EP0857256B1 - Pneumo-hydraulic converter for energy storage - Google Patents

Pneumo-hydraulic converter for energy storage Download PDF

Info

Publication number
EP0857256B1
EP0857256B1 EP96934298A EP96934298A EP0857256B1 EP 0857256 B1 EP0857256 B1 EP 0857256B1 EP 96934298 A EP96934298 A EP 96934298A EP 96934298 A EP96934298 A EP 96934298A EP 0857256 B1 EP0857256 B1 EP 0857256B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pneumo
piston
hydraulic converter
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934298A
Other languages
German (de)
French (fr)
Other versions
EP0857256A1 (en
Inventor
Ivan Cyphelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0857256A1 publication Critical patent/EP0857256A1/en
Application granted granted Critical
Publication of EP0857256B1 publication Critical patent/EP0857256B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/06Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
    • F15B11/072Combined pneumatic-hydraulic systems
    • F15B11/0725Combined pneumatic-hydraulic systems with the driving energy being derived from a pneumatic system, a subsequent hydraulic system displacing or controlling the output element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F5/00Elements specially adapted for movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/214Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/216Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being pneumatic-to-hydraulic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/615Filtering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • a pneumo-hydraulic converter with reciprocating double pistons is known. the one with the best possible efficiency a compressed air reservoir with a hydraulic circuit connects, such that energy can flow into the store (charging) or from the store can be removed (unloading).
  • US-A 2,751,144 shows a compressor, i. H. a device with the hydraulic Work can be converted into pneumatic work. With this device, the Gas is compressed during the working stroke of the piston, the outside of the A cooling device is provided in the cylinder. This makes cooling possible protect the compressor from overheating overall, but it is not possible during the compression a significant amount of heat without adding or removing heat. Therefore the gas will heat up during the working stroke of the piston.
  • the compression work required however increases with the temperature of the gas, so that the efficiency of a such a compressor is low.
  • isothermal compression however, it makes it necessary to continuously dissipate heat during the working stroke. This is however, so far it has not been sufficient at technically usable working speeds Way possible.
  • the object of the invention is to achieve good efficiency while increasing the To achieve clock frequency.
  • This heat exchanger can either run with the reciprocating piston set or stay firm.
  • the heat exchanger running is about a third less Sliding seals require and also the tubular bundle the kink and dent resistance the piston set significantly increased
  • the description is based on the representation of the Restrict converters with a rotating heat exchanger: the desired increase in Clock frequency forces a radically dead space-reducing workspace arrangement.
  • the high buckling forces caused the buckling strength to become an extremely important one constructive factor that is also taken into account in the arrangement of the valves got to.
  • the high-pressure converter consists of three coaxial coaxial cables of approximately the same length Cylinder tube pieces, the pre-pressure tube 1, which surrounds the pre-pressure piston 2, has a substantially larger diameter than the two in relation to the pre-pressure tube 1 symmetrically arranged high-pressure chamber tubes 3a, 3b, which are also longitudinally symmetrical Include high pressure pistons 4a, 4b.
  • the pre-pressure pipe 1 analogously via valve flanges 5a, 5b with the two screwed-in high pressure chamber tubes 3a, 3b connected, each fastened by means of screw caps 6a, 6b Connection covers 7a, 7b are completed.
  • a set of three pistons that are mechanically firmly connected by the tubular rod 8 are and thus define 2 x 3 working spaces, namely between the connection covers 7a, 7b and the high-pressure pistons 4a, 4b, the oil spaces 9a, 9b, between the high-pressure pistons 4a, 4b and the valve flanges 5a, 5b, the high pressure air spaces 10a, 10b and between the Valve flanges 5a, 5b and the pre-pressure piston 2, the air pre-pressure spaces 11a, 11b.
  • the Air high-pressure spaces 10a, 10b are with the air pre-pressure spaces 11a, 11b via the exchange valves 12a, 12b connected, the outside world communicates with the pre-pressure rooms 11a, 11b via the low pressure valves 13a, 13b and the air reservoir 14 can the air high pressure spaces 10a, 10b act on the high pressure valves 15a, 15b from the air reservoir 14 are supplied by the supply lines 16a, 16b via the connections 17a, 17b.
  • pilot control by means of hydraulic loading is shown in 1 on the high pressure valves 15a, 15b, the pressure chambers 18a, 18b each of the electrical 2-way pilot valves connected to a pressure source 19 20a, 20b are either released or acted upon, whereby the valve pistons 21a, 21b are moved over the rods 22a, 22b with nuts 23a, 23b with the high pressure valves 15a, 15b are connected.
  • Similar devices can also be used for the replacement valves 12a, 12b and the low pressure valves 13a, 13b are provided, here only the actuating rods 24a, 24b and 25a, 25b are shown.
  • a wiring option is available, starting at the oil connections 26a, 26b of the converter, with feed lines 27a, 27b to a 4-way valve 28, which is a variable hydrostatic unit 29 with a flywheel 30 and an electric motor / generator 31 acted upon.
  • the exchange circuit begins with the feed pump 32, which is the exchange liquid by the external exchanger 33 via the connection 34b in the connection cover 7b and through the feed pipe 35b into the tube rod 8.
  • the pre-pressure piston 2 relaxed air in room 11b is displaced into the environment via the open low-pressure valve 13b and at the same time that from the previous movement in the air high-pressure space 10a below Prepressed air remaining through the open exchange valve 12a through the expanding Form pressure chamber 11a brought to outlet pressure.
  • the hydrostatic unit emerging oil sucked into the oil space 9a.
  • the through the upholstery in the Oil space 9b is therefore not only the result of high pressure in the air high-pressure chamber 10b, this also adds to that by the form on the large area of the pre-pressure piston 2 resulting thrust, which over the tubular rod 8 and Tubes 38 of the exchanger bundle is transmitted. There is a risk of kinking here!
  • the converter only works as a compressor, there is no forced control of the valves, it only has to switch the 4-way switching valve 28 either automatically (through the pressure peak at the stop) or be synchronized with the converter stroke using a proximity switch.
  • the compressor can also be used for simple compression tasks (e.g. for cooling circuits) without pre-pressure cylinder.
  • the tube bundle heat exchanger can do this either fixed or moving, as there are no buckling forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Reciprocating Pumps (AREA)

