EP0870848B1 - Niobium containing steel and process for making flat products from this steel - Google Patents

Niobium containing steel and process for making flat products from this steel Download PDF

Info

Publication number
EP0870848B1
EP0870848B1 EP98200844A EP98200844A EP0870848B1 EP 0870848 B1 EP0870848 B1 EP 0870848B1 EP 98200844 A EP98200844 A EP 98200844A EP 98200844 A EP98200844 A EP 98200844A EP 0870848 B1 EP0870848 B1 EP 0870848B1
Authority
EP
European Patent Office
Prior art keywords
niobium
steel
weight
proportion
steel containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP98200844A
Other languages
German (de)
French (fr)
Other versions
EP0870848A1 (en
Inventor
Philippe Harlet
Helmut Ruhl
Firmin Beco
Heiko Reichelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Liege Upstream SA
Original Assignee
Cockerill Sambre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3890428&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0870848(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Cockerill Sambre SA filed Critical Cockerill Sambre SA
Publication of EP0870848A1 publication Critical patent/EP0870848A1/en
Application granted granted Critical
Publication of EP0870848B1 publication Critical patent/EP0870848B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • Niobium steels of this kind have already been known for a long time (see for example EP-0101740, DE-19547181 and EP-A-0421087).
  • the titanium-free steel is a steel with an ultra-low carbon content, namely less than 0.007% by weight, in which the Nb content is very much greater than the nitrogen content, around 20 times. Nitrogen is therefore in this steel entirely fixed by nitrobutene niobium and, if boron is used, it remains free and not nitrided. Boron is intended to protect the joints of ferritic grains in order to avoid brittleness when cold deformed. This steel allows the production to obtain a sheet equivalent or close to IF steels (interstitial free) which have very high drawing coefficients r, but also a very high ⁇ r (high plane anisotropy).
  • EP-0101740 it is proposed to manufacture flat products whose Nb content is less than or equivalent to the N content. Following hot rolling at a final temperature below Ar 3 , rolling when cold and annealed, products are obtained having low mechanical strength properties, sometimes even lower than the usual minimum requirements.
  • a niobium steel is manufactured, in which the Nb content must be at least 6 times that of nitrogen.
  • the manufacturing process here also includes hot rolling at a final temperature below Ar 3 , cold rolling and annealing, as well as baking after application of varnish.
  • the final products obtained have a significantly higher niobium content, for properties of mechanical resistance that are not much improved.
  • EP-B-0400031 finally proposes, by way of comparative example, a niobium steel without titanium, having a content comprising more than 12 times the content of N. Following hot rolling at a temperature final higher than Ar 3 , cold rolling and annealing, a product is obtained which, according to the patent itself, is not suitable for deep drawing, whatever the degrees of reduction used during cold rolling.
  • Document EP-A-0 816 524 discloses a low carbon steel having a chemical composition by weight: C 0.0010-0.01%; If 0-0.2%; Mn 0.1-1.5%; P 0-0.05%; S 0-0.02%; ground. Al 0.03-0.10%; N 0-0.0040%; at least one element chosen from the group consisting of Nb 0.005-0.08% and Ti 0.01-0.07%; the remainder Fe and inevitable impurities, the contents of Nb, Ti and C having to satisfy additional conditions.
  • Document EP-A-0 822 266 discloses a low carbon steel having a chemical composition by weight: C 0-0.06%; If 0-0.03%; Mn 0.1-0.3%; P 0-0.02%; S 0.005-0.015%; ground. Al 0.01-0.10%; N 0-0.004%; B 0.0005-0.0015; O 0-0.0025%; the remainder Fe and inevitable impurities, the contents of O and S as well as B and N having to satisfy additional conditions.
  • the present invention aims to provide a niobium steel having, in terms of mechanical properties on cold-rolled and annealed strips, a favorable compromise between the strength properties, such as for example the elastic limit and the load of rupture, and the properties of ductility, such as uniform elongation, work hardening coefficient and total elongation.
  • a niobium steel as described at the start characterized in that this steel contains a niobium content greater than 0 and at most equal to four times the N content and a boron content greater than 0 and at most equal to 0.012% by weight or a zirconium content greater than 0 and at most equal to 0.080% by weight, this boron or zirconium content being sufficient to fix nitrogen not fixed by niobium.
  • This steel has the advantage of being able to have a low niobium content, and therefore of not altering the ductility properties of the steel, while obtaining an assured and preferably early fixing of the nitrogen by the simultaneous presence of boron or zirconium and niobium.
  • the niobium content is at most equal to three times this.
  • the steel contains an Nb content of less than 0.040% by weight, and preferably between 0.005 and 0.030% by weight.
  • it contains a boron content of between 0.0005 and 0.012% by weight, preferably between 0.0015 and 0.012% by weight, or also a zirconium content between 0.020 and 0.080% by weight.
  • the carbon content is equal to or greater than 0.010% by weight.
  • the amount of Nb can thus be relatively low compared to the carbon content, which makes it possible to obtain a steel with favorable mechanical properties.
  • This process offers the advantage of a secure fixation of nitrogen in the form of boron nitride or zirconium as well as in the form of niobium carbonitride, and this at a very early stage in the process.
  • the simultaneous presence of boron or zirconium and niobium also promotes a reduced size of the austenitic grain during hot rolling.
  • the niobium present is advantageously redissolved.
  • the final temperature of hot rolling is preferably equal to or less than 900 ° C. It is precisely at this temperature, that is to say between the transformation temperature ⁇ ⁇ ⁇ (Ar 3 ) and 900 ° C., that the boron nitrides and the carbon nitrides of Nb precipitate in the process according to the invention. , which fixes nitrogen.
  • the maximum temperature mentioned above is not, however, critical and should only be considered as a preferred temperature.
  • the reduction rate is of the order of 40 to 85%, preferably 55-80%.
  • the niobium steel according to the invention is usually a conventional production or electrical production steel which is cast continuously.
  • This steel must be extra soft, that is to say have an extremely low carbon content, less than 0.100% by weight, being able to reach minimum contents up to 0.020% or more.
  • the carbon content will not exceed a value of less than 0.010% by weight.
  • This steel must also be quenched with aluminum with a content of less than 0.080% by weight.
  • Nb, B and Zr are calculated mainly as a function of the nitrogen present in the steel being treated.
  • Nb added is therefore in reality much lower stoichiometrically than nitrogen.
  • Nitrogen not fixed by niobium is fixed by B or Zr, which allows an addition of Nb lower than what is usually necessary, to obtain sufficient mechanical resistance properties from a niobium steel , without titanium. This minimal addition of Nb makes it possible to simultaneously maintain good ductility properties. It also offers appreciable economic advantages given the significant cost of niobium.
  • the steel described above is poured into slabs, which are reheated in a conventional oven, for example an oven with movable beams or a pushing oven, so that they reach a core temperature greater than or equal to 1000 ° C. sufficient to re-dissolve the precipitated niobium.
  • the strip is then cooled in a controlled manner and finally wound up at a temperature of the order of 625 ° C ⁇ 125 ° C.
  • the strip After continuous pickling in conventional lines (HCl or H 2 SO 4 ), the strip is cold re-rolled, with a thickness reduction rate of between 40 and 85%.
  • the cold rolled strip is then subjected to recrystallization annealing to give it the necessary mechanical properties.
  • This annealing can be carried out in the form of a static annealing, for example in a tight or expanded coil, at a temperature of the order of 620-680 ° C, or in the form of a continuous annealing at a temperature of 680- 850 ° C. This latter annealing may or may not be combined with any covering by dipping or other methods.
  • a final rolling step is also carried out, in the form of a final work hardening, in order to eliminate the phenomena of "Lüders bands" and to ensure a good surface roughness as well as a flatness of the product.
  • Niobium steel with extremely low carbon content without boron.
  • Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 50 350 8 12 6 40 6.0 0 50
  • Niobium steel according to the invention with addition of boron.
  • Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 55 300 7 14 3 50 5.6 4.5 7
  • Niobium steel according to the invention with addition of boron.
  • Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 45 270 19 12 6 43 6.0 4.0 12
  • Niobium steel with an extremely low carbon content with the addition of zirconium.
  • Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb Zr 35 200 5 9 4 47 4.9 0 10 30
  • the extra mild niobium steel, without boron and without zirconium, of Comparative Example 3 has good mechanical strength values, but its ductility properties are perfectly unsatisfactory, whereas it is generally required to be elongated. rupture greater than or equal to 32% and a work hardening coefficient greater than or equal to 0.170.
  • niobium steels according to the invention offer both mechanical strength properties much greater than the usual lower limits and good ductility properties, thus providing a compromise which is entirely favorable for subsequent treatments.
  • the niobium steels according to the invention exhibit, on cold-rolled and annealed strips, mechanical properties in the plane of the strip which are substantially independent of the direction relative to the direction of rolling as well as 'a rational contraction in width substantially identical to a rational contraction in thickness. They therefore meet all the conditions for undergoing treatments of the difficult stamping type and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Extra mild niobium steel is free of titanium and comprises no more than following by weight: 0.100% carbon, 1.000% manganese, 0.100% phosphorous, 0.020% sulphur, 0.080% aluminium, 0.012% nitrogen and 0.500% silicon, plus an amount of niobium stoichiometrically less than the N content and enough boron or zirconium to fix all the N which is not fixed by the Nb. The rest is iron plus any impurities. Also claimed is casting the steel into a slab at least 1000 degrees C, then hot rolling to form a strip with a final rolling temperature above Ar3, winding into a reel between 500 and 750 degrees C, cold rolling to the desired thickness, annealing to recrystallise and finally shaping the finished article.

