. Ces secondes cloisons 40, 40' sont munies de perforations 41, 41' permettant le passage de l'acier liquide 34 dans les compartiments de coulée 42, 42' où se trouvent les busettes 32, 32'. Les compartiments de réchauffage 39, 39' sont chacun coiffés d'un couvercle 43, 43' revêtu de réfractaire et traversé par une torche à plasma 44, 44' d'un type similaire à celui précédemment décrit. Dans le cas où, comme représenté, ces torches 44, 44' sont du type à plasma transféré, la sole 45 du répartiteur 31 est traversée, au droit des compartiments de réchauffage 39, 39', par des anodes 46, 46' similaires à celles décrites précédemment. On peut ainsi établir dans les compartiments de réchauffage 39, 39' entre les torches 44, 44' et l'acier liquide 34 des arcs électriques 47, 47' qui, en coopération avec le gaz plasmagène insufflé dans par les torches 44, 44', réchauffent le métal liquide 34. Le métal liquide 34 se trouvant dans le répartiteur est recouvert d'une couche de poudre de couverture 48, sauf dans les compartiments de réchauffage 39, 39' où elle gênerait le fonctionnement des torches 44, 44'. A ce sujet, les emplacements des diverses perforations 38, 38', 41, 41' des cloisons 37, 37', 40, 40' sont choisis de manière à éviter, en cours de coulée, le passage de la poudre de couverture 48 dans les compartiments de réchauffage 39, 39'.
Selon l'invention, les éléments réfractaires matérialisant les compartiments de réchauffage 39, 39' sont complétés par des pièces annulaires 49, 49' similaires dans leurs fonctions et leur conception à la pièce annulaire 28 précédemment décrite et représentée sur la figure 2. Comme pour la précédente, leur espace intérieur est de forme tronconique, avec une paroi orientée en direction du métal liquide 34 présent dans le compartiment de réchauffage 39, 39' correspondant. Dans l'exemple représenté, les pièces annulaires 49, 49' sont montées solidaires des cloisons 37, 40, 37', 40' délimitant les compartiments de réchauffage 39, 39', mais on pourrait aussi les fixer uniquement au revêtement réfractaire du répartiteur 31, ou encore aux couvercles 43, 43'.
Il va de soi que les répartiteurs qui ont été décrits et représentés ne sont que des exemples de mise en oeuvre de l'invention, qui peut aisément être adaptée à d'autres types de répartiteurs de coulée continue de l'acier ou d'autres métaux. En particulier, il n'est pas à proprement parler indispensable que le répartiteur présente un ou plusieurs compartiments de réchauffage clairement délimités par une ou des cloisons: il suffit pour rester dans l'esprit de l'invention que la partie du rayonnement de l'arc issu de la torche à plasma qui viendrait normalement frapper le couvercle traversé par la torche et les parois latérales du répartiteur soit arrêtée par la paroi interne de la pièce annulaire et renvoyée sur le métal, donc en direction du fond du répartiteur. En l'absence de telles cloisons, la ou les pièces annulaires peuvent n'être fixées qu'à la paroi réfractaire du répartiteur ou au couvercle.

Claims (7)

  1. Pièce en matériau réfractaire (28, 49, 49'), de forme annulaire, destinée à être implantée dans un répartiteur de coulée continue des métaux (1, 31) comportant au moins une torche à plasma (18, 44, 44') pour le réchauffage du métal liquide (4, 34), et dont la paroi interne (29) définit un espace évasé vers le bas comportant une ouverture supérieure (30) et une ouverture inférieure et autorisant la pénétration de l'extrémité inférieure de ladite torche (18, 44, 44') dans ledit espace.
  2. Pièce en matériau réfractaire (28, 49, 49') selon la revendication 1, caractérisée en ce que ledit espace évasé vers le bas est de forme tronconique.
  3. Pièce en matériau réfractaire (28, 49, 49') selon la revendication 1, caractérisée en ce que ledit espace évasé vers le bas est en forme de tronc de pyramide.
  4. Pièce en matériau réfractaire (28, 49, 49') selon l'une des revendications 1 à 3, caractérisée en ce qu'elle est à base d'alumine.
  5. Pièce en matériau réfractaire (28, 49, 49') selon l'une des revendications 1 à 3, caractérisée en ce qu'elle est à base de carbure de silicium.
  6. Pièce en matériau réfractaire (28, 49, 49') selon l'une des revendications 1 à 3, caractérisée en ce qu'elle est en céramique.
  7. Répartiteur de coulée continue des métaux (1, 31) du type comportant au moins une torche à plasma (18, 44, 44') pour le réchauffage du métal liquide (4, 34), et au moins un couvercle (24, 43, 43') traversé par ladite torche (18, 44, 44'), caractérisé en ce qu'il comporte une pièce en matériau réfractaire (28, 49, 49') de forme annulaire selon l'une des revendications 1 à 6, ladite pièce (28, 49, 49') étant fixée audit couvercle (24, 43, 43'), ou à la paroi réfractaire (3) dudit répartiteur (1, 31) et/ou éventuellement à une ou des cloisons (10, 37, 40, 37', 40'), délimitant un compartiment de réchauffage (13, 39, 39') à l'intérieur dudit répartiteur (1, 31), et l'évasement de sa paroi interne (29) étant tourné en direction du fond du répartiteur (1, 31).
EP98400563A 1997-04-23 1998-03-11 Répartiteur de coulée continue des métaux, du type comportant au moins une torche à plasma pour le réchauffage du métal Expired - Lifetime EP0875319B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9705014 1997-04-23
FR9705014A FR2762535B1 (fr) 1997-04-23 1997-04-23 Repartiteur de coulee continue des metaux, du type comportant au moins une torche a plasma pour le rechauffage du metal