Abstract

PCT No. PCT/CH96/00386 Sec. 371 Date May 1, 1998 Sec. 102(e) Date May 1, 1998 PCT Filed Nov. 1, 1996 PCT Pub. No. WO97/17546 PCT Pub. Date May 15, 1997In order to maintain high efficiency close, to isothermy despite high frequencies in a pneumo-hydraulic converter with reciprocating pistons, pipe cluster-heat exchange pipes (38) are provided in the gas working chambers of the converter and the exchange fluid in the pipes is kept at approximately ambient temperature. For this the gas working chambers must be arranged axially next to one another and, in order to eliminate dead space, connected in pairs by conical exchange valves (12a/12b) which take in the entire wall thickness of the valve flange (5a/5b) dividing the air chambers.

Description

Es ist ein pneumo-hydraulischer Wandler mit hin- und hergehenden Doppelkolben bekannt. der mit bestmöglichem Wirkungsgrad einen Druckluftspeicher mit einem Hydraulikkreislauf verbindet, derart, daß Energie in den Speicher fließen kann (Laden) oder aus dem Speicher entnommen werden kann (Entladen).A pneumo-hydraulic converter with reciprocating double pistons is known. the one with the best possible efficiency a compressed air reservoir with a hydraulic circuit connects, such that energy can flow into the store (charging) or from the store can be removed (unloading).

Die guten Wirkungsgrade der isothermen Vorgänge werden in dem genannten System dadurch angestrebt, daß die Arbeitsräume (Kolbenräume) bei jedem Hub durch das Arbeitsmedium Öl temperaturmäßig stabilisiert werden; dies bedingt relativ langsame Vorgänge, da die begrenzte Geschwindigkeit der Wärmeübertragung von der Zylinder-Mantelfläche auf die Luft während des Arbeitshubes die Temperaturschwankungen bei erhöhter Taktfrequenz nicht ausgleichen kann; die Folge sind große Baueinheiten im Verhältnis zu der bewältigten Leistung.The good efficiencies of the isothermal processes are thereby in the system mentioned strived for the working spaces (piston spaces) with each stroke through the working medium Temperature stabilized oil; this requires relatively slow processes since the limited speed of heat transfer from the cylinder surface to the Air during the working stroke the temperature fluctuations with increased clock frequency not can compensate; the result is large building units in relation to the mastered Power.

Die US-A 2,751,144 zeigt einen Kompressor, d. h. eine Vorrichtung, mit der hydraulische Arbeit in pneumatische Arbeit umgewandelt werden kann. Mit dieser Vorrichtung wird das Gas während des Arbeitshubes des Kolbens komprimiert, wobei im Außenbereich des Zylinders eine Kühlvorrichtung vorgesehen ist. Dadurch ist zwar eine Kühlung möglich, um den Kompressor insgesamt vor Überhitzung zu schützen, aber es ist nicht möglich, während der Verdichtung eine nennenswerte Wärmemenge ohne Wärme zu- oder abzuführen. Daher wird sich das Gas während des Arbeitshubes des Kolbens erwärmen. Die erforderliche Kompressionsarbeit steigt jedoch mit der Temperatur des Gases, so daß der Wirkungsgrad eines solchen Verdichters gering ist. Optimal in dieser Hinsicht ist eine isotherme Verdichtung, die es jedoch erforderlich macht, während des Arbeitshubes laufend Wärme abzuführen. Dies ist jedoch bei technisch brauchbaren Arbeitsgeschwindigkeiten bisher nicht in ausreichender Weise möglich gewesen.US-A 2,751,144 shows a compressor, i. H. a device with the hydraulic Work can be converted into pneumatic work. With this device, the Gas is compressed during the working stroke of the piston, the outside of the A cooling device is provided in the cylinder. This makes cooling possible protect the compressor from overheating overall, but it is not possible during the compression a significant amount of heat without adding or removing heat. Therefore the gas will heat up during the working stroke of the piston. The compression work required however increases with the temperature of the gas, so that the efficiency of a such a compressor is low. Optimal in this regard isothermal compression however, it makes it necessary to continuously dissipate heat during the working stroke. This is however, so far it has not been sufficient at technically usable working speeds Way possible.

Aufgabe der Erfindung ist es, einen guten Wirkungsgrad bei gleichzeitiger Erhöhung der Taktfrequenz zu erreichen.The object of the invention is to achieve good efficiency while increasing the To achieve clock frequency.