Description

La présente invention est relative à un acier au niobium, extra doux, calmé à l'aluminium et exempt de titane, pour produits plats laminés à froid et recuits, présentant une composition chimique en % en poids comprenant :

  • de 0,010% à au maximum 0,100 % de C,
  • au maximum 1,000 % de Mn,
  • au maximum 0,100 % de P,
  • au maximum 0,020 % de S,
  • au maximum 0,080 % de Al,
  • au maximum 0,500 % de Si,
  • N ayant une teneur supérieure à 0 et au maximum de 0.012%,
  • le reste étant du fer et des impuretés résiduelles.
The present invention relates to a niobium steel, extra mild, calmed with aluminum and free from titanium, for cold-rolled and annealed flat products, having a chemical composition in% by weight comprising:
  • from 0.010% to a maximum of 0.100% of C,
  • maximum 1,000% of Mn,
  • maximum 0.100% of P,
  • maximum 0.020% of S,
  • maximum 0.080% Al,
  • maximum 0.500% of Si,
  • N having a content greater than 0 and a maximum of 0.012%,
  • the remainder being iron and residual impurities.

On connaît déjà depuis longtemps dès aciers au niobium de ce genre (voir par exemple EP-0101740, DE-19547181 et EP-A-0421087).Niobium steels of this kind have already been known for a long time (see for example EP-0101740, DE-19547181 and EP-A-0421087).

L'acier exempt de titane, indiqué dans la EP-A-0421087, est un acier à teneur ultrabasse en carbone, à savoir inférieure à 0,007 % en poids, dans lequel la teneur en Nb est très largement supérieure à la teneur en azote, de l'ordre de 20 fois. L'azote est donc dans cet acier entièrement fixé par le niobium nitrurigène et, si du bore est utilisé, il reste libre et non nitruré. Le bore est prévu pour protéger les joints des grains ferritiques en vue d'éviter la fragilité à la déformation à froid. Cet acier permet à l'élaboration d'obtenir une tôle équivalente ou proche des aciers IF (interstitiel free) qui présentent des coéfficients d'emboutissage r très élevés, mais également un Δr très élevé (forte anisotropie plane).The titanium-free steel, indicated in EP-A-0421087, is a steel with an ultra-low carbon content, namely less than 0.007% by weight, in which the Nb content is very much greater than the nitrogen content, around 20 times. Nitrogen is therefore in this steel entirely fixed by nitrobutene niobium and, if boron is used, it remains free and not nitrided. Boron is intended to protect the joints of ferritic grains in order to avoid brittleness when cold deformed. This steel allows the production to obtain a sheet equivalent or close to IF steels (interstitial free) which have very high drawing coefficients r, but also a very high Δr (high plane anisotropy).

Dans le EP-0101740, on propose de fabriquer des produits plats dont la teneur en Nb est inférieure ou équivalente à la teneur en N. A la suite d'un laminage à chaud à une température finale inférieure à Ar3, d'un laminage à froid et d'un recuit, on obtient des produits présentant des propriétés mécaniques de résistance faibles, parfois même inférieures aux exigences minimales usuelles.In EP-0101740, it is proposed to manufacture flat products whose Nb content is less than or equivalent to the N content. Following hot rolling at a final temperature below Ar 3 , rolling when cold and annealed, products are obtained having low mechanical strength properties, sometimes even lower than the usual minimum requirements.

Dans le DE-19547181, on fabrique un acier au niobium, dans lequel la teneur en Nb doit être au minimum 6 fois celle de l'azote. Le procédé de fabrication comprend ici aussi un laminage à chaud à une température finale inférieure à Ar3, un laminage à froid et un recuit, ainsi qu'une cuisson après application de vernis. Les produits finals obtenus présentent une teneur nettement supérieure en niobium, pour des propriétés de résistance mécanique peu améliorées.In DE-19547181, a niobium steel is manufactured, in which the Nb content must be at least 6 times that of nitrogen. The manufacturing process here also includes hot rolling at a final temperature below Ar 3 , cold rolling and annealing, as well as baking after application of varnish. The final products obtained have a significantly higher niobium content, for properties of mechanical resistance that are not much improved.

