EP0864036A1 - A method and a device for supplying air to a combustor - Google Patents
A method and a device for supplying air to a combustorInfo
- Publication number
- EP0864036A1 EP0864036A1 EP96941243A EP96941243A EP0864036A1 EP 0864036 A1 EP0864036 A1 EP 0864036A1 EP 96941243 A EP96941243 A EP 96941243A EP 96941243 A EP96941243 A EP 96941243A EP 0864036 A1 EP0864036 A1 EP 0864036A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- compressor
- low
- pressure
- pressurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/16—Control of working fluid flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/36—Open cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L5/00—Blast-producing apparatus before the fire
- F23L5/02—Arrangements of fans or blowers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Definitions
- the present invention relates to a gas turbine plant compri ⁇ sing a compressor, a gas turbine and a pressurized combustor, for example a Pressurized Fluidized Bed Combined Cycle (PFBCC) plant, or an Integrated Gasification Combined Cycle (IGCC) plant.
- PFBCC Pressurized Fluidized Bed Combined Cycle
- IGCC Integrated Gasification Combined Cycle
- combustion gases are generated which drive a gas turbine.
- This gas turbine drives a com ⁇ pressor which compresses air for pressurization of the combus ⁇ tor.
- the compressed air is simultaneously utilized as combus ⁇ tion air during the combustion.
- the gas turbine may be divided into a high-pressure and a low-pressure turbine. With such a division of the gas turbine, the low-pressure turbine may, on a separate first shaft, drive a low-pressure compressor for compression of the air in a first stage.
- the high-pressure turbine then drives, via a second separate shaft, a high- pressure compressor where air is compressed in a second stage before the air is supplied to the combustor.
- a cooler may be provided for cooling the air after the first stage in the compression.
- the fuel supplied to the combustor consists of gaseous, liquid or solid fuels, for example natural gas, oil or coal, depen ⁇ ding on the nature of the plant.
- a PFBC power plant is an example of a plant comprising a gas-turbine cycle according to the configuration described above, wherein a solid fuel, usually a finely-divided coal, is burnt in a fluidized bed in the combustor.
- an electric generator for generating useful energy is usually connected to the high-pressure tur ⁇ bine via a gear. When starting the plant, it is possible to utilize the generator as an electric motor to speed up the compressor and thus pressurize the combustor.
- a compressor size is usually chosen which gives an optimum air flow rate at a known low exterior air temperature for the site of the plant.
- a lower density of the air is obtained, whereby the mass flow of air through the compressor decreases and hence the power of the plant.
- Another plant site may be located at a different height above sea level where the density of the air is diffe- rent, which necessitates a different dimensioning of the plant.
- SE 500 150 describes a method and a device wherein the problems described above have been solved by supplying additional air to a combustor in a gas-turbine plane with the aid of an additional compressor.
- the solution comprises compressing air in the additional compressor and supplying it to the combustor by conducting the compressed air completely or partially past the ordinary compressor which delivers air to the combustor for pressurization of the combustor and for maintenance of a combustion in the combustor.
- SE 500 150 150 The problem with the solution of SE 500 150 is that it is complicated and expensive to install in the plant. It is difficult to mix an additional air flow into the main air flow of the plant without the aerodynamic properties being dis ⁇ turbed. Further, the gas turbine is dimensioned for a certain air flow rate. By increasing the air flow rate through the turbine without increasing the air flow rate through the compressor, the axial forces in the plant are disturbed.
- the invention relates to a method and a device for supplying air to a combustor in a gas-turbine plant.
- the invention means that a compressor in the gas-turbine plant always receives an air flow with a predetermined density which is independent of the height above sea level at which it is placed and indepen ⁇ dent of the ambient air temperature.
- Distribution of air with a predetermined density to the compressor is achieved by arranging a pressurization device, for example a conventional fan upstream of the compressor. In the fan the air is compressed to the extent necessary to be able to deliver air with a predetermined density to the low- pressure side of the compressor.
- a pressurization device for example a conventional fan upstream of the compressor. In the fan the air is compressed to the extent necessary to be able to deliver air with a predetermined density to the low- pressure side of the compressor.
- the invention provides a possibility of compensating for the power reduction in the plant as a result of reduced air flow to the combustor at a higher ambient temperature.