Publications (2)

Publication Number Publication Date
EP0875319A1 true EP0875319A1 (fr) 1998-11-04
EP0875319B1 EP0875319B1 (fr) 2002-06-19

Family

ID=9506226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98400563A Expired - Lifetime EP0875319B1 (fr) 1997-04-23 1998-03-11 Répartiteur de coulée continue des métaux, du type comportant au moins une torche à plasma pour le réchauffage du métal

Country Status (7)

Country Link
US (1) US6110416A (fr)
EP (1) EP0875319B1 (fr)
AT (1) ATE219402T1 (fr)
CA (2) CA2235202A1 (fr)
DE (1) DE69806094T2 (fr)
ES (1) ES2176924T3 (fr)
FR (1) FR2762535B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454295C2 (ru) * 2010-08-26 2012-06-27 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Конструкция двухручьевого ковша с камерами для плазменного подогрева жидкого металла
RU2477197C1 (ru) * 2011-11-23 2013-03-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Промежуточный ковш для разливки стали с камерами для плазменного подогрева жидкого металла
RU2478021C1 (ru) * 2011-12-28 2013-03-27 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Промежуточный ковш мнлз для плазменного подогрева металла
RU2481174C1 (ru) * 2012-01-18 2013-05-10 Общество с ограниченной ответственностью "АГНИ-К" Промежуточный ковш
RU2490089C1 (ru) * 2012-03-19 2013-08-20 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН) Двухручьевой промежуточный ковш установки непрерывной разливки стали
EP3453472A1 (fr) 2014-05-21 2019-03-13 Novelis Inc. Commande d'écoulement de métal fondu sans contact
CN105837230B (zh) * 2016-03-22 2019-02-05 北京利尔高温材料股份有限公司 一种中间包复合工作衬及其制作方法与中间包
CN108356254A (zh) * 2018-02-13 2018-08-03 东北大学 一种异形多流连铸感应加热中间包装置
CN109193288B (zh) * 2018-08-09 2023-10-10 云南科威液态金属谷研发有限公司 一种运动件间的导电系统
CN114226664B (zh) * 2021-12-30 2023-09-15 江西慧高导体科技有限公司 一种连续熔炼炉及具有该连续熔炼炉的铸锭系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110741A (ja) * 1982-12-17 1984-06-26 Nippon Steel Corp プラズマア−ク加熱における着火方法
US4686687A (en) * 1986-03-04 1987-08-11 Nippon Steel Corporation Anode system for plasma heating usable in a tundish
JPH03138052A (ja) * 1989-10-23 1991-06-12 Nkk Corp 加熱装置付きのタンディッシュ
EP0453188A2 (fr) * 1990-04-19 1991-10-23 The BOC Group plc Réchauffage du plasma utilisé dans un tundish
JPH03285745A (ja) * 1990-03-30 1991-12-16 Nkk Corp 鋼の連続鋳造方法及び装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3031689A1 (de) * 1980-08-22 1982-03-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Keramische brennkammer
AT382890B (de) * 1982-10-05 1987-04-27 Voest Alpine Ag Plasmaschmelzofen
JPH0740831Y2 (ja) * 1989-04-28 1995-09-20 日本碍子株式会社 バーナータイル
JP3035217B2 (ja) * 1996-05-28 2000-04-24 東京窯業株式会社 溶融金属用容器の羽口れんが