Erfindungsgemäß wird dies durch die im Patentanspruch 1 genannten Merkmale erreicht. wonach rohrförmige Wärmetauscher einige der Arbeitsräume des Wandlers durchdringen, wobei ein äußerer Kreislauf die Tauschflüssigkeit annähernd auf Umgebungstemperatur hält.According to the invention this is achieved by the features mentioned in claim 1. where tubular heat exchangers penetrate some of the converter's work spaces, an external circuit keeps the exchange liquid approximately at ambient temperature.

Dieser Wärmetauscher kann entweder mit dem hin- und hergehenden Kolbensatz mitlaufen oder fest bleiben. Da jedoch der mitlaufende Wärmetauscher ungefähr ein Drittel weniger Gleitdichtungen erfordert und außerdem das rohrförmige Bündel die Knick- und Beulfestigkeit des Kolbensatzes wesentlich erhöht, wird sich die Beschreibung auf die Darstellung des Wandlers mit mitlaufendem Wärmetauscher beschränken: die erwünschte Erhöhung der Taktfrequenz zwingt nämlich zu einer radikal totraumreduzierenden Arbeitsraumanordnung. die hohe Knickkräfte verursacht, was die Knickfestigkeit zu einem außerordentlich wichtigen konstruktiven Faktor macht, der auch in der Anordnung der Ventile mitberücksichtigt werden muß.This heat exchanger can either run with the reciprocating piston set or stay firm. However, since the heat exchanger running is about a third less Sliding seals require and also the tubular bundle the kink and dent resistance the piston set significantly increased, the description is based on the representation of the Restrict converters with a rotating heat exchanger: the desired increase in Clock frequency forces a radically dead space-reducing workspace arrangement. The high buckling forces caused the buckling strength to become an extremely important one constructive factor that is also taken into account in the arrangement of the valves got to.

Da der Wandler sowohl als Kompressor wie auch als Entspanner arbeiten soll, müssen die Ventilsätze jeder Seite - bestehend jeweils aus Hochdruckventil, Austauschventil und Niederdruckventil - zwangsgesteuert werden, wobei unter gewissen Bedingungen Austausch- und Niederdruckventil in ihrer Bewegung gepaart werden können. Die Ausgestaltung dieser Ventile muß ebenso die topologischen Anforderungen des Wärmetauschers, wie auch das Imperativ minimalster Toträume erfüllen; die Lösung dieser Aufgaben und die Funktionsweise der Erfindung werden mit Hilfe von Zeichnungen erklärt, wobei

Fig. 1
einen Längsschnitt durch die Achse der vier zylindrischen Arbeitsräume zeigt,
Fig. 2
einen Schnitt quer zur Achse der Fig. 1 durch den Hochdruckraum und durch das Wärmetauscher-Rohrbündel darstellt, und schließlich
Fig. 3
den gleichen Schnitt, wie die Fig. 2 veranschaulicht, jedoch mit überbrückten Bündelrohren.
Since the converter is intended to work both as a compressor and as an expansion device, the valve sets on each side - consisting of a high-pressure valve, an exchange valve and a low-pressure valve - must be positively controlled, whereby the exchange and low-pressure valve can be paired in their movement under certain conditions. The design of these valves must meet the topological requirements of the heat exchanger as well as the imperative of minimal dead spaces; the solution of these objects and the functioning of the invention are explained with the aid of drawings, wherein
Fig. 1
shows a longitudinal section through the axis of the four cylindrical work spaces,
Fig. 2
a section transverse to the axis of FIG. 1 through the high pressure chamber and through the heat exchanger tube bundle, and finally
Fig. 3
the same section as Fig. 2 illustrates, but with bridged bundle tubes.