- An addi ⁇ tional advantage is that a possibility is created of read ⁇ justment of the air-flow capacity for the compressors, which occurs, for example, in case of incorrect dimensioning of the ordinary compressor or when a reduction of the air flow occurs because of changes in the ordinary compressor caused by, for example, ageing and fouling of the compressor.
- Still another advantage of the invention is that the other properties of the plant are not disturbed by the installation of a pressurization device upstream of the compressor. Further, the solution is simple and cost-effective.
- Figure 1 schematically shows one embodiment of a gas-turbine plant wherein air is supplied to the low-pressure side of a compressor via a pressurization device to be further trans ⁇ ported to a combustor.
- the dashed lines indicate a gasifier which may be disposed between the compressor and the com- bustor.
- Figure 2 shows an embodiment of a gas-turbine plant wherein air is supplied to the low-pressure side of a compressor via a pressurization device to be further transported to a combus- tor.
- the gas-turbine plant is combined with a steam cycle and a valve means.
- Figure 3 shows an embodiment of a gas-turbine plant wherein the gas turbine and the compressor are divided into high- pressure and low-pressure units. Air is supplied to the low- pressure side of the low-pressure compressor via a pressuri ⁇ zation device to be further transported to a combustor.
- the dashed lines indicate that the gas-turbine plant can be com ⁇ bined with a steam cycle and a valve means.
- BK designates a combustor in which a fuel is burnt under a high pressure.
- the high pressure is achieved by means of a compressor C which compresses air which is passed to the combustor BK via the air pipe 8' '.
- the combustion gases which are generated in the combustor BK are conducted to a gas turbine GT, via the pipe 9, for utilization of the energy in the combustion gases, whereupon the consumed waste gases are discharged via a waste gas pipe 10.
- the gas turbine GT is mounted on the same shaft Al as the compressor C and thus drives the compressor.
- a generator G is also provided for conversion of energy used in the gas- turbine plant into electrical energy.
- Air to the compressor is sucked in via the pipe 8' and a pressurization device F, for example a fan and a pipe 8.
- the pressurization device F has the ability to raise the density of the air flowing therethrough to a predetermined value.
- the pressurization device F is driven by a drive means M, which, for example, is in the form of a controllable motor which may be of electric, hydraulic, diesel or explosion type, or it may be in the form of a steam turbine.
- the drive means M is adapted to drive the pressurization device F via a shaf A3.
- the drive means M is driven in dependence on the value of the density in the pipe 8' .
- a measuring element 13 is adapted to measure the density in the pipe 8' and a control element 14 is adapted, in dependence on this measured result, to control the drive means M.
- the drive means M is activated in those cases where the exterior air temperature is higher than that for which the plant is designed or if the density of the air needs to be adjusted for some other reason, for example due to ageing of the plant.
- the pressurizing device F may, for example, be controlled by arranging guide vanes, comprised therein, to be rotatable for control of the quantity of the air flow therethrough. Alter ⁇ natively, the pressurizing device F may be controlled by changing its speed in dependence on the measurement result from the measuring element 13.
- FIG 1 in which the gas-turbine plant is combined with a gasifier GF.
- the gasifier GF is arranged between the com ⁇ pressor and the combustor, which symbolizes a so-called IGCC plant.
- the IGCC plant operates in such a way that part of the compressed air from the compressor C is passed to the gasifier GF for gasification of a fuel, for example coal, which is supplied to the gasifier GF via a pipe 6.
- the gasified fuel is then passed from the gasifier GF to the combustor BK via a pipe 7.
- the main part of the air compressed in the compressor C is forwarded via the pipe 8' ' to the combustor BK.
- FIG 2 shows an alternative embodiment of the invention wherein the gas-turbine plant is combined with a steam cycle and a valve means forming a so-called PFBC plant.
- the steam circuit is symbolized by feed water which, with the aid of a pump 15, is circulated from a condenser tank 16 via a pipe 17 to tube bundles 18 in the combustor BK for generation/- superheating of steam.
- the steam is forwarded to a steam turbine 19 via a pipe 20.
- Condensate and expanded steam are returned to the condenser 16 via a pipe 21.
- Figure 2 also shows an intercept and bypass valve V. Air to the compressor C is admitted via the air pipe 8' .