Dans le EP-B-0400031 on propose enfin, à titre d'exemple comparatif, un acier au niobium sans titane, présentant une teneur comportant plus de 12 fois la teneur en N. A la suite d'un laminage à chaud à une température finale supérieure à Ar3, d'un laminage à froid et d'un recuit, on obtient un produit qui, de l'avis même de la brevetée, n'est pas approprié pour un emboutissage profond, quel que soit les degrés de réduction utilisés au cours du laminage à froid.EP-B-0400031 finally proposes, by way of comparative example, a niobium steel without titanium, having a content comprising more than 12 times the content of N. Following hot rolling at a temperature final higher than Ar 3 , cold rolling and annealing, a product is obtained which, according to the patent itself, is not suitable for deep drawing, whatever the degrees of reduction used during cold rolling.

Le document EP-A-0 816 524 divulgue un acier à faible carbone présentant une composition chimique en poids : C 0,0010-0,01 %; Si 0-0,2 %; Mn 0,1-1,5 %; P 0-0,05 %; S 0-0,02 %; sol. Al 0,03-0,10 %; N 0-0,0040 %; au moins un élément choisi parmi le groupe consistant en Nb 0,005-0,08 % et Ti 0,01-0,07 %; le reste Fe et impuretés inévitables, les teneurs en Nb, Ti et C devant satisfaire des conditions supplémentaires.Document EP-A-0 816 524 discloses a low carbon steel having a chemical composition by weight: C 0.0010-0.01%; If 0-0.2%; Mn 0.1-1.5%; P 0-0.05%; S 0-0.02%; ground. Al 0.03-0.10%; N 0-0.0040%; at least one element chosen from the group consisting of Nb 0.005-0.08% and Ti 0.01-0.07%; the remainder Fe and inevitable impurities, the contents of Nb, Ti and C having to satisfy additional conditions.

Le document EP-A-0 822 266 divulgue un acier à faible carbone présentant une composition chimique en poids : C 0-0,06 %; Si 0-0,03 %; Mn 0,1-0.3 %; P 0-0,02 %; S 0,005-0,015 %; sol. Al 0,01-0,10 %; N 0-0,004 %; B 0,0005-0,0015; O 0-0,0025 %; le reste Fe et impuretés inévitables, les teneurs en O et S ainsi que B et N devant satisfaire des conditions supplémentaires.Document EP-A-0 822 266 discloses a low carbon steel having a chemical composition by weight: C 0-0.06%; If 0-0.03%; Mn 0.1-0.3%; P 0-0.02%; S 0.005-0.015%; ground. Al 0.01-0.10%; N 0-0.004%; B 0.0005-0.0015; O 0-0.0025%; the remainder Fe and inevitable impurities, the contents of O and S as well as B and N having to satisfy additional conditions.

La présente invention a pour but de proposer un acier au niobium présentant, en terme de propriétés mécaniques sur des bandes relaminées à froid et recuites, un compromis favorable entre les propriétés de résistance, telles que par exemple la limite d'élasticité et la charge de rupture, et les propriétés de ductilité, telles que l'allongement uniforme, le coefficient d'écrouissage et l'allongement total.The present invention aims to provide a niobium steel having, in terms of mechanical properties on cold-rolled and annealed strips, a favorable compromise between the strength properties, such as for example the elastic limit and the load of rupture, and the properties of ductility, such as uniform elongation, work hardening coefficient and total elongation.

Pour résoudre ces problèmes, on a prévu suivant l'invention telle que définie à la revendication 1 un acier au niobium tel que décrit au début, caractérisé en ce que cet acier contient une teneur en niobium supérience à 0 et au maximum égale au quadruple de la teneur en N et une teneur en bore supérieure à 0 et au maximum égale à 0,012% en poids ou une teneur en zirconium supérieure à 0 et au maximum égale à 0,080% en poids, cette teneur en bore ou en zirconium étant suffisante pour fixer l'azote non fixé par le niobium.To solve these problems, there is provided according to the invention as defined in claim 1 a niobium steel as described at the start, characterized in that this steel contains a niobium content greater than 0 and at most equal to four times the N content and a boron content greater than 0 and at most equal to 0.012% by weight or a zirconium content greater than 0 and at most equal to 0.080% by weight, this boron or zirconium content being sufficient to fix nitrogen not fixed by niobium.

Cet acier présente l'avantage de pouvoir présenter une teneur en niobium peu élevée, et donc de ne pas altérer les propriétés de ductilité de l'acier, tout en obtenant une fixation assurée et de préférence précoce de l'azote par la présence simultanée de bore ou de zirconium et de niobium. Avantageusement, la teneur en niobium est au maximum égale au triple de celle-ci.This steel has the advantage of being able to have a low niobium content, and therefore of not altering the ductility properties of the steel, while obtaining an assured and preferably early fixing of the nitrogen by the simultaneous presence of boron or zirconium and niobium. Advantageously, the niobium content is at most equal to three times this.

Suivant une forme de réalisation de l'invention, l'acier contient une teneur en Nb inférieure à 0,040 % en poids, et de préférence comprise entre 0,005 et 0,030 % en poids. Avantageusement, il contient une teneur en bore comprise entre 0,0005 et 0,012 % en poids, de préférence entre 0,0015 et 0,012 % en poids, ou encore une teneur en zirconium comprise entre 0,020 et 0,080 % en poids.According to one embodiment of the invention, the steel contains an Nb content of less than 0.040% by weight, and preferably between 0.005 and 0.030% by weight. Advantageously, it contains a boron content of between 0.0005 and 0.012% by weight, preferably between 0.0015 and 0.012% by weight, or also a zirconium content between 0.020 and 0.080% by weight.

La teneur en carbone est égale ou supérieure à 0,010 % en poids. La quantité de Nb peut ainsi être relativement faible par rapport à la teneur en carbone ce qui permet l'obtention d'un acier à propriétés mécaniques favorables.The carbon content is equal to or greater than 0.010% by weight. The amount of Nb can thus be relatively low compared to the carbon content, which makes it possible to obtain a steel with favorable mechanical properties.

D'autres formes de réalisation particulières de l'acier suivant l'invention ressortiront des revendications 2 à 9 données ci-après.Other particular embodiments of the steel according to the invention will emerge from claims 2 to 9 given below.