Der Wandler in seiner Hochdruckausführung besteht aus drei ungefähr gleich langen koaxialen Zylinderrohrstücken, wobei das Vordruckrohr 1, das den Vordruckkolben 2 umschließt, einen wesentlich größeren Durchmesser aufweist, als die zwei gegenüber dem Vordruckrohr 1 symmetrisch angeordneten Hochdruckkammerrohre 3a, 3b, die die ebenfalls längssymmetrischen Hochdruckkolben 4a, 4b beinhalten. Da ebenso die bewegten Teile wie auch die feststehenden Teile spiegelsymmetrisch in Bezug auf deren Längsmitte sind, ist das Vordruckrohr 1 sinngemäß über Ventilflansche 5a, 5b mit den zwei eingeschraubten Hochdruckkammerrohren 3a, 3b verbunden, die jeweils durch mittels Schraubkappen 6a, 6b befestigten Anschlußdeckel 7a, 7b abgeschlossen werden. Axial in den Zylinderrohrstücken gleitend befindet sich ein Satz von drei Kolben, die durch die Rohrstange 8 mechanisch fest verbunden sind und somit 2 x 3 Arbeitsräume definieren, und zwar zwischen den Anschlußdeckeln 7a, 7b und den Hochdruckkolben 4a, 4b, die Ölräume 9a, 9b, zwischen den Hochdruckkolben 4a, 4b und den Ventilflanschen 5a, 5b, die Luft-Hochdruckräume 10a, 10b und zwischen den Ventilflanschen 5a, 5b und dem Vordruckkolben 2 die Luft-Vordruckräume 11a, 11b. Die Luft-Hochdruckräume 10a, 10b sind mit den Luft-Vordruckräumen 11a, 11b über die Austauschventile 12a, 12b verbunden, die Außenwelt kommuniziert mit den Vordruckräumen 11a, 11b über die Niederdruckventile 13a, 13b und der Luftspeicher 14 kann die Luft-Hochdruckräume 10a, 10b über die Hochdruckventile 15a, 15b beaufschlagen, die vom Luftspeicher 14 durch die Zuleitungen 16a, 16b über die Anschlüsse 17a, 17b versorgt werden.The high-pressure converter consists of three coaxial coaxial cables of approximately the same length Cylinder tube pieces, the pre-pressure tube 1, which surrounds the pre-pressure piston 2, has a substantially larger diameter than the two in relation to the pre-pressure tube 1 symmetrically arranged high-pressure chamber tubes 3a, 3b, which are also longitudinally symmetrical Include high pressure pistons 4a, 4b. As the moving parts as well as the fixed parts are mirror-symmetrical with respect to their longitudinal center, is the pre-pressure pipe 1 analogously via valve flanges 5a, 5b with the two screwed-in high pressure chamber tubes 3a, 3b connected, each fastened by means of screw caps 6a, 6b Connection covers 7a, 7b are completed. Sliding axially in the cylinder tube pieces a set of three pistons that are mechanically firmly connected by the tubular rod 8 are and thus define 2 x 3 working spaces, namely between the connection covers 7a, 7b and the high-pressure pistons 4a, 4b, the oil spaces 9a, 9b, between the high-pressure pistons 4a, 4b and the valve flanges 5a, 5b, the high pressure air spaces 10a, 10b and between the Valve flanges 5a, 5b and the pre-pressure piston 2, the air pre-pressure spaces 11a, 11b. The Air high-pressure spaces 10a, 10b are with the air pre-pressure spaces 11a, 11b via the exchange valves 12a, 12b connected, the outside world communicates with the pre-pressure rooms 11a, 11b via the low pressure valves 13a, 13b and the air reservoir 14 can the air high pressure spaces 10a, 10b act on the high pressure valves 15a, 15b from the air reservoir 14 are supplied by the supply lines 16a, 16b via the connections 17a, 17b.

Eine Ausgestaltungsmöglichkeit der Vorsteuerung mittels hydraulischer Beaufschlagung ist in der Fig. 1 an den Hochdruckventilen 15a, 15b dargestellt, wobei die Druckräume 18a, 18b jeweils von den an eine Druckquelle 19 angeschlossenen elektrischen 2-Wege-Vorsteuerventilen 20a, 20b entweder gelüftet oder beaufschlagt werden, wodurch die Ventilkolben 21a, 21b bewegt werden, die über die Stangen 22a, 22b mit Muttern 23a, 23b mit den Hochdruckventilen 15a, 15b verbunden sind. Ähnliche Vorrichtungen können auch für die Austauschventile 12a, 12b und die Niederdruckventile 13a, 13b vorgesehen werden, wobei hier lediglich deren Betätigungsstangen 24a, 24b und 25a, 25b dargestellt sind.One possibility of designing the pilot control by means of hydraulic loading is shown in 1 on the high pressure valves 15a, 15b, the pressure chambers 18a, 18b each of the electrical 2-way pilot valves connected to a pressure source 19 20a, 20b are either released or acted upon, whereby the valve pistons 21a, 21b are moved over the rods 22a, 22b with nuts 23a, 23b with the high pressure valves 15a, 15b are connected. Similar devices can also be used for the replacement valves 12a, 12b and the low pressure valves 13a, 13b are provided, here only the actuating rods 24a, 24b and 25a, 25b are shown.

Zum besseren Verständnis ist, beginnend an den Ölanschlüssen 26a, 26b, eine Beschaltungsmöglichkeit des Wandlers dargestellt, mit Zuleitungen 27a, 27b zu einem 4-Wege-Ventil 28, das eine variable hydrostatische Einheit 29 mit Schwungrad 30 und Elektro-Motor/Generator 31 beaufschlagt. Der Tauscherkreislauf beginnt mit der Speisepumpe 32, die die Tauschflüssigkeit durch den externen Tauscher 33 über den Anschluß 34b im Anschlußdeckel 7b und über das Speiserohr 35b in die Rohrstange 8 einführt. Da diese Rohrstange 8 in der Ebene des Vordruckkolbens 2 durch einen konischen Stopfen 36 verschlossen ist, wird die Tauschflüssigkeit durch den Ringraum zwischen Speiserohr 35b und Rohrstange 8 zum Hochdruckkolben zurückgedrückt, in welchem über Radialbohrungen 37b die Tauscher-Bündelrohre 38 gespeist werden, also auch der Hochdruckkolben 4a - über dessen Radialbohrungen 37a wiederum die Rohrstange 8 erreicht wird; der Kreislauf zurück zur Speisepumpe 32 wird über das Speiserohr 35a und den Anschluß 34a geschlossen.For better understanding, a wiring option is available, starting at the oil connections 26a, 26b of the converter, with feed lines 27a, 27b to a 4-way valve 28, which is a variable hydrostatic unit 29 with a flywheel 30 and an electric motor / generator 31 acted upon. The exchange circuit begins with the feed pump 32, which is the exchange liquid by the external exchanger 33 via the connection 34b in the connection cover 7b and through the feed pipe 35b into the tube rod 8. Since this pipe rod 8 in the plane of Pre-pressure piston 2 is closed by a conical plug 36, the exchange liquid through the annular space between feed pipe 35b and pipe rod 8 to the high-pressure piston pressed back, in which the exchanger bundle tubes 38 are fed, so also the high pressure piston 4a - in turn via the radial bores 37a the pipe rod 8 is reached; the circuit back to the feed pump 32 is via the Feed tube 35a and the connection 34a closed.