- the combustion gases genera ⁇ ted in the combustor BK are led via the intercept and bypass valve V to a gas turbine GT via the pipe 9 to utilize the energy in the combustion gases, whereupon the consumed waste gases are discharged through a waste gas pipe 10.
- the gas turbine GT are mounted on the same shaft Al as the compressor C and thus drives the compressor. By means of the shaft Al, the gas turbine GT also drives a generator G for conversion of energy utilized in the gas-turbine plant into electrical energy.
- the intercept and bypass valve V also comprises a bypass line with a shut-off valve to make possible short-circuiting of the compressor C and the gas turbine GT.
- Figure 3 shows an additional alternative embodiment of the invention, wherein both the gas turbine GT and the compressor C are divided into several stages.
- the design conforms to the more general connection according to Figure 1.
- the com ⁇ bustion gases from the combustor BK drive a high-pressure turbine HPT, which is mounted together with a high-pressure compressor HPC on a first shaft Al.
- the gases expanded in the high-pressure turbine HPT are forwarded to a low-pressure turbine LPT, from which the waste gases from the plant are discharged via a waste gas pipe 10.
- a second shaft A2 as that on which the low-pressure turbine LPT is mounted, also a low-pressure compressor LPC is arranged.
- air is supplied via the air pipe 8''', whereupon the air after compression in the low-pressure compressor LPC is brought to the high-pressure compressor HPC, where the air is compressed further before it is supplied to the combustor BK, possibly via an intercept and bypass valve V indicated in dashed lines and having the same function as indicated in Figure 2.
- the air may be cooled in an intercooler IC before being supplied to the high-pressure compressor HPC.
- the first shaft Al drives the generator G, possibly via a gear 12, for generation of electrical energy.
- air to the low-pressure compressor LPC is sucked in via the pipe 8 to the pressurization device F and further via the pipe 8' ' ' .
- the pressurization device F is driven via the shaft A3 in dependence on the density of the air in the pipe 8' .
- An element 13 is arranged to measure the density in the pipe 8' and a control element 14 is adapted, in dependence on this measurement result, to control the drive means M for driving the pressurization device F.
- the pressurization device F is driven via the shaft A3 in dependence on the density of the air in the pipe 8' ' ' .
- An element 13 ' is then adapted to measure the density in the pipe 8' ' ' and a control element 14' is adapted, in depen ⁇ dence on this measurement result, to control the drive means M for driving the pressurization device F.
- Figure 3 shows in dashed lines a steam circuit combined with the gas-turbine plant.
- the steam circuit is symbolized in the same way as in Figure 2. It is principally in combination with this steam circuit that an intercept and bypass valve V can be used.
- the invention is applicable both to single-shaft and multi-shaft gas-turbine plants and to combined cycles.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Air Supply (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9504261 | 1995-11-28 | ||
SE9504261A SE509666C2 (sv) | 1995-11-28 | 1995-11-28 | Sätt och anordning för att tillföra luft till en brännkammare |
PCT/SE1996/001475 WO1997020135A1 (en) | 1995-11-28 | 1996-11-14 | A method and a device for supplying air to a combustor |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0864036A1 true EP0864036A1 (en) | 1998-09-16 |
Family
ID=20400399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96941243A Withdrawn EP0864036A1 (en) | 1995-11-28 | 1996-11-14 | A method and a device for supplying air to a combustor |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0864036A1 (ko) |
JP (1) | JP2000501472A (ko) |
KR (1) | KR19990071577A (ko) |