L'invention concerne également un procédé de fabrication de produits plats laminés à froid et recuits, à base d'un acier au niobium présentant une composition chimique telle qu'indiquée ci-dessus. Ce procédé défini à la revendicartion 10 comprend

  • une coulée de cet acier en brames,
  • un réchauffage des brames à une température supérieure ou égale à 1000°C,
  • un laminage à chaud des brames pour former des bandes, avec une température finale de laminage supérieure à Ar3,
  • un bobinage des bandes à une température de bobinage comprise entre 500 et 750°C,
  • un laminage à froid des bandes avec un taux de réduction prédéterminé,
  • un recuit de recristallisation, et
  • un passage d'écrouissage final (de peau).
The invention also relates to a method for manufacturing cold-rolled and annealed flat products, based on a niobium steel having a chemical composition as indicated above. This process defined in claim 10 comprises
  • a casting of this steel in slabs,
  • reheating the slabs to a temperature greater than or equal to 1000 ° C.,
  • hot rolling of the slabs to form strips, with a final rolling temperature greater than Ar 3 ,
  • a winding of the strips at a winding temperature between 500 and 750 ° C,
  • cold rolling of the strips with a predetermined reduction rate,
  • recrystallization annealing, and
  • a final work hardening passage (skin).

Ce procédé offre l'avantage d'une fixation assurée de l'azote sous la forme de nitrure de bore ou de zirconium ainsi que sous la forme de carbonitrure de niobium, et cela à un stade très précoce dans le processus. La présence simultanée de bore ou de zirconium et de niobium favorise en outre une taille réduite du grain austénitique pendant le laminage à chaud. A la température de réchauffage utilisée, le niobium présent est avantageusement remis en solution.This process offers the advantage of a secure fixation of nitrogen in the form of boron nitride or zirconium as well as in the form of niobium carbonitride, and this at a very early stage in the process. The simultaneous presence of boron or zirconium and niobium also promotes a reduced size of the austenitic grain during hot rolling. At the reheating temperature used, the niobium present is advantageously redissolved.

Suivant une forme de réalisation de l'invention, la température finale de laminage à chaud est de préférence égale ou inférieure à 900°C. C'est précisément à cette température, c'est-à-dire entre la température de transformation γ → α (Ar3) et 900°C, que les nitrures de bore et les carbonitrures de Nb précipitent dans le procédé suivant l'invention, ce qui fixe l'azote. La température maximale citée ci-dessus n'est toutefois pas critique et elle ne doit être considérée que comme une température préférentielle.According to one embodiment of the invention, the final temperature of hot rolling is preferably equal to or less than 900 ° C. It is precisely at this temperature, that is to say between the transformation temperature γ → α (Ar 3 ) and 900 ° C., that the boron nitrides and the carbon nitrides of Nb precipitate in the process according to the invention. , which fixes nitrogen. The maximum temperature mentioned above is not, however, critical and should only be considered as a preferred temperature.

Suivant une forme de réalisation préférée de l'invention, pendant le laminage à froid, le taux de réduction est de l'ordre de 40 à 85 %, de préférence de 55-80 %. Ce taux de réduction est calculé suivant la formule : Taux de réduction = Epaisseur fin laminage chaud - épaisseur fin laminage Epaisseur fin laminage chaud According to a preferred embodiment of the invention, during cold rolling, the reduction rate is of the order of 40 to 85%, preferably 55-80%. This reduction rate is calculated according to the formula: Reduction rate = Thickness of hot rolling - thickness of rolling Thickness of hot rolling end

D'autres modes de réalisation particuliers de procédé suivant l'invention ressortiront des revendications 11 à 17 données ci-après.Other particular embodiments of the method according to the invention will emerge from claims 11 to 17 given below.

D'autres détails et particularités de l'invention ressortiront de la description donnée ci-après à titre non limitatif.Other details and particularities of the invention will emerge from the description given below without implied limitation.

L'acier au niobium suivant l'invention est usuellement un acier d'élaboration par conversion ou d'élaboration électrique, classique, qui est coulé en continu. Cet acier doit être extra doux, c'est-à-dire présenter une teneur en carbone extrêmement basse, inférieure à 0,100 % en poids, en pouvant atteindre des teneurs minimales jusqu'à 0,020 % ou davantage. Avantageusement toutefois la teneur en carbone ne dépassera pas une valeur inférieure à 0,010 % en poids.The niobium steel according to the invention is usually a conventional production or electrical production steel which is cast continuously. This steel must be extra soft, that is to say have an extremely low carbon content, less than 0.100% by weight, being able to reach minimum contents up to 0.020% or more. Advantageously, however, the carbon content will not exceed a value of less than 0.010% by weight.

Cet acier doit aussi être calmé à l'aluminium avec une teneur inférieure à 0,080 % en poids.This steel must also be quenched with aluminum with a content of less than 0.080% by weight.

Il comprendra bien entendu du niobium et sera exempt de toute addition de titane.It will of course include niobium and will be free from any addition of titanium.

La composition chimique de cet acier pourra donc être la suivante, en % en poids :

  • 0,010 < C < 0,100
  • 0,100 < Mn < 1,000
  • P < 0,100
  • S < 0,020
  • Al < 0,080
  • N < 0,012
  • Si < 0,500
avec des additions volontaires de niobium combinées à une addition de bore ou de zirconium, de par exemple :
  • Nb ≤ 0,040 % en poids, et de
  • 0,0015 ≤ B ≤ 0,0120 % en poids ou de
  • 0,020 ≤ Zr ≤ 0,080 % en poids,
le reste étant du fer et des impuretés résiduelles de Cu, Ni, Cr, Sn par exemple.The chemical composition of this steel could therefore be as follows, in% by weight:
  • 0.010 <C <0.100
  • 0.100 <Mn <1.000
  • P <0.100
  • S <0.020
  • Al <0.080
  • N <0.012
  • If <0.500
with voluntary additions of niobium combined with an addition of boron or zirconium, for example:
  • Nb ≤ 0.040% by weight, and
  • 0.0015 ≤ B ≤ 0.0120% by weight or
  • 0.020 ≤ Zr ≤ 0.080% by weight,
the remainder being iron and residual impurities of Cu, Ni, Cr, Sn for example.

En fait les valeurs ajustées de Nb, de B et de Zr se calculent principalement en fonction de l'azote présent dans l'acier en cours de traitement.In fact the adjusted values of Nb, B and Zr are calculated mainly as a function of the nitrogen present in the steel being treated.

La quantité de Nb ajoutée est donc en réalité nettement inférieure stoechiométriquement à l'azote. L'azote non fixé par le niobium l'est par le B ou le Zr, ce qui permet une addition de Nb inférieure à ce qui est habituellement nécessaire, pour obtenir des propriétés de résistance mécaniques suffisantes de la part d'un acier au niobium, sans titane. Cette addition minimale de Nb permet de maintenir simultanément de bonnes propriétés de ductilité. Elle offre en outre des avantages économiques appréciables étant donné le coût non négligeable du niobium.The amount of Nb added is therefore in reality much lower stoichiometrically than nitrogen. Nitrogen not fixed by niobium is fixed by B or Zr, which allows an addition of Nb lower than what is usually necessary, to obtain sufficient mechanical resistance properties from a niobium steel , without titanium. This minimal addition of Nb makes it possible to simultaneously maintain good ductility properties. It also offers appreciable economic advantages given the significant cost of niobium.