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110741A (ja) * 1982-12-17 1984-06-26 Nippon Steel Corp プラズマア−ク加熱における着火方法
US4686687A (en) * 1986-03-04 1987-08-11 Nippon Steel Corporation Anode system for plasma heating usable in a tundish
JPH03138052A (ja) * 1989-10-23 1991-06-12 Nkk Corp 加熱装置付きのタンディッシュ
JPH03285745A (ja) * 1990-03-30 1991-12-16 Nkk Corp 鋼の連続鋳造方法及び装置
EP0453188A2 (fr) * 1990-04-19 1991-10-23 The BOC Group plc Réchauffage du plasma utilisé dans un tundish

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 225 (C - 247) 16 October 1984 (1984-10-16) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 354 (M - 1155) 6 September 1991 (1991-09-06) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 119 (M - 1225) 25 March 1992 (1992-03-25) *

Also Published As

Publication number Publication date
FR2762535A1 (fr) 1998-10-30
EP0875319B1 (fr) 2002-06-19
FR2762535B1 (fr) 1999-05-28
CA2235202A1 (fr) 1998-10-23
DE69806094T2 (de) 2002-12-19
CA2295393A1 (fr) 2000-04-10
DE69806094D1 (de) 2002-07-25
US6110416A (en) 2000-08-29
ATE219402T1 (de) 2002-07-15
ES2176924T3 (es) 2002-12-01

Similar Documents

Publication Publication Date Title
EP0875319B1 (fr) Répartiteur de coulée continue des métaux, du type comportant au moins une torche à plasma pour le réchauffage du métal
FR2703041A1 (fr) Procédé et dispositif pour la fusion du verre.
EP0094926B1 (fr) Orifice d&#39;injection d&#39;un gaz de protection dans un tube de coulée
EP0897770A1 (fr) Procédé de réchauffage d&#39;un métal liquide dans un répartiteur de coulée continue au moyen d&#39;une torche à plasma, et répartiteur pour sa mise en oeuvre
FR2611151A1 (fr) Dispositif de prechauffage et/ou d&#39;obturation et de debouchage d&#39;un orifice de coulee et procede pour sa mise en oeuvre
WO1992010325A1 (fr) Ouverture d&#39;un trou de coulee avec une torche a plasma
CH358168A (fr) Four électrique à arc et utilisation de ce four
EP0649477B1 (fr) Four electrique pour fusionner de ferraille
CA1258170A (fr) Poches de coulee pour metal en fusion
FR2537261A1 (fr) Procede et dispositif pour l&#39;utilisation d&#39;un four a arc a courant continu
BE1004612A6 (fr) Dispositif de prechauffage d&#39;une busette de coulee d&#39;un metal en fusion.
EP0406208B1 (fr) Dispositif de préchauffage d&#39;une busette de coulée d&#39;un métal en fusion et installation de coulée d&#39;un métal équipée de ce dispositif
CA2204137C (fr) Une poche de chauffage et de coulee de metaux liquides
FR2627715A1 (fr) Busette de coulee pour ouverture assistee, dispositif l&#39;incorporant et procede de mise en oeuvre
EP1258303A1 (fr) Nouveau four de coulage destine au moulage
EP0916435B1 (fr) Four de coulée pour moulage automatique
FR2476292A1 (fr) Equipement pour trou de coulee d&#39;un four de fusion de matieres non metalliques
FR2483589A1 (fr) Perfectionnements aux procedes de recharge des refractaires des recipients metallurgiques
FR2518915A1 (fr) Procede de coulee de metaux, poche pour sa mise en oeuvre et pieces obtenues par ledit procede
BE891980A (fr) Procede pour deposer un revetement protecteur sur la paroi interieure d&#39;un panier repartiteur de coulee continue
FR2690365A1 (fr) Dispositif de chauffage pour une installation de coulée continue de métal.
BE861520A (fr) Perfectionnements aux recipients metallurgiques
FR2497618A1 (fr) Four a induction a canal
FR2488245A1 (fr) Procede et dispositif de fusion par induction directe avec coulee en continu eventuelle d&#39;un melange de deux ou plusieurs oxydes refractaires
LU84609A1 (fr) Procede pour deposer un revetement protecteur sur la paroi interieure d&#39;un panier repartiteur de coulee continue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990504

AKX Designation fees paid

Free format text: AT BE DE ES FR GB IT LU NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 219402

Country of ref document: AT

Date of ref document: 20020715

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69806094

Country of ref document: DE

Date of ref document: 20020725

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020827

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176924

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030304

Year of fee payment: 6

Ref country code: AT

Payment date: 20030304

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030321

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040311

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040311

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040312

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

BERE Be: lapsed

Owner name: *SOLLAC

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050311

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040312