Wie die Hochdruckkolben-Gleitdichtungen 39a, 39b und die Austauschventil-Gleitdichtungen 40a, 40b werden auch die Tauscherdichtungen 41a, 41b und 42a, 42b durch die ganze Kolbenbewegung hindurch mit voller Druckdifferenz belastet. Dies ist die eigentliche technologische Herausforderung des Konzeptes, insbesondere wenn die Rohrbündelausgestaltung zwecks Erhöhung der Knickfestigkeit und der Wärmeübertragung eine Bündelrohrüberbrückung 43, wie in Fig. 3, vorsieht. Lediglich die Gleitdichtung 44 des Vordruckkolbens 2 wird von den hohen Drücken verschont, da sie nur dem Vordruck ausgesetzt wird. Die restlichen nicht näher bezeichneten Dichtungen werden nur statisch oder kurzhubig beansprucht.Like the high-pressure piston sliding seals 39a, 39b and the replacement valve sliding seals 40a, 40b are the exchanger seals 41a, 41b and 42a, 42b through the whole Piston movement loaded with full pressure difference. This is the real technological one Challenge of the concept, especially when designing the tube bundle A bundle tube bypass to increase kink resistance and heat transfer 43, as in Fig. 3, provides. Only the sliding seal 44 of the upstream pressure piston 2 is spared from the high pressures as it is only exposed to the pre-pressure. The remaining Seals not specified are only subjected to static or short-stroke loads.

Die Funktionsweise des Wandlers soll nun in einem Zyklus der Entspannung (Entladung) erläutert werden, dem die dargestellte Stellung der Ventile entspricht, wobei sich der Kolbensatz gegen rechts bewegt. In dem zeichnerisch festgehaltenen Augenblick wird durch das offene Luft-Hochdruckventil 15b der Luft-Hochdruckraum 10b mit dem Luftspeicher 14 direkt verbunden. Die Druckkraft wird sinngemäß im Ölraum 9b aufgenommen und durch die Ölsäule in der Leitung 27b über das 4-Wege-Ventil 28 auf die Druckseite motorisch wirkenden hydrostatischen Einheit 29 übertragen, die folglich das Schwungrad 30 und den Generator 31 antreibt. Durch besagte Bewegung nach rechts wird außerdem mittels Vordruckkolbens 2 entspannte Luft im Raum 11b über das offene Niederdruckventil 13b in die Umwelt verdrängt und gleichzeitig die aus der vorhergehenden Bewegung im Luft-Hochdruckraum 10a unter Vordruck verbliebene Luft über das offene Austauschventil 12a durch den sich erweiternden Vordruckraum 11a auf Auslaßdruck gebracht. Durch dieselbe Bewegung wird das aus der hydrostatischen Einheit austretende Öl in den Ölraum 9a gesaugt. Die durch das Polster im Ölraum 9b aufgenommene Kraft entsteht also nicht nur durch die Hochdruckbeaufschlagung im Luft-Hochdruckraum 10b, es addiert sich hierzu auch der durch den Vordruck an der großen Fläche des Vordruckkolbens 2 entstehende Schub, der über die Rohrstange 8 und die Rohre 38 des Tauscherbündels übertragen wird. Hier lauert die Knickgefahr! An einer mittels Rechner zu ermittelnder Stelle dieses Rechtshubes muß nun das Hochdruckventil 15b geschlossen werden, damit die Entspannung dieses hierdurch definierten Volumens am Ende des Hubes genau den Vordruck ergibt, der nach der Hubumkehr durch das Verschieben des Inhalts des Lufthochruckraumes 10b in den Vordruckraum 11b durch Expansion den Auslaßdruck erreicht. Im Augenblick der Hubumkehr müssen also zusammen mit der Umschaltung von 28 auch 15a, 13a und 12b geöffnet und 12a und 13b geschlossen werden (wobei 13b ja schon durch den auflaufenden Vordruckkolben 2 in die Schließstellung gedrückt wird). Diese Umschaltung kann durch einen Näherungsschalter ausgelöst werden.The mode of operation of the converter should now be in a cycle of relaxation (discharge) are explained, which corresponds to the position of the valves shown, the piston set moved to the right. At the moment in the drawing, the open air high pressure valve 15b the air high pressure space 10b with the air reservoir 14 directly connected. The compressive force is taken up analogously in the oil space 9b and by the Oil column in line 27b via the 4-way valve 28 on the pressure side acting motor hydrostatic unit 29, which consequently transmits the flywheel 30 and the generator 31 drives. By said movement to the right, the pre-pressure piston 2 relaxed air in room 11b is displaced into the environment via the open low-pressure valve 13b and at the same time that from the previous movement in the air high-pressure space 10a below Prepressed air remaining through the open exchange valve 12a through the expanding Form pressure chamber 11a brought to outlet pressure. With the same movement, the hydrostatic unit emerging oil sucked into the oil space 9a. The through the upholstery in the Oil space 9b is therefore not only the result of high pressure in the air high-pressure chamber 10b, this also adds to that by the form on the large area of the pre-pressure piston 2 resulting thrust, which over the tubular rod 8 and Tubes 38 of the exchanger bundle is transmitted. There is a risk of kinking here! On one means The computer of the point of this rightward stroke to be determined must now close the high-pressure valve 15b so that the relaxation of this defined volume at the end of the Hubes gives exactly the form that after the stroke reversal by moving the content of the high pressure air space 10b into the pre-pressure space 11b by expansion the outlet pressure reached. At the moment of stroke reversal must therefore be together with the changeover from 28 also 15a, 13a and 12b are opened and 12a and 13b are closed (whereby 13b yes is already pressed into the closed position by the upstream pressure piston 2). This Switching can be triggered by a proximity switch.

Abschließend soll unterstrichen werden, daß die dargestellte topologische Ausgestaltung Teil der Erfindung ist und besonders gut zu dem beschriebenen, sich immer wiederholenden thermodynamischen Vorgang paßt, zumal durch die gewählte Druckraum- und Tauscheranordnung die totraumfreie Wechselventilbauart möglich wird, mit der das Konzept einer Wandlung mit höchsten Wirkungsgraden steht und fällt.Finally, it should be emphasized that the topological configuration shown is part the invention is and particularly well to the described, repetitive thermodynamic Process fits, especially due to the selected pressure chamber and exchanger arrangement the dead space-free shuttle valve design becomes possible with which the concept of a conversion stands and falls with the highest levels of efficiency.

Es soll schließlich darauf hingewiesen werden, daß innerhalb eines Hubes der aus diesem Wandler austretende Öldruck pro Hub in einem Verhältnis von ungefähr 1:30 schwankt (bei 200 bar im Luftspeicher 14), was dessen direkte Anwendung in vielen Fällen problematisch macht, da die hydrostatischen Einheiten über einen Verdrängervolumen-Regelbereich von höchstens 1:10 verfügen. Soll also der Wandler eine konstante Leistung bewältigen, empfiehlt sich der Weg über ein Schwungrad, das einen weiten Taktfrequenzbereich überbrücken kann, wobei die hydrostatische Einheit lediglich den effektiven Laständerungen zu folgen hat.Finally, it should be pointed out that within a stroke the out of this Oil pressure exiting the converter fluctuates in a ratio of approximately 1:30 (at 200 bar in the air storage 14), which makes its direct application problematic in many cases because the hydrostatic units have a displacement volume control range of have a maximum of 1:10. So if the converter is to cope with constant power, we recommend the way over a flywheel that can bridge a wide clock frequency range, the hydrostatic unit only has to follow the effective load changes.

Arbeitet der Wandler ausschließlich als Kompressor entfällt die Zwangssteuerung der Ventile, es muß lediglich das 4-Wege-Umschaltventil 28 entweder selbsttätig (durch die Druckspitze beim Anschlag) oder mittels Näherungsschalter mit dem Wandlerhub synchronisiert werden. Auch kann bei einfachen Verdichtungsaufgaben (z. B. für Kühlkreisläufe) der Kompressor ohne Vordruckzylinder ausgeführt werden. Der Rohrbündel-Wärmetauscher kann hierbei wahlweise feststehend oder mitlaufend sein, da keine Knickkräfte entstehen.If the converter only works as a compressor, there is no forced control of the valves, it only has to switch the 4-way switching valve 28 either automatically (through the pressure peak at the stop) or be synchronized with the converter stroke using a proximity switch. The compressor can also be used for simple compression tasks (e.g. for cooling circuits) without pre-pressure cylinder. The tube bundle heat exchanger can do this either fixed or moving, as there are no buckling forces.

Claims (9)

  1. Pneumo-hydraulic converter for the conversion of pneumatic work into hydraulic work and/or hydraulic work into pneumatic work, with at least one reciprocating piston (2, 4a, 4b), at least one gas working chamber (10a, 10b; 11a, 11b), which is partially defined by the piston (2, 4a, 4b) and in which is provided a gaseous working medium, and at least one oil working chamber (9a, 9b), which is partially defined by a piston (4a, 4b) and in which is provided a liquid working medium, the gas working chamber (10a, 10b; 11a, 11b) being connected to an air storage (14) by means of valves (15a, 15b), and the oil working chamber (9a, 9b) being connected to a hydraulic circuit, characterized in that a tubular heat exchanger (35a, 35b, 38) passing through the piston (2, 4a, 4b) is connected to an exterior cooling circuit, which is designed to maintain the temperature of the gaseous working medium at an essentially constant level.
  2. Pneumo-hydraulic converter as claimed in Claim 1, characterized in that the tubular heat exchanger (35a, 35b, 38) passes through the gas working chambers (10a, 10b; 11a, 11b) and the oil working chambers (9a, 9b).
  3. Pneumo-hydraulic converter as claimed in any of Claims 1 or 2, characterized in that the tubular heat exchanger (35a, 35b, 38) is rigidly connected in the piston (2).
  4. Pneumo-hydraulic converter as claimed in any of Claims 1 to 3, characterized in that there are provided at least one high-pressure piston (4a, 4b) and at least one pre-pressure piston (2) with larger diameter.
  5. Pneumo-hydraulic converter as claimed in any of Claims 1 to 4, characterized in that two high-pressure pistons (4a, 4b) and one pre-pressure piston (2) are provided, which are rigidly connected to one another.
  6. Pneumo-hydraulic converter as claimed in any of Claims 4 or 5, charaterized in that at least one high-pressure piston (4a, 4b) is positioned between an oil working chamber (9a, 9b) and a gas high-pressure chamber (10a, 10b).
  7. Pneumo-hydraulic converter as claimed in any of Claims 4 to 6, characterized in that the pre-pressure piston (2) is positioned between two gas pre-pressure chambers (11a, 11b).
  8. Pneumo-hydraulic converter as claimed in any of Claims 1 to 7, characterized in that in order to prevent dead volumes each gas high-pressure chamber (10a, 10b) is connected to a corresponding pre-pressure chamber (11a, 11b) via a conical seat valve (12a, 12b), which is guided on a tubular rod (8) or the exchange pipes (38), and which occupies the entire wall thickness of the valve flange (5a, 5b) separating the air chambers.
  9. Pneumo-hydraulic converter as claimed in any of Claims 1 to 8, characterized in that a proximity switch is provided for control of the valves (12a, 12b, 13a, 13b, 15a, 15b, 28).
EP96934298A 1995-11-03 1996-11-01 Pneumo-hydraulic converter for energy storage Expired - Lifetime EP0857256B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH311495 1995-11-03
CH3114/95 1995-11-03
PCT/CH1996/000386 WO1997017546A1 (en) 1995-11-03 1996-11-01 Pneumo-hydraulic converter for energy storage

Publications (2)

Publication Number Publication Date
EP0857256A1 EP0857256A1 (en) 1998-08-12
EP0857256B1 true EP0857256B1 (en) 1999-03-31

Family

ID=4248922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96934298A Expired - Lifetime EP0857256B1 (en) 1995-11-03 1996-11-01 Pneumo-hydraulic converter for energy storage

Country Status (8)

Country Link
US (1) US6145311A (en)
EP (1) EP0857256B1 (en)
JP (1) JP3194047B2 (en)
AT (1) ATE178389T1 (en)
CA (1) CA2236746A1 (en)
DE (1) DE59601569D1 (en)
OA (1) OA10682A (en)
WO (1) WO1997017546A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135080A (en) * 2011-03-02 2011-07-27 浙江杭钻机械制造股份有限公司 Hydraulic double-cylinder single-acting reciprocating pump driving system capable of reversing by rotary valve

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017492A1 (en) 1996-10-18 1998-04-30 Tcg Unitech Aktiengesellschaft Motor vehicle drive system
AT406984B (en) 1998-12-22 2000-11-27 Joerg Thurner DEVICE FOR CONVERTING ENERGY STORED IN COMPRESSED AIR IN MECHANICAL WORK
JP4753276B2 (en) * 2002-11-26 2011-08-24 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
WO2009034421A1 (en) * 2007-09-13 2009-03-19 Ecole polytechnique fédérale de Lausanne (EPFL) A multistage hydro-pneumatic motor-compressor
CN102089518B (en) * 2007-12-14 2014-12-10 大卫·麦克康内尔 Wind to electric energy conversion with hydraulic storage
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US20110266810A1 (en) 2009-11-03 2011-11-03 Mcbride Troy O Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
EP2280841A2 (en) * 2008-04-09 2011-02-09 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8225606B2 (en) * 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7963110B2 (en) * 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
CN104895745A (en) 2009-05-22 2015-09-09 通用压缩股份有限公司 Compressor and/or expander device
US8454321B2 (en) 2009-05-22 2013-06-04 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8146354B2 (en) * 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8436489B2 (en) 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
EP2516952A2 (en) 2009-12-24 2012-10-31 General Compression Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
DE102010051664A1 (en) * 2010-11-17 2012-05-24 Liebherr-Hydraulikbagger Gmbh implement
DE102010051663A1 (en) * 2010-11-17 2012-05-24 Liebherr-Hydraulikbagger Gmbh implement
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
EP2649326A1 (en) 2010-12-07 2013-10-16 General Compression Inc. Compressor and/or expander device with rolling piston seal
US8997475B2 (en) 2011-01-10 2015-04-07 General Compression, Inc. Compressor and expander device with pressure vessel divider baffle and piston
WO2012097215A1 (en) 2011-01-13 2012-07-19 General Compression, Inc. Systems, methods and devices for the management of heat removal within a compression and/or expansion device or system
US9109512B2 (en) 2011-01-14 2015-08-18 General Compression, Inc. Compensated compressed gas storage systems
EP2715075A2 (en) 2011-05-17 2014-04-09 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8387375B2 (en) 2011-11-11 2013-03-05 General Compression, Inc. Systems and methods for optimizing thermal efficiency of a compressed air energy storage system
US8522538B2 (en) 2011-11-11 2013-09-03 General Compression, Inc. Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
DE102011120227B4 (en) * 2011-12-03 2013-08-14 Hydac Fluidtechnik Gmbh Hydraulic hybrid system for rotary applications
DE102011120228A1 (en) 2011-12-03 2013-06-06 Hydac Fluidtechnik Gmbh System for improving the energy efficiency of hydraulic systems and piston accumulator provided for such a system
US9234530B1 (en) * 2013-03-13 2016-01-12 Exelis Inc. Thermal energy recovery
DE102015222983A1 (en) * 2015-11-20 2017-05-24 Robert Bosch Gmbh Energy storage system
EP3807539A1 (en) 2016-05-17 2021-04-21 Enairys Powertech SA Hybrid multistage gas compression/expansion systems and methods
CN113117503B (en) * 2019-12-31 2023-04-07 中国石油化工股份有限公司 System and method for separating mixed gas by energy-saving hydrate method
CN112610542B (en) * 2020-12-15 2022-03-25 库卡机器人(广东)有限公司 Balance cylinder hydraulic system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US129631A (en) * 1872-07-16 Improvement in air-compressing apparatus
US255116A (en) * 1882-03-21 Addison
DE483621C (en) * 1925-11-27 1929-10-03 Anders Anderberg Pump or compressor with double action and two-stage or multi-stage operation
US2751144A (en) * 1951-11-17 1956-06-19 Jean A Troendle Apparatus for compressing gases
GB842608A (en) * 1957-03-13 1960-07-27 Nat Res Dev Improvements in or relating to heat exchange apparatus
FR1367103A (en) * 1963-07-29 1964-07-17 Continuous flow hydro-pneumatic pressure transformer
JPS5560707A (en) * 1978-10-26 1980-05-08 Kimura Shindai Kogyo Kk Single acting cylinder
US4627794A (en) * 1982-12-28 1986-12-09 Silva Ethan A Fluid pressure intensifier
DE3410911A1 (en) * 1983-04-06 1984-10-11 Ernst Dipl.-Ing. 4600 Dortmund Korthaus PISTON PUMP
IT1187318B (en) * 1985-02-22 1987-12-23 Franco Zanarini VOLUMETRIC ALTERNATE COMPRESSOR WITH HYDRAULIC OPERATION
US4823560A (en) * 1988-05-27 1989-04-25 E Squared Inc. Refrigeration system employing refrigerant operated dual purpose pump
US5564912A (en) * 1995-09-25 1996-10-15 Peck; William E. Water driven pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135080A (en) * 2011-03-02 2011-07-27 浙江杭钻机械制造股份有限公司 Hydraulic double-cylinder single-acting reciprocating pump driving system capable of reversing by rotary valve

Also Published As

Publication number Publication date
US6145311A (en) 2000-11-14
EP0857256A1 (en) 1998-08-12
CA2236746A1 (en) 1997-05-15
JPH11501387A (en) 1999-02-02
WO1997017546A1 (en) 1997-05-15
DE59601569D1 (en) 1999-05-06
ATE178389T1 (en) 1999-04-15
JP3194047B2 (en) 2001-07-30
OA10682A (en) 2001-05-03

Similar Documents

Publication Publication Date Title
EP0857256B1 (en) Pneumo-hydraulic converter for energy storage
DE2447799A1 (en) HYDROPNEUMATIC OR OIL-PNEUMATIC CONTROL DEVICE
EP0455258A1 (en) Method for operating a pneumatic motor and device for working the method
EP3781815B1 (en) Compressor device and compression method
WO2017084792A1 (en) Energy storage system
DE3780595T2 (en) HYDRAULIC-PNEUMATIC POWER TRANSMISSION DEVICE.
DE60202393T2 (en) Double piston pump
AT406984B (en) DEVICE FOR CONVERTING ENERGY STORED IN COMPRESSED AIR IN MECHANICAL WORK
DE102016007266A1 (en) Device for direct recuperation of hydraulic energy by means of a single-acting hydraulic cylinder
EP0400693A2 (en) High pressure pump
DE19914840A1 (en) Controlled hydraulic drive with electrical load control, with at least two hydraulic actuators which can be connected by hydraulic line forming hydrostatic coupling
EP2549123A2 (en) Système d'entraînement hydropneumatique avec un ou plusieurs cylindres de travail à double milieu
DE1918898C3 (en) Hydraulic pressure-multiplying device for multiple pressure intensification
DE2318467A1 (en) METHOD AND DEVICE FOR BALANCING THE AXIAL FORCE IN SCREW COMPRESSORS
DE2018940C3 (en) Expansion machine for gases
EP0058131B1 (en) Vibrator
DE4405938A1 (en) Piston cylinder unit for fluid pressure media
EP3864289B1 (en) Hydraulic piston machine, at least usable for compressing gas, pressure gas energy convertion device, pressure gas energy convertion-heat exchanger-device, pressure gas energy convertion-heat exchanger-device as pre-stage
AT525551B1 (en) heat engine
DE628830C (en) Steam power plant with high pressure piston engine and low pressure steam turbine
DE102015009975A1 (en) Hydro Stirling engine
DE4337991A1 (en) Hydropneumatic drive system
DE10320182A1 (en) Hydraulic forge press for metal processing has control valves in frame or intermediate block remote from pump
DE102014212206A1 (en) Hydrostatic radial piston machine and hydrostatic radial piston unit with such radial piston machines
AT275005B (en) Method for step control of the performance of multistage reciprocating compressors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17P Request for examination filed

Effective date: 19980321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB LI NL

17Q First examination report despatched

Effective date: 19980807

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990331

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990331

REF Corresponds to:

Ref document number: 178389

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59601569

Country of ref document: DE

Date of ref document: 19990506

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990622

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010122

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011107

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031103

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031128

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST