EP0870990B1 - Turbine à gaz avec chambre de combustion toroidale - Google Patents

Turbine à gaz avec chambre de combustion toroidale Download PDF

Info

Publication number
EP0870990B1
EP0870990B1 EP97810167A EP97810167A EP0870990B1 EP 0870990 B1 EP0870990 B1 EP 0870990B1 EP 97810167 A EP97810167 A EP 97810167A EP 97810167 A EP97810167 A EP 97810167A EP 0870990 B1 EP0870990 B1 EP 0870990B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
interior space
burners
annular
toroidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810167A
Other languages
German (de)
English (en)
Other versions
EP0870990A1 (fr
Inventor
Jakob Prof. Dr. Keller
Roger Suter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP97810167A priority Critical patent/EP0870990B1/fr
Priority to DE59710046T priority patent/DE59710046D1/de
Priority to CNB981041957A priority patent/CN1149354C/zh
Priority to US09/044,910 priority patent/US6192669B1/en
Publication of EP0870990A1 publication Critical patent/EP0870990A1/fr
Application granted granted Critical
Publication of EP0870990B1 publication Critical patent/EP0870990B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/425Combustion chambers comprising a tangential or helicoidal arrangement of the flame tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/52Toroidal combustion chambers

Definitions

  • the present invention relates to a combustion chamber according to the preamble of the claim 1. It also relates to a method for operating such a combustion chamber.
  • Combustion chambers of modern gas turbine groups are preferably designed as ring combustion chambers. In the direction of flow, they are arranged axially between the compressor and the turbine, taking care that the hot gases formed there are optimally guided between the two flow machines, normally between the compressor and the turbine, in terms of flow and combustion technology. This regularly leads to the fact that such ring combustion chambers have a relatively long axial extension, in particular the combustion-technical specifications or Minimum requirements are met. The combustion-related aspects exert a not insignificant influence on the absolute axial length of such combustion chambers. The length of a main ring combustion chamber is regularly decisive for the design of the entire gas turbine group, for example whether more than two bearings must then be provided for the rotor support or whether the gas turbine group must be designed with two shafts.
  • elongated combustion chambers tend to cause pulsations to initiate within the combustion chamber section, these pulsations then adversely affect the operation of the burners, especially if these premix burners work with an integrated premixing section and as a flame holder have a backflow zone.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a combustion chamber as well To provide methods of operating them which are at least those listed above Can overcome disadvantages.
  • a major advantage of the invention is that the combustion chamber while maintaining high combustion efficiency and minimizing pollutant emissions are extremely compact has axial length, such that this combustion chamber in combination none with the turbomachines of a gas turbine group Influence more on the rotor length.
  • combustion chamber is basically of the simplest design. Your combustion and fluidic conception allows an optimal fluidic operation when loading the downstream turbine.
  • this combustion chamber is essentially toroidal Configuration, with certain deviations from an ideal torus shape permitted are.
  • Such a combustion chamber can be easily between any two Arrange turbomachines.
  • the combustion chamber according to the invention almost predestined as a retrofit unit, for example instead of one Silo combustion chamber to be installed in existing gas turbines.
  • this combustion chamber unfolds, especially in the case of premix burns. with a view to maximizing efficiency and minimizing of pollutant emissions, their full strength.
  • This combustion chamber also allows efficient cooling of your liner with a minimized Amount of the cooling medium used in each case. This is a very important aspect, especially in those cases where the cooling of the Combustion chamber uses a lot of air from the compressor.
  • this combustion chamber is also suitable, both with and without loss of quality to be operated with liquid as well as gaseous fuels.
  • liquid fuel as can be seen below is specified in more detail, an excellent minimization of pollutant emissions achieve.
  • the excellent flame stabilization from the above-mentioned fluidic relationships minimizes pollutant emissions, especially with regard to NOx emissions. With these, emissions of less than 5 vppm (15% O 2 ) can be achieved.
  • the other pollutant emissions such as CO and UHC, can also be reduced with the combustion chamber according to the invention, because the toroidal space, ie the vortex guidance of the hot gases, also acts as an intensive, compact burnout zone.
  • the likewise low pollutant emissions at part load have already been discussed above.
  • Fig. 1 shows a combustion chamber for operating a gas turbine group.
  • This combustion chamber 1 has an annular toroidal shape, which is only hinted at shown rotor 4 extends.
  • This toroidal combustion chamber 1 is also of an extremely compact radial design, such that that it can be easily accommodated within a housing 2 which is suitable for an annular combustion chamber is designed.
  • this toroidal combustion chamber 1 has a minimized axial expansion, so that the latter in itself has no influence on the rotor length of this gas turbine group exercises, with which such a rotor then fails very briefly, which is under other positive effects on the storage of the same.
  • the combustion technology Processes in the axial flow direction within a state of the art belonging ring combustion chamber run in the toroidal described here Combustion chamber 1, within the toroidal interior 8, at least in itself Quality, the loading of the downstream turbine 3 then optimal takes place, because in the toroidal interior 8 itself forms Hot gas flow 9, which has a uniform temperature and pressure profile. Operation of the toroidal combustion chamber 1 is accomplished by a number of premix burners 5 maintained in the circumferential direction of the combustion chamber 1 are distributed regularly or irregularly.
  • this premix burner 5 is preferably based on the proposals according to EP-B1-0 321 809 or EP-A2-0 704 657,
  • This Premix burners 5 are fed from a plenum 6 with combustion air 7 fed, which comes from a compressor, not shown.
  • the Combustion air 7 flows tangentially into the premix burner 5 and generates it there a swirl flow, which propagates in the toroidal interior 8 and there in a vortex flow from hot gases 9 with a stable core 10 passes over.
  • This hot gas flow 9 then flows continuously and evenly Consistency and without flow deflections into a hot gas channel 11, the end of which is preferably equipped with guide vanes 12 in the circumferential direction.
  • the fluidic The quality of the vortex hot gas flow 9 can be changed accordingly by the premix burner 5, for example, on the circumference of the toroidal Combustion chamber 1 is at right angles to the loading plane of the turbine 3 to be ordered. Another arrangement can be at an angle of over 90 ° have the exposure level mentioned. With all arrangements remains the tangential inflow of those induced by the premix burners 5 Generation of the hot gases 9 preferably exist in the toroidal interior 8, thus the stability of the annular core 10 of this hot gas flow remains guaranteed.
  • the activation or deactivation of the individual premix burners 5 happens fluently here, i.e.
  • the toroidal combustion chamber 1 is enclosed by a shell 13. By one of this shell 13 opposite the wall of the combustion chamber 1 formed space 14 flows in a cooling air flow 15, the is branched off from the compressor unit via an annular channel 17.
  • Quantity of cooling air flow 16 basically in the plenum 6.
  • This used for cooling Air quantity 16 can meanwhile, for example, in the combustion chamber 1 or in the premix burners 5 are introduced, in each case at a suitable point. What the Swirl flows from the burners 5 are concerned, so make sure that their Number remains subcritical over all operating stages of the combustion chamber 1.
  • gas tightness is basically the case for a base load of the machine of the vortex core 10 is largely uniform, which is due to its stability and affects the dwell times of the hot gases in this area.
  • the vortex core 10 formed surprisingly develops an immediate stabilization the flame front in the sense of a disembodied flame holder the individual peripherally arranged burners, with which the efforts flame stabilization in the area of control of these burners is not an absolute Develop priority more.
  • FIG. 2 shows the toroidal combustion chamber 1 from the outside, according to view II from FIG. 1, this representation detached from the rest of the gas turbine infrastructure is. From this figure, the geometric design of the Combustion chamber and the division and position of the premix burner 5. The premix burners 5 are tangential to the circumference of the toroidal one Combustion chamber 1 arranged; moreover, they point in at an angle Direction of flow. On the fluid dynamic aspects from this constellation has already been discussed in more detail in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Claims (9)