L'acier décrit ci-dessus est coulé en brames, qui sont réchauffées dans un four classique, par exemple un four à longerons mobiles ou un four poussant, pour qu'elles atteignent à coeur une température supérieure ou égale à 1000°C, ce qui suffit pour remettre en solution le niobium précipité.The steel described above is poured into slabs, which are reheated in a conventional oven, for example an oven with movable beams or a pushing oven, so that they reach a core temperature greater than or equal to 1000 ° C. sufficient to re-dissolve the precipitated niobium.

On effectue alors un laminage à chaud sur un train de laminage classique, généralement en deux étapes:

  • un dégrossissage pour réaliser une ébauche de 35 mm ± 10 mm d'épaisseur, à une température moyenne de 1050°C, et
  • une finition pour réaliser une bande à chaud d'une épaisseur de 1 à 10 mm, en respectant une température minimale de laminage à chaud qui soit supérieure à la température de transformation de la phase γ à la phase α (Ar3).
Hot rolling is then carried out on a conventional rolling train, generally in two stages:
  • roughing to produce a blank 35 mm ± 10 mm thick, at an average temperature of 1050 ° C, and
  • a finish to produce a hot strip with a thickness of 1 to 10 mm, while respecting a minimum hot rolling temperature which is higher than the transformation temperature from the γ phase to the α phase (Ar 3 ).

C'est entre 900°C et cette température de transformation que précipitent les nitrures de bore et les carbonitrures de niobium, avec par conséquent une fixation très précoce de l'azote.It is between 900 ° C. and this transformation temperature that the boron nitrides and the niobium carbonitrides precipitate, with consequently a very early nitrogen fixation.

La bande est alors refroidie de manière contrôlée et enfin bobinée à une température de l'ordre de 625°C ± 125°C.The strip is then cooled in a controlled manner and finally wound up at a temperature of the order of 625 ° C ± 125 ° C.

Après décapage en continu dans des lignes classiques (HCl ou H2SO4), la bande est relaminée à froid, et ce avec un taux de réduction d'épaisseur compris entre 40 et 85 %.After continuous pickling in conventional lines (HCl or H 2 SO 4 ), the strip is cold re-rolled, with a thickness reduction rate of between 40 and 85%.

La bande laminée à froid est ensuite soumise à un recuit de recristallisation pour lui conférer les propriétés mécaniques nécessaires. Ce recuit peut s'effectuer sous forme d'un recuit statique, par exemple en bobine serrée ou expansée, à une température de l'ordre de 620-680°C, ou sous forme d'un recuit continu à une température de 680-850°C. Ce dernier recuit peut être combiné ou non avec un recouvrement éventuel par revêtement au trempé ou d'autres procédés.The cold rolled strip is then subjected to recrystallization annealing to give it the necessary mechanical properties. This annealing can be carried out in the form of a static annealing, for example in a tight or expanded coil, at a temperature of the order of 620-680 ° C, or in the form of a continuous annealing at a temperature of 680- 850 ° C. This latter annealing may or may not be combined with any covering by dipping or other methods.

Une dernière étape de laminage est encore effectuée, sous la forme d'un écrouissage final, afin de supprimer les phénomènes de "bandes de Lüders" et d'assurer une bonne rugosité de surface ainsi qu'une planéité du produit.A final rolling step is also carried out, in the form of a final work hardening, in order to eliminate the phenomena of "Lüders bands" and to ensure a good surface roughness as well as a flatness of the product.

L'invention va à présent être expliquée de manière plus détaillée, à l'aide d'exemples donnés à titre non limitatif.The invention will now be explained in more detail, using examples given without limitation.

Exemple de comparaison 1Comparison example 1

Acier à teneur en carbone extrêmement basse, sans niobium, mais avec addition de bore. Composition chimique (en 10-3 %). C Mn Si P S Al N2 B Nb 35 250 6 11 8 44 4,2 3,6 0 Bande laminée à chaud à une épaisseur de 3 mm. Température finale du laminage à chaud : 870°C Température de bobinage 620°C Décapage HCl Taux de réduction 66 % Bande laminée à froid à une épaisseur de 1 mm.
Recuit de recristallisation en continu à 700°C pendant 40 sec. suivi d'une trempe à l'eau chaude à 50°C/sec. jusqu'à 400°C, application d'un vieillissement à 400°C pendant 120 sec. et refroidissement par tuyères jusqu'à une température de 120°C, décapage formique, rinçage, et séchage, puis application d'un taux d'écrouissage final de 0,8 %. Propriétés mécaniques Limite d'élasticité Rp 0,2 = 235 MPa Charge de rupture Rm = 340 Mpa Allongement à la rupture A% = 38 % Coefficient d'écrouissage n = 0,190/0,200 Coefficient d'anisotropie r travers = 1,35 Coefficient d'anisotropie plane Δr = 0,350 Coefficient d'anisotropie normale r moy. 1,1
Extremely low carbon steel, without niobium, but with the addition of boron. Chemical composition (10 -3 %). VS mn Yes P S al N 2 B Nb 35 250 6 11 8 44 4.2 3.6 0 Hot rolled strip with a thickness of 3 mm. Final hot rolling temperature: 870 ° C Winding temperature 620 ° C HCl pickling Reduction rate 66% Cold rolled strip to a thickness of 1 mm.
Continuous recrystallization annealing at 700 ° C for 40 sec. followed by quenching in hot water at 50 ° C / sec. up to 400 ° C, application of aging at 400 ° C for 120 sec. and cooling by nozzles to a temperature of 120 ° C., formic pickling, rinsing, and drying, then application of a final work hardening rate of 0.8%. Mechanical properties Elasticity limit Rp 0.2 = 235 MPa Breaking load Rm = 340 Mpa Elongation at break A% = 38% Work hardening coefficient n = 0.190 / 0.200 Anisotropy coefficient r through = 1.35 Coefficient of plane anisotropy Δr = 0,350 Coefficient of normal anisotropy r avg. 1.1

Exemple de comparaison 2Comparison example 2

Même acier que celui utilisé dans l'exemple de comparaison 1.Same steel as that used in comparison example 1.