CN (1) | CN1181123A (ko) |
SE (1) | SE509666C2 (ko) |
WO (1) | WO1997020135A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008033614A1 (de) * | 2008-07-17 | 2010-01-21 | Nilfisk-Advance A/S | Beheizter Hochdruckreiniger mit Brennerluft-Aufladung |
JP2012515296A (ja) * | 2009-01-15 | 2012-07-05 | サルガス アーエス | 流動床燃焼の改良 |
JP5401302B2 (ja) * | 2009-12-28 | 2014-01-29 | 三機工業株式会社 | 加圧流動焼却炉の運転方法及び加圧流動焼却炉設備 |
CN103334801A (zh) * | 2013-05-31 | 2013-10-02 | 余泰成 | 涡轮燃具和涡轮轴承降温方法 |
JP5711794B2 (ja) * | 2013-09-03 | 2015-05-07 | 月島機械株式会社 | 加圧流動焼却炉設備、及び加圧流動焼却炉設備の制御方法 |
JP7157687B2 (ja) * | 2019-03-15 | 2022-10-20 | 株式会社神鋼環境ソリューション | 廃棄物処理設備 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3096614A (en) * | 1961-03-29 | 1963-07-09 | Garrett Corp | Turbo-charger boost density control |
SE446560B (sv) * | 1983-02-15 | 1986-09-22 | Asea Atom Ab | Sett vid forbrenning av vatten och/eller vetehaltiga brenslen och utvinning av energi ur vid forbrenningen bildade rokgaser, rening av dessa samt anordning for genomforande av settet |
SE459112B (sv) * | 1987-01-28 | 1989-06-05 | Abb Stal Ab | Saett foer drift av en gasturbinanlaeggning |
SE501736C2 (sv) * | 1990-08-14 | 1995-05-02 | Abb Carbon Ab | Sätt för att vid en PFBC-anläggning snabbt tillföra erforderlig luftmängd vid en effektökning |
-
1995
- 1995-11-28 SE SE9504261A patent/SE509666C2/sv not_active IP Right Cessation
-
1996
- 1996-11-14 WO PCT/SE1996/001475 patent/WO1997020135A1/en not_active Application Discontinuation
- 1996-11-14 KR KR1019980703852A patent/KR19990071577A/ko not_active Application Discontinuation
- 1996-11-14 CN CN96191631A patent/CN1181123A/zh active Pending
- 1996-11-14 JP JP9520398A patent/JP2000501472A/ja active Pending
- 1996-11-14 EP EP96941243A patent/EP0864036A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9720135A1 * |
Also Published As
Publication number | Publication date |
---|---|
SE9504261D0 (sv) | 1995-11-28 |
JP2000501472A (ja) | 2000-02-08 |
WO1997020135A1 (en) | 1997-06-05 |
SE9504261L (sv) | 1997-05-29 |
KR19990071577A (ko) | 1999-09-27 |
SE509666C2 (sv) | 1999-02-22 |
CN1181123A (zh) | 1998-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brooks | GE gas turbine performance characteristics | |
JP2853681B2 (ja) | 統合ガスタービン・空気分離装置を部分負荷で運転させるための方法 | |
US4058974A (en) | Combined gas/steam power plant with pressurized-gas generator | |
US3704586A (en) | Starting system for a gas-turbine installation | |
US6170251B1 (en) | Single shaft microturbine power generating system including turbocompressor and auxiliary recuperator | |
US5491969A (en) | Power plant utilizing compressed air energy storage and saturation | |
US5133180A (en) | Chemically recuperated gas turbine | |
US5459994A (en) | Gas turbine-air separation plant combination | |
JPS60256522A (ja) | ガスタービン機関装置のシステム制御手段 | |
CZ163492A3 (en) | Combined gas/steam power plant | |
US6161385A (en) | Turbomachine and method of use | |
JPH0672551B2 (ja) | 低btuガス燃料を用いるガスタ−ビン装置の運転方法 | |
US5680752A (en) | Gas turbine plant with additional compressor | |
US5682737A (en) | Method for starting up a combination gas and steam power plant | |
US4594850A (en) | Combined cycle total energy system | |
Ulizar et al. | A semiclosed-cycle gas turbine with carbon dioxide–argon as working fluid | |
US5490376A (en) | Gas turbine system | |
JP2870232B2 (ja) | 石炭ガス化発電プラント | |
WO1997020135A1 (en) | A method and a device for supplying air to a combustor | |
Keller | The Escher Wyss-AK closed-cycle turbine, its actual development and future prospects | |
US8414667B2 (en) | Supercritical pressurization of fuel slurry | |
EP0769098A1 (en) | Gas turbine plant with additional compressor | |
Fischer et al. | Augmentation of gas turbine power output by steam injection | |
JPH08326554A (ja) | 石炭ガス化ガスタービン発電設備及びその窒素供給方法 | |
Skrotzki | Industrial and central station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20000131 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20000614 |