  1. Chambre de combustion (1) d'un turbogroupe à gaz, qui présente au moins un espace intérieur toroïdal annulaire (8), qui présente essentiellement un canal de gaz chauds (11) raccordé en direction périphérique dans le plan d'admission d'une turbine (3) faisant partie du turbogroupe à gaz et installée à la suite, caractérisée en ce qu'un certain nombre de brûleurs à prémélange (5) se trouvant en communication active avec l'espace intérieur (8) sont disposés sur une périphérie de la chambre de combustion (1).
  2. Chambre de combustion suivant la revendication 1, caractérisée en ce que le canal de gaz chauds (11) forme un prolongement de même sens en ce qui concerne l'écoulement, de l'écoulement tourbillonnaire (9) se formant dans l'espace intérieur toroïdal annulaire de la chambre de combustion (1).
  3. Chambre de combustion suivant la revendication 2, caractérisée en ce que le canal de gaz chauds (11) est garni à son extrémité d'aubes directrices (12) se trouvant en communication active avec des aubes mobiles de la turbine (3) installée à la suite.
  4. Chambre de combustion suivant la revendication 1, caractérisée en ce que les brûleurs (5) sont disposés tangentiellement par rapport à l'axe annulaire neutre de l'espace intérieur toroïdal annulaire (8).
  5. Chambre de combustion suivant au moins une des revendications 1 ou 4, caractérisée en ce que les brûleurs (5) sont disposés sous un certain angle par rapport à l'axe perpendiculaire de l'espace intérieur toroïdal annulaire (8).
  6. Chambre de combustion suivant la revendication 1, caractérisée en ce que l'espace intérieur toroïdal annulaire (8) est enveloppé par une coquille (13) et en ce qu'un fluide de refroidissement (15) circule dans l'espace intermédiaire (14) formé par la coquille (13) par rapport à la forme extérieure de l'espace intérieur toroïdal annulaire (8).
  7. Chambre de combustion suivant la revendication 1, caractérisée en ce que les brûleurs (5) sont en communication active avec un plénum (6) et en ce qu'un air de combustion (7) venant de ce plénum alimente les brûleurs (5).
  8. Procédé de conduite d'une chambre de combustion (1) suivant la revendication 1, dans l'espace intérieur toroïdal annulaire (8) de laquelle il se forme un écoulement tourbillonnaire (9), avec un noyau de vortex (10), composé de gaz chauds et continu autour de l'axe annulaire de celui-ci, et le sens de rotation de l'écoulement tourbillonnaire (9) induit le plan d'échappement des gaz chauds hors de l'espace intérieur (8) vers une turbine (3) installée à la suite, caractérisé en ce qu'un certain nombre de brûleurs à prémélange (5) sont en communication active avec l'espace intérieur (8).
  9. Procédé suivant la revendication 8, caractérisé en ce que le sens de rotation de l'écoulement tourbillonnaire (9) est déterminé par le mode de fonctionnement des brûleurs (5) et par le plan d'admission de l'air de combustion dans l'espace intérieur.
EP97810167A 1997-03-20 1997-03-20 Turbine à gaz avec chambre de combustion toroidale Expired - Lifetime EP0870990B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97810167A EP0870990B1 (fr) 1997-03-20 1997-03-20 Turbine à gaz avec chambre de combustion toroidale
DE59710046T DE59710046D1 (de) 1997-03-20 1997-03-20 Gasturbine mit toroidaler Brennkammer
CNB981041957A CN1149354C (zh) 1997-03-20 1998-03-20 汽轮机燃烧室
US09/044,910 US6192669B1 (en) 1997-03-20 1998-03-20 Combustion chamber of a gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810167A EP0870990B1 (fr) 1997-03-20 1997-03-20 Turbine à gaz avec chambre de combustion toroidale

Publications (2)

Publication Number Publication Date
EP0870990A1 EP0870990A1 (fr) 1998-10-14
EP0870990B1 true EP0870990B1 (fr) 2003-05-07

Family

ID=8230183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810167A Expired - Lifetime EP0870990B1 (fr) 1997-03-20 1997-03-20 Turbine à gaz avec chambre de combustion toroidale

Country Status (4)

Country Link
US (1) US6192669B1 (fr)
EP (1) EP0870990B1 (fr)
CN (1) CN1149354C (fr)
DE (1) DE59710046D1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59808754D1 (de) * 1997-12-19 2003-07-24 Mtu Aero Engines Gmbh Vormischbrennkammer für eine Gasturbine
DE19860583A1 (de) * 1998-12-29 2000-07-06 Abb Alstom Power Ch Ag Brennkammer für eine Gasturbine
EP1284391A1 (fr) * 2001-08-14 2003-02-19 Siemens Aktiengesellschaft Chambre de combustion pour turbines à gaz
GB2398863B (en) * 2003-01-31 2007-10-17 Alstom Combustion Chamber
DE10325455A1 (de) * 2003-06-05 2004-12-30 Alstom Technology Ltd Verfahren zum Betrieb einer ringförmigen Brenneranordnung in einer Zwischenerhitzungsstufe einer mehrstufigen Verbrennungseinrichtung einer Gasturbine
US20060283181A1 (en) * 2005-06-15 2006-12-21 Arvin Technologies, Inc. Swirl-stabilized burner for thermal management of exhaust system and associated method
US20090287120A1 (en) * 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8015821B2 (en) * 2008-01-11 2011-09-13 Spytek Aerospace Corporation Apparatus and method for a gas turbine entrainment system
BRPI0914492A2 (pt) * 2008-10-30 2015-10-27 Power Generation Technologies Dev Fund L P "dispositivo, toroide de combustão, câmara de combustão, método, câmara de combustão toroidal, lúmen, primeira superfície, segunda superfície, etapa de separação, etapa de moldagem, etapa de liberação, moldagem e catálise"
US9052116B2 (en) 2008-10-30 2015-06-09 Power Generation Technologies Development Fund, L.P. Toroidal heat exchanger
ATE540265T1 (de) * 2009-04-06 2012-01-15 Siemens Ag Drallvorrichtung, brennkammer und gasturbine mit verbessertem drall
JP5629321B2 (ja) 2009-09-13 2014-11-19 リーン フレイム インコーポレイテッド 燃焼装置用の入口予混合器
DE102010023816A1 (de) 2010-06-15 2011-12-15 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammeranordnung
DE102011108887A1 (de) 2011-07-28 2013-01-31 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenzentripetalringbrennkammer sowie Verfahren zur Strömungsführung
US10295191B2 (en) 2011-12-31 2019-05-21 Rolls-Royce Corporation Gas turbine engine and annular combustor with swirler
US9879862B2 (en) 2013-03-08 2018-01-30 Rolls-Royce North American Technologies, Inc. Gas turbine engine afterburner
RU2544020C1 (ru) * 2014-01-15 2015-03-10 Открытое акционерное общество "Газэнергосервис" Способ монтажа внутренних вставок корпуса турбины газоперекачивающего агрегата
USD791930S1 (en) * 2015-06-04 2017-07-11 Tropitone Furniture Co., Inc. Fire burner
US10197291B2 (en) 2015-06-04 2019-02-05 Tropitone Furniture Co., Inc. Fire burner
USD787041S1 (en) * 2015-09-17 2017-05-16 Whirlpool Corporation Gas burner
US10837651B2 (en) 2015-09-24 2020-11-17 Whirlpool Corporation Oven cavity connector for operating power accessory trays for cooking appliance
US11777190B2 (en) 2015-12-29 2023-10-03 Whirlpool Corporation Appliance including an antenna using a portion of appliance as a ground plane
US9810434B2 (en) * 2016-01-21 2017-11-07 Siemens Energy, Inc. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine
US10704787B2 (en) 2016-03-30 2020-07-07 General Electric Company Closed trapped vortex cavity pilot for a gas turbine engine augmentor
US10145568B2 (en) 2016-06-27 2018-12-04 Whirlpool Corporation High efficiency high power inner flame burner
RU2638420C1 (ru) * 2016-07-05 2017-12-13 Акционерное общество "Конструкторское бюро химавтоматики" Камера сгорания безгенераторного жрд
US10655859B2 (en) 2017-01-11 2020-05-19 Honeywell International Inc. Turbine scroll assembly for gas turbine engine
US10551056B2 (en) 2017-02-23 2020-02-04 Whirlpool Corporation Burner base
US10823418B2 (en) * 2017-03-02 2020-11-03 General Electric Company Gas turbine engine combustor comprising air inlet tubes arranged around the combustor
US10451290B2 (en) 2017-03-07 2019-10-22 Whirlpool Corporation Forced convection steam assembly
US10660162B2 (en) 2017-03-16 2020-05-19 Whirlpool Corporation Power delivery system for an induction cooktop with multi-output inverters
US10627116B2 (en) 2018-06-26 2020-04-21 Whirlpool Corporation Ventilation system for cooking appliance
US10619862B2 (en) 2018-06-28 2020-04-14 Whirlpool Corporation Frontal cooling towers for a ventilation system of a cooking appliance
US10837652B2 (en) 2018-07-18 2020-11-17 Whirlpool Corporation Appliance secondary door

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR833521A (fr) * 1937-02-13 1938-10-24 Georges Jendrassik Procédé de travail pour turbines à gaz et turbnes à gaz pour la réalisation de ce procédé
CH301137A (de) * 1950-11-17 1954-08-31 Power Jets Res & Dev Ltd Verbrennungseinrichtung.
US3010281A (en) * 1957-12-24 1961-11-28 Adolph J Cervenka Toroidal combustion chamber
US3240016A (en) * 1960-03-16 1966-03-15 Nathan C Price Turbo-jet powerplant
US3309866A (en) * 1965-03-11 1967-03-21 Gen Electric Combustion process and apparatus
BE674852A (fr) * 1966-01-07 1966-05-03
US3722216A (en) * 1971-01-04 1973-03-27 Gen Electric Annular slot combustor
CH674561A5 (fr) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US4928479A (en) * 1987-12-28 1990-05-29 Sundstrand Corporation Annular combustor with tangential cooling air injection
CH679799A5 (fr) * 1988-07-25 1992-04-15 Christian Reiter
US5241818A (en) * 1989-07-13 1993-09-07 Sundstrand Corporation Fuel injector for a gas turbine engine
US5109671A (en) * 1989-12-05 1992-05-05 Allied-Signal Inc. Combustion apparatus and method for a turbine engine
DE4232383A1 (de) * 1992-09-26 1994-03-31 Asea Brown Boveri Gasturbogruppe
DE4435266A1 (de) 1994-10-01 1996-04-04 Abb Management Ag Brenner

Also Published As

Publication number Publication date
EP0870990A1 (fr) 1998-10-14
DE59710046D1 (de) 2003-06-12
CN1195088A (zh) 1998-10-07
CN1149354C (zh) 2004-05-12
US6192669B1 (en) 2001-02-27

Similar Documents

Publication Publication Date Title
EP0870990B1 (fr) Turbine à gaz avec chambre de combustion toroidale
EP0620362B1 (fr) Turbine à gaz
DE102007004864C5 (de) Brennkammer einer Gasturbine und Verbrennungssteuerverfahren für eine Gasturbine
DE69523992T2 (de) Regelung einer Gasturbinenbrennkammer
DE19615910B4 (de) Brenneranordnung
DE69413352T2 (de) Verstellbaren Wirbelleitschaufeln einer Brennkammer einer Gasturbine
DE69405281T2 (de) Vormischbrennkammer mit konzentrischen Ringkanälen
DE69513542T2 (de) Brennstoffdüse
DE69906677T2 (de) Zweistoffdüse
DE102006003577B4 (de) Brennkammer einer Gasturbine
DE69515931T2 (de) Regelung einer Gasturbinenbrennkammer
EP1654496B1 (fr) Bruleur et procede pour faire fonctionner une turbine a gaz
DE69006861T2 (de) Brenner und Brennstoffinjektor-Anordnung.
EP0576697B1 (fr) Chambre de combustion pour turbine à gaz
CH698007A2 (de) Gestufte Mehrringdüse mit radialem Einlauf für mageres Vorgemisch und Zweistoff-Ringrohr-Brennkammer.
EP0795685A1 (fr) Turbine à gaz multi-étagée avec refroidissement par vapeur et réinjection en chambre de combustion
EP0731255A1 (fr) Système de turbine pour centrales d'électricité
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP0687860A2 (fr) Chambre de combustion à allumage automatique
EP0571782A1 (fr) Procédé de fonctionnement d'une chambre de combustion pour turbine à gaz
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
EP1141628A1 (fr) Bruleur pour generateur de chaleur
DE102011000589A1 (de) Axial gestufte Vormischbrennkammer
EP0193029B1 (fr) Chambre de combustion pour turbines à gaz
DE112019000871T5 (de) Brennkammer und damit ausgestattete gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19990317

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20011205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030507

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710046

Country of ref document: DE

Date of ref document: 20030612

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031016

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080321

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090320