On applique le même processus à la différence du recuit de recristallisation qui cette fois est statique à 640°C point froid (avec température maximale de 700°C) pendant 2 heures. Ensuite on achève le traitement de la manière décrite précédemment. Propriétés mécaniques Rp 0,2 = 175 MPa Rm = 310 Mpa A% = 40 % n = 0,230 r travers = 1,25 Δr = 0,050 r moy. 1,01 We apply the same process unlike the recrystallization annealing which this time is static at 640 ° C cold point (with maximum temperature of 700 ° C) for 2 hours. Then the treatment is completed in the manner described above. Mechanical properties Rp 0.2 = 175 MPa Rm = 310 MPa A% = 40% n = 0,230 r through = 1.25 Δr = 0,050 r avg. 1.01

Exemple de comparaison 3Comparison example 3

Acier au niobium à teneur en carbone extrêmement basse, sans bore. Composition chimique (en 10-3 %) C Mn Si P S Al N2 B Nb 50 350 8 12 6 40 6,0 0 50 Niobium steel with extremely low carbon content, without boron. Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 50 350 8 12 6 40 6.0 0 50

La processus appliqué est le même que celui de l'exemple de comparaison 1, avec ces quelques différences: Température de bobinage 600°C Taux de réduction 50 % The process applied is the same as that of comparison example 1, with these few differences: Winding temperature 600 ° C Reduction rate 50%

Recuit de recristallisation statique à 660°C point froid (avec température maximale de 680°C) pendant 2 heures, ou recuit continu à environ 790°C pendant 1 minute et vieillissement à 400°C pendant 180 secondes, puis application d'un taux d'écrouissage final de 1,4%. Propriétés mécaniques (en long) Rp 0,2 = 350 MPa Rm = 440 Mpa A% = 26 % n = 0,155 r travers = 1,2 r long = 0,7 Δr = -0,250 r moy. 1,1 Static recrystallization annealing at 660 ° C cold point (with maximum temperature of 680 ° C) for 2 hours, or continuous annealing at around 790 ° C for 1 minute and aging at 400 ° C for 180 seconds, then application of a rate 1.4% final work hardening. Mechanical properties (in length) Rp 0.2 = 350 MPa Rm = 440 Mpa A% = 26% n = 0.155 r through = 1.2 r long = 0.7 Δr = -0.250 r avg. 1.1

Exemple 4Example 4

Acier au niobium suivant l'invention, avec addition de bore. Composition chimique (en 10-3 %) C Mn Si P S Al N2 B Nb 55 300 7 14 3 50 5,6 4,5 7 Niobium steel according to the invention, with addition of boron. Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 55 300 7 14 3 50 5.6 4.5 7

Le processus appliqué est le même que celui décrit dans l'exemple de comparaison 1, avec ces quelques différences : Température de bobinage 500°C Taux de réduction 80 % The process applied is the same as that described in comparison example 1, with these few differences: Winding temperature 500 ° C Reduction rate 80%

Recuit de recristallisation statique à 660°C point froid (avec une température maximale de 710°C) pendant 2 heures, puis application d'un taux d'écrouissage final de 1,5 %. Propriétés mécaniques Rp 0,2 = 290 MPa Rm = 390 Mpa A% = 36,5 % n = 0,195 r travers = 1,1 Δr = -0,005 r moy. 1,0 Static recrystallization annealing at 660 ° C cold point (with a maximum temperature of 710 ° C) for 2 hours, then application of a final work hardening rate of 1.5%. Mechanical properties Rp 0.2 = 290 MPa Rm = 390 Mpa A% = 36.5% n = 0.195 r through = 1.1 Δr = -0.005 r avg. 1.0

Exemple 5Example 5

Acier au niobium suivant l'invention, avec addition de bore. Composition chimique (en 10-3 %) C Mn Si P S Al N2 B Nb 45 270 19 12 6 43 6,0 4,0 12 Niobium steel according to the invention, with addition of boron. Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb 45 270 19 12 6 43 6.0 4.0 12

Le processus appliqué est le même que celui décrit dans l'exemple de comparaison 1, avec ces quelques différences : Température finale du laminage à chaud 875°C Température de bobinage 640°C Taux de réduction 55 % The process applied is the same as that described in comparison example 1, with these few differences: Final hot rolling temperature 875 ° C Winding temperature 640 ° C Reduction rate 55%

Recuit continu de galvanisation à 850°C (température de pot de zinc : 480°C) avec vieillissement à 480°C, puis application d'un taux d'écrouissage final de 1,2 %. Propriétés mécaniques Rp 0,2 = 300 MPa Rm = 400 Mpa A% = 33 % n = 0,175 r travers = 1,1 Δr = 0,005 r moy. 1,0 Continuous galvanizing annealing at 850 ° C (zinc pot temperature: 480 ° C) with aging at 480 ° C, then application of a final work hardening rate of 1.2%. Mechanical properties Rp 0.2 = 300 MPa Rm = 400 Mpa A% = 33% n = 0,175 r through = 1.1 Δr = 0.005 r avg. 1.0

Exemple de comparaison 6Comparison example 6

Acier à teneur en carbone extrêmement basse, sans niobium, mais avec addition de zirconium. Composition chimique (en 10-3 %) C Mn Si P S Al N2 B Nb Zr 36 216 50 7 6 55 3,2 0 0 48 Extremely low carbon steel, without niobium, but with the addition of zirconium. Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb Zr 36 216 50 7 6 55 3.2 0 0 48

Le processus appliqué est le même que celui de l'exemple de comparaison 1, avec ces quelques différences : Température finale du laminage à chaud: 885°C. Température de bobinage : 650°C. Recuit de recristallisation statique (recuit base) à 610°C. Taux d'écrouissage final : 0,9 %. Propriétés mécaniques Rp 0,2 = 224 MPa Rm = 351 Mpa A% = 37,6 % n = 0,206 Δr = 0,308 r moy. 0,96 The process applied is the same as that of comparison example 1, with these few differences: Final hot rolling temperature: 885 ° C. Winding temperature: 650 ° C. Static recrystallization annealing (base annealing) at 610 ° C. Final work hardening rate: 0.9%. Mechanical properties Rp 0.2 = 224 MPa Rm = 351 Mpa A% = 37.6% n = 0.206 Δr = 0.308 r avg. 0.96

ExempleExample 77

Acier au niobium à teneur en carbone extrême ment basse, avec addition de zirconium. Composition chimique (en 10-3 %) C Mn Si P S Al N2 B Nb Zr 35 200 5 9 4 47 4,9 0 10 30 Niobium steel with an extremely low carbon content, with the addition of zirconium. Chemical composition (10 -3 %) VS mn Yes P S al N 2 B Nb Zr 35 200 5 9 4 47 4.9 0 10 30

Le processus appliqué est le même que celui de l'exemple de comparaison 1, avec ces quelques différences: Température de bobinage 640°C. Taux de réduction 58,3 %. Recuit de recristallisation statique (recuit base) à 700°C. Taux d'écrouissage final 0,8 % Propriétés mécaniques Rp 0,2 = 255 MPa Rm = 361 Mpa A% = 36,4 % n = 0,190 Δr = 0,040 r moy. 1,01 The process applied is the same as that of comparison example 1, with these few differences: Winding temperature 640 ° C. Reduction rate 58.3%. Static recrystallization annealing (base annealing) at 700 ° C. Final hardening rate 0.8% Mechanical properties Rp 0.2 = 255 MPa Rm = 361 Mpa A% = 36.4% n = 0,190 Δr = 0,040 r avg. 1.01

Ainsi qu'on peut le constater à partir de ces exemples, les aciers extra doux au bore ou au zirconium, sans niobium, s'ils sont bien ductiles, présentent des valeurs de résistance mécanique faibles à médiocres, relativement proches des valeurs minimales requises par les utilisateurs (RpO,2 supérieur ou égal à 220 MPa et Rm supérieur ou égal à 320 MPa).As can be seen from these examples, extra mild steels with boron or zirconium, without niobium, if they are well ductile, have low to poor mechanical strength values, relatively close to the minimum values required by users (R p O, 2 greater than or equal to 220 MPa and Rm greater than or equal to 320 MPa).

L'acier extra doux au niobium, sans bore et sans zirconium, de l'exemple de comparaison 3 présente lui de bonnes valeurs de résistance mécanique, mais ses propriétés de ductilité sont parfaitement insatisfaisantes, alors qu'il est généralement demandé un allongement à la rupture supérieur ou égal à 32 % et un coefficient d'écrouissage supérieur ou égal à 0,170.The extra mild niobium steel, without boron and without zirconium, of Comparative Example 3 has good mechanical strength values, but its ductility properties are perfectly unsatisfactory, whereas it is generally required to be elongated. rupture greater than or equal to 32% and a work hardening coefficient greater than or equal to 0.170.

Les aciers au niobium suivant l'invention offrent à la fois des propriétés de résistance mécaniques largement supérieures aux limites inférieures usuelles et de bonnes propriétés de ductilité, en fournissant donc un compromis tout à fait favorable pour les traitements ultérieurs.The niobium steels according to the invention offer both mechanical strength properties much greater than the usual lower limits and good ductility properties, thus providing a compromise which is entirely favorable for subsequent treatments.

D'une manière particulièrement surprenante, les aciers au niobium suivant l'invention présentent, sur des bandes relaminées à froid et recuites, des propriétés mécaniques dans le plan de la bande qui sont sensiblement indépendantes de la direction par rapport au sens de laminage ainsi qu'une contraction rationelle en largeur sensiblement identique à une contraction rationelle en épaisseur. Ils réunissent donc toutes les conditions pour subir des traitements du type emboutissages difficiles et autres.In a particularly surprising manner, the niobium steels according to the invention exhibit, on cold-rolled and annealed strips, mechanical properties in the plane of the strip which are substantially independent of the direction relative to the direction of rolling as well as 'a rational contraction in width substantially identical to a rational contraction in thickness. They therefore meet all the conditions for undergoing treatments of the difficult stamping type and the like.

Claims (17)

  1. Extremely low-carbon, aluminium-killed steel containing niobium and free of titanium, for cold-rolled, annealed flat products, having a chemical composition based on % by weight as follows:
    from 0.010 % up to a maximum 0.100 % of C,
    a maximum of 1.000 % of Mn,
    a maximum of 0.100 % of P,
    a maximum of 0.020 % of S,
    a maximum of 0.080 % of Al,
    a maximum of 0.500 % of Si,
    N being in a proportion in excess of 0 and at most 0.012 %,
    the rest being iron and residual impurities,
    the steel containing a proportion of niobium higher than 0 and at most equal to four times the proportion of N and containing a proportion of boron higher than 0 and at most equal to 0.012 % by weight or containing a proportion of zirconium higher than 0 and at most equal to 0.080 % by weight, this proportion of boron or zirconium being sufficient to fix the nitrogen that is not fixed by the niobium.
  2. Steel containing niobium as claimed in claim 1, characterised in that the niobium content is at most equal to three times the proportion of N.
  3. Steel containing niobium as claimed in one of claims 1 and 2, characterised in that it contains a proportion of Nb which is less than 0.040% by weight and is preferably between 0.005 and 0.030 % by weight.
  4. Steel containing niobium as claimed in any one of claims 1 to 3, characterised in that it contains a proportion of boron ranging between 0.0005 and 0.012 % by weight, preferably between 0.0015 and 0.012 % by weight.
  5. Steel containing niobium as claimed in any one of claims 1 to 3, characterised in that it contains a proportion of zirconium ranging between 0.020 and 0.080 % by weight.
  6. Steel containing niobium as claimed in any one of claims 1 to 5, characterised in that when cold-rolled and annealed into strips, it has an elastic limit, the minimum values of which are in excess of 220 MPa, and a breaking load, the minimum values of which are in excess of 320 MPa.
  7. Steel containing niobium as claimed in claim 6, characterised in that said elastic limit is in excess of 250 MPa, preferably in excess of 280 MPa, and the breaking load is in excess of 350 MPa, preferably in excess of 380 MPa.
  8. Steel containing niobium as claimed in any one of claims 1 to 7, characterised in that when cold-rolled and annealed into strips, it has an elongation at break higher than or equal to 32 % and a work-hardening coefficient higher than or equal to 0.17.
  9. Steel containing niobium as claimed in one of claims 1 to 8, characterised in that it has a coefficient of planar anisotropy Δr of between -0.200 and +0.200, preferably between -0.100 and +0.100 and an average coefficient of normal anisotropy r of between 0.9 and 1.1.
  10. Process of producing flat cold-rolled annealed products based on a steel containing niobium with a chemical composition as claimed in any one of claims 1 to 9, consisting in
    casting this steel into slabs,
    re-heating the slabs to a temperature in excess of or equal to 1000°C,
    hot-rolling the slabs into strips at a final rolling temperature higher than Ar3,
    winding the strips at a winding temperature ranging between 500 and 750°C,
    cold-rolling the strips at a predetermined rate of reduction,
    recrystallisation annealing and
    a final work hardening pass.
  11. Production process as claimed in claim 10, characterised in that the slabs are preferably re-heated at a temperature in the order of 1250°C.
  12. Production process as claimed in one of claims 10 and 11, characterised in that the final hot-rolling temperature is equal to or less than 900°C.
  13. Production process as claimed in one of claims 10 to 12, characterised in that the rate of reduction is in the order of 40 to 85 %, preferably 55 - 80 %.
  14. Production process as claimed in one of claims 10 to 13, characterised in that recrystallisation annealing is operated as a static annealing process.
  15. Production process as claimed in claim 14, characterised in that the static annealing process is carried out on tightly wound or expanded reels at a cold point temperature of 620 to 680 °C.
  16. Production process as claimed in one of claims 10 to 13, characterised in that recrystallisation annealing is operated in the form of continuous annealing, with or without a coating.
  17. Production process as claimed in claim 16, characterised in that the continuous recrystallisation annealing is operated at a temperature of 680 to 850°C.
EP98200844A 1997-03-27 1998-03-18 Niobium containing steel and process for making flat products from this steel Revoked EP0870848B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9700270 1997-03-27
BE9700270A BE1011066A3 (en) 1997-03-27 1997-03-27 Niobium steel and method for manufacturing flat products from it.

Publications (2)

Publication Number Publication Date
EP0870848A1 EP0870848A1 (en) 1998-10-14
EP0870848B1 true EP0870848B1 (en) 2003-09-10

Family

ID=3890428

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98200844A Revoked EP0870848B1 (en) 1997-03-27 1998-03-18 Niobium containing steel and process for making flat products from this steel

Country Status (7)

Country Link
EP (1) EP0870848B1 (en)
AT (1) ATE249528T1 (en)
BE (1) BE1011066A3 (en)
DE (1) DE69817900T2 (en)
DK (1) DK0870848T3 (en)
ES (1) ES2207787T3 (en)
PT (1) PT870848E (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2820150B1 (en) * 2001-01-26 2003-03-28 Usinor HIGH STRENGTH ISOTROPIC STEEL, METHOD FOR MANUFACTURING SHEETS AND SHEETS OBTAINED
WO2004034539A1 (en) 2002-10-09 2004-04-22 Pirelli & C. S.P.A. Method of screening the magnetic field generated by an electrical power transmission line and electrical power transmission line so screened.
FR2845694B1 (en) * 2002-10-14 2005-12-30 Usinor METHOD FOR MANUFACTURING COOK-CURABLE STEEL SHEETS, STEEL SHEETS AND PIECES THUS OBTAINED
UA109963C2 (en) * 2011-09-06 2015-10-26 CATHANE STEEL, APPROVING CONSEQUENCES OF SEPARATION OF PARTS AFTER HOT FORMING AND / OR CUTTING IN TOOL, THAT HAS A HIGHER MACHINE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816524A1 (en) * 1996-05-07 1998-01-07 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after forming
EP0822266A1 (en) * 1996-02-08 1998-02-04 Nkk Corporation Steel sheet for two-piece battery can excellent in moldability, secondary work embrittlement resistance, and corrosion resistance

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853708B2 (en) * 1979-03-15 1983-11-30 住友金属工業株式会社 Welded steel pipe with excellent butt toughness
JPS6045689B2 (en) * 1982-02-19 1985-10-11 川崎製鉄株式会社 Method for manufacturing cold rolled steel sheet with excellent press formability
JPS59123721A (en) * 1982-12-29 1984-07-17 Kawasaki Steel Corp Production of cold rolled steel sheet having excellent processability
JPS6164852A (en) * 1984-09-03 1986-04-03 Kawasaki Steel Corp Non-aging cold rolled steel sheet for press forming having extremely low anisotropy in plane
JPS6160860A (en) * 1984-09-03 1986-03-28 Nippon Kokan Kk <Nkk> Zinc plated steel sheet for deep drawing, superior in plating adhesion and its manufacture
DE3803064C2 (en) * 1988-01-29 1995-04-20 Preussag Stahl Ag Cold rolled sheet or strip and process for its manufacture
CA2022907C (en) * 1989-08-09 1994-02-01 Mitsuru Kitamura Method of manufacturing a steel sheet
JP2542536B2 (en) * 1991-02-28 1996-10-09 新日本製鐵株式会社 Method for producing cold-rolled steel sheet for deep drawing with excellent paint bake hardenability and secondary workability
US5360493A (en) * 1992-06-08 1994-11-01 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
DE19547181C1 (en) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Mfg. cold-rolled, high strength steel strip with good shapability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0822266A1 (en) * 1996-02-08 1998-02-04 Nkk Corporation Steel sheet for two-piece battery can excellent in moldability, secondary work embrittlement resistance, and corrosion resistance
EP0816524A1 (en) * 1996-05-07 1998-01-07 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after forming

Also Published As

Publication number Publication date
ES2207787T3 (en) 2004-06-01
DE69817900T2 (en) 2004-07-22
PT870848E (en) 2004-01-30
BE1011066A3 (en) 1999-04-06
EP0870848A1 (en) 1998-10-14
DE69817900D1 (en) 2003-10-16
ATE249528T1 (en) 2003-09-15
DK0870848T3 (en) 2004-01-12

Similar Documents

Publication Publication Date Title
EP1195447B1 (en) Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
EP1592816A1 (en) Method of producing a cold-rolled band of dual-phase steel with a ferritic/martensitic structure and band thus obtained
JP2000514499A (en) Method for producing cold-rolled sheet or strip with good formability
EP0870848B1 (en) Niobium containing steel and process for making flat products from this steel
JP3900619B2 (en) Hot rolled steel sheet, plated steel sheet, and hot rolled steel sheet manufacturing method excellent in bake hardenability and room temperature aging resistance
US6143100A (en) Bake-hardenable cold rolled steel sheet and method of producing same
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
EP2980228B1 (en) Manufacturing method for steel sheet
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JP4670135B2 (en) Manufacturing method of hot-rolled steel sheet with excellent strain age hardening characteristics
JPH0144771B2 (en)
JP3925064B2 (en) Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
US4159918A (en) Method of manufacturing a compound steel material of a high corrosion resistance
JP3111462B2 (en) Manufacturing method of high-strength bake hardenable steel sheet
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP3932737B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JPH1017937A (en) Production of ferritic stainless steel sheet excellent in workability
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPH10280048A (en) Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance
JP4325228B2 (en) Cold-rolled steel sheet excellent in deep drawability and strain age hardening characteristics and method for producing the same
BE1011557A4 (en) Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPS6330970B2 (en)
JP2506684B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability by continuous annealing
JP2612453B2 (en) Method for producing hot-rolled mild steel sheet with excellent drawability

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990113

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20001018

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG

REF Corresponds to:

Ref document number: 69817900

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031212

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040130

Year of fee payment: 7

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030405023

Country of ref document: GR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040205

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040218

Year of fee payment: 7

Ref country code: IE

Payment date: 20040218

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20040224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040302

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040303

Year of fee payment: 7

Ref country code: GB

Payment date: 20040303

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20040304

Year of fee payment: 7

Ref country code: DK

Payment date: 20040304

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040305

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040322

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2207787

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: THYSSENKRUPP STAHL AG

Effective date: 20040609

NLR1 Nl: opposition has been filed with the epo

Opponent name: THYSSENKRUPP STAHL AG

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

RDAE Information deleted related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSDREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAC Information related to revocation of patent modified

Free format text: ORIGINAL CODE: 0009299REVO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20050212

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20050212

R27W Patent revoked (corrected)

Effective date: 20050212

REG Reference to a national code

Ref country code: PT

Ref legal event code: MP4A

Effective date: 20050629

NLR2 Nl: decision of opposition

Effective date: 20050212

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO