EP0856498A2 - Titanium carbo-nitride complex silicon nitride tool - Google Patents
Titanium carbo-nitride complex silicon nitride tool Download PDFInfo
- Publication number
- EP0856498A2 EP0856498A2 EP97108146A EP97108146A EP0856498A2 EP 0856498 A2 EP0856498 A2 EP 0856498A2 EP 97108146 A EP97108146 A EP 97108146A EP 97108146 A EP97108146 A EP 97108146A EP 0856498 A2 EP0856498 A2 EP 0856498A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitride
- tool
- silicon nitride
- carbo
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58014—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
- C04B35/58021—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/593—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5031—Alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5061—Titanium carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5062—Borides, Nitrides or Silicides
- C04B41/5068—Titanium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/252—Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- This invention relates to a titanium carbo-nitride complex silicon nitride tool or generally ceramic and to a method for producing same.
- a silicon nitride based cutting tool having superior mechanical strength and resistance against thermal shock, has come into use as a tool for cutting cast iron.
- the CBN cutting tool is used.
- the CBN cutting tool manufactured in general using an ultra high pressure sintering method, is much more costly than the silicon nitride based cutting tool.
- JP Patent Kokai JP-A-58-95662 and JP Patent Kokoku JP-B-5-7122 there is disclosed a tool in which TiN is compounded as a hard dispersed phase in silicon nitride (Si 3 N 4 ) to suppress the chemical reaction between silicon nitride and Fe at elevated temperatures.
- JP Patent Kokoku JP-B-61-10416 and JP Patent Kokai JP-A-61-17473 there is proposed a tool in which titanium nitride, titanium carbide or titanium carbo-nitride is compounded as a hard dispersed phase into silicon nitride for improving wear resistance.
- JP Patent Kokai JP-A-61-31558 there is proposed a tool in which, for suppressing generation of silicon carbide or titanium nitride due to chemical reaction of titanium carbide with silicon nitride and for suppressing generation of N 2 gas, the titanium carbide particle surface is coated with titanium nitride and compounded as a hard dispersed phase with silicon nitride.
- the silicon nitride machining tool disclosed in the above Patent Publications are produced by adding oxides, such as Al 2 O 3 , MgO, SiO 2 etc. as sintering aids and by firing at a temperature or a pressure which does not decompose silicon nitride.
- oxides such as Al 2 O 3 , MgO, SiO 2 etc.
- the reason is that, if silicon nitride is compounded with carbides, nitrides or carbo-nitrides of titanium, sinterability is lowered with increased amounts thereof.
- the oxides used as sintering aids in the prior art such as Al 2 O 3 , MgO, SiO 2 etc.
- SiO 2 left on the surface of the silicon nitride surface phase during firing to form a low melting glass phase, thus lowering the resistance against wear of the tool edge which is heated to high temperature during high-speed cutting, in particular, the resistance against flank notch (wear) of the end cutting edge.
- titanium carbo-nitride complex silicon nitride tool or generally complex silicon nitride ceramic which is superior in resistance against wear, in particular in both the resistance against frank notch (wear) on the end cutting edge and resistance against thermal shock and which is suited to high-speed machining of cast iron or the like.
- the present invention particularly relates to a titanium carbo-nitride complex silicon nitride tool superior in wear resistance, resistance against thermal shock and high-speed machining performance for a workpiece such as cast iron or inconel.
- a titanium carbo-nitride complex silicon nitride tool (or ceramic)(referred to hereinafter simply as "tool") according to the present invention is composed mainly of titanium carbo-nitride and silicon nitride and contains 10 to 56 wt% of Ti, 11.6 to 51 wt% of Si and 1 to 21 wt% in total of one or two or more of Ce, Y, Yb and Dy.
- titanium carbo-nitride means a complex titanium compound composed of in total 1 mol of titanium and carbon and nitrogen summed together (chemical formula: TiC x N 1-x , where x > 0).
- the titanium carbo-nitride complex silicon nitride ceramic may be produced by providing a composition composed of 10 to 60 vol.% of titanium carbo-nitride, 0.5 to 10 vol.% of one or more selected from the group of CeO 2 , Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 and the balance being silicon nitride, and sintering the composition to a pre-determined shape, particularly tool shape.
- the Ce, Y, Yb and Dy components are derived from the components of the sintering aids.
- the oxygen content in the tool (or ceramic) then is 0.14 to 3.5 wt%.
- the above tool is mainly composed of silicon nitride superior in both strength and in resistance against thermal shock and titanium carbo-nitride having high hardness and superior in the effect of suppressing reactivity of silicon nitride and Fe.
- oxides namely CeO 2 , Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 , as sintering aid components, so that the amounts of Ce, Y, Yb and Dy in the tool will be in the above range, the resistance against wear, in particular the resistance against boundary wear of the end cutting edge and resistance against thermal shock, is improved resulting in improved service life of the tool as compared to the conventional silicon nitride cutting tool.
- the tool may be applied to wet high speed machining of, for example, cast iron, thus significantly lowering the tool cost and hence the cost of the cutting tool, for which, hitherto only CBN sintered at super high pressure has been used.
- the tool (or ceramic) is thought to be improved in resistance against wear by the following reason. That is, CeO 2 , Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 used as sintering aid components have higher melting points than Al 2 O 3 , MgO or SiO 2 , conventionally used, so that reaction between the sintering aid components and reaction of these components with SiO 2 remaining on the surface of the silicon nitride phase during sintering can be suppressed to render it difficult to generate a glass phase melting at a low temperature.
- the result is that, if the tool or ceramic is used as a cutting tool, the cutting edge can hardly be softened even under elevated temperatures such that high hardness can be maintained up to elevated temperatures.
- the above composition setting leads to a high strength tool (or ceramic) having a Vickers hardness at room temperature 160 GPa or more and a bending strength at 1000°C of not less than 800 MPa.
- a high strength tool or ceramic having a Vickers hardness at room temperature 160 GPa or more and a bending strength at 1000°C of not less than 800 MPa.
- the Vickers hardness means the hardness as measured in accordance with the prescriptions of JISR1610.
- the Vickers hardness is defined as the impression area divided by the load, and is of the same dimension as the force per unit surface area such as pressure.
- the Vickers hardness is defined as the value for the indentation area in m 2 and the load in N (Newton), with the resultant unit being in Pascal (Pa) as a SI unit.
- the bending strength in the present specification means a value as measured based on a three-point bending test method as prescribed in JISR1604 (high temperature bending strength testing method for fine ceramics).
- the value of the fracture toughness of a tool is preferably not less than 4.0 MPa ⁇ m 1/2 as measured by the indentation fracture (IF) method among the fracture toughness testing methods stated in JIS-R1607 (1990). If the value of the fracture toughness is less than 4.0 MPa ⁇ m 1/2 , there are occasions wherein sufficient resistance against chipping as a tool cannot be assured.
- the value of the fracture toughness is preferably not less than 5.0 MPa ⁇ m 1/2 .
- Ce, Y, Yb and Dy are added as oxides, and if the total amount of Ce, Y, Yb and by exceeds 21 wt%, the amount of the glass phase is increased leading to insufficient machining performance, in particular to insufficient wear resistance of the tool. If this total amount is less than 1 wt%, sinterability is lowered thus again leading to lowered tool performance.
- the above total amount is preferably adjusted within a range of from 3 to 15 wt%. Although only one sort of the oxides suffices, two or more different oxides may be used in combination for further improving sinterability for obtaining a tool which is dense and superior in strength and wear resistance.
- each 1 wt% or more of two of Ce, Y, Yb and Dy is added and, more specifically, the amounts are preferably adjusted so that, if the amount of one of the two elements is X wt% and that of the other element is Y wt%, X + Y exceeds 3 wt% and X/(X + Y) is in a range from 0.35 to 0.65.
- the amounts of Ti and Si are preferably set to 10 to 56 wt% and to 11.6 to 51 wt%, respectively.
- the amounts of Ti and Si are set to 19 to 41 wt% and to 21 to 42.8 wt%, respectively.
- the sum of the amounts of Ti and Si is preferably not lower than 48.5 wt%. If the total amount is less than 48.5 wt%, the relative amount of the sintering aid components becomes excessive to generate superfluous glass phases thus lowering wear resistance and hence machinability. Meanwhile, the total amount is more preferably not less than 51 wt%.
- the mole amounts KC and KN of C and N in titanium carbo-nitride are preferably set so that, assuming that Si in its entirety is a component of silicon nitride, C and Ti are all constituents of titanium carbo-nitride and N in its entirety is the constituent of silicon nitride and titanium carbo-nitride, the value of KN/(KC + KN) calculated on the basis of the molar amounts of Ti, Si, C and N in the tool and the above assumption is 0.5 to 0.7, that is so as to be slightly N-rich.
- KN/(KC + KN) is less than 0.5, that is if the composition is C-rich, free carbon tends to be produced during sintering, such that sinterability tends to be lowered under the effect of the resulting CO gas.
- KN/(KC + KN) exceeds 0.7, titanium carbo-nitride is lowered in hardness and increased in linear expansion coefficient, such that, if the amount of titanium carbo-nitride is increased, there would be certain occasions where the tool may be affected adversely in machining performance.
- the amounts of Ce, Y, Yb, Dy, Ti and Si can be determined by, for example, X-ray fluorescence analysis, ICP analysis or by chemical analysis.
- the hot-press method may be used.
- the atmosphere for hot-press is preferably an inert gas, such as N 2 or Ar of 0.1 to 0.98 MPa (1 to 9.8 atm), preferably 0.3 MPa or more.
- the atmosphere of N 2 is more desirable for suppressing decomposition of silicon nitride during sintering.
- the pressing force is 20 to 30 MPa (200 to 300 kg/cm 2 ), with the sintering temperature being preferably 1850 to 1900°C.
- the complex ceramic or cutting tool according to the present invention may be typically produced by the following method.
- the method comprises (a) preparing a starting material mix, and (b) sintering the resulting mix (with simultaneous and/or preliminary forming).
- the starting material mix is prepared by mixing 10 to 60 vol % of TiCN power, not more than 10 vol % of at least one selected from the powders of Ce 2 O 2 , Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 , and the balance being Si 3 N 3 powder.
- the sintering may be done either hot pressing (HP) or hot isostatic pressing (HIP).
- the HP sintering may be carried out typically at 1850 to 1900°C in a pressurized nitrogen atmosphere typically of 0.3 to 0.98 MPa (3 to 9.8 atm), under application of uniaxial force, preferably of 20 to 30 MPa (200 to 300 kg/cm 2 ).
- HIP method is also preferred in which the starting powder mix is press-molded and subjected to preliminary sintering which is preferably carried out under the conditions of a temperature up to 1750°C in a nitrogen gas atmosphere, e.g., of 0.1 MPa (1 atm), for e.g., about 2 hours, achieving a prerequisite density (e.g., about 95 %) followed by HIP sintering, preferably, in nitrogen gas of a very high pressure, e.g., at a temperature ranging from 100 to 150 MPa (1000 to 1500 atm) at 1500 to 1700°C .
- TiCN acts as a dispersed hard phase in the sintered body.
- TiN or TiC acts similarly, TiCN is specifically selected in the present invention considering hardness, chemical stability, cost etc.
- an N-rich composition such preblem can be suppressed.
- TiCN At an amount of TiCN less than 10 vol % in the starting composition, the hardness and wear resistance ascribed to the presence of TiCN cannot be improved.
- TiCN will exceed 60 vol %, it tends to become a composition of a relatively small amount of silicon nitride resulting in reduced toughness.
- the amount of TiCN should be 10 to 60 vol %.
- a preferred amount of TiCN is 20 to 40 vol % considering the sintering ease and improvement of the wear resistance, while 40 to 60 vol % is preferred considering only the wear resistance.
- At least one oxide selected from CeO 2 , Y 2 O 3 , Yb 2 O 3 and Dy 2 O 3 act as a sintering aid, firmly bonding TiCN grains and silicon nitride grains to each other.
- these oxides yeilds a glass phase having a higher melting point than those of glass phases resulting from Al 2 O 3 , MgO, SiO 2 etc., even if a glass phase is yielded. Therefore, this leads to an excellent wear resistance.
- any of these sintering aids may be used alone, however, preferably in combination of two or more.
- An excess amount of the sintering aids will result in an excess amount of the glass phase, entailing a reduced cutting performance, particularly wear resistance, although an enhanced sinterability is obtained.
- the sintering aids in an amount of 10 vol % or less.
- the sintering aids should be present at least 0.5 vol %, preferably 1.0 vol % or more or 6.0 vol % or less.
- the hot isostatic pressing (HIP) method may be used in place of the hot pressing method.
- the conditions of HIP processing preferably include a processing temperature not higher than 1750°C and a pressure of not lower than 90 MPa (900 atm). If the processing temperature exceeds 1750°C, crystal grain growth proceeds excessively during processing, so that the necessary strength tends to be hardly achieved. Conversely, with the pressure less than 90 MPa (900 atm), the material tends to be insufficient in denseness thus leading to insufficient strength. As for the pressure, a pressure of the order of 200 MPa (2000 atm) is thought to be an upper limit with a commonly used HIP device, if durability of the device is taken into account.
- the processing temperature is set to 1500 to 1700°C. More preferably, the pressure is set to 100 MPa (1000 atm) or higher.
- a sintered article of a desired shape can be produced efficiently. If, with a preliminary sintering atmosphere being the N 2 atmosphere of 0.1 MPa (1 atm), the preliminary sintering temperature becomes lower than 1550°C, open pores are left in the preliminary molded article, occasionally leading to an insufficient effect in contracting the product by subsequent HIP processing.
- silicon nitride tends to be decomposed to occasionally lead to an insufficient material strength.
- the preliminary sintering atmosphere at a pressure higher than 1 atm, for instance, N 2 atmosphere at 0.2 to 1 MPa (2 to 10 atm)
- silicon nitride is less liable to be decomposed, so that it becomes occasionally possible to raise the preliminary sintering temperature to not lower than 1800°C, for instance, to approximately 1850°C, for instance, to approximately 2000°C.
- the above-described tool of the present invention may have its surface coated with a coating layer mainly composed of a solid solution of one or two or more of a carbide, a nitride, carbon nitride and oxide of Al and a carbide, a nitride, carbon nitride and oxide of Al of Ti, wherein the particle size of constituent particles is not more than 0.5 ⁇ m and wherein the coating layer has a film thickness of 1 to 5 ⁇ m.
- Illustrative examples of the coating layer include Al 2 O 3 , TiC, TiN and TiAlN.
- the coating layer of Al 2 O 3 is effective in improving resistance against oxidation, while that of TiC is effective in enhancing the wear resistance due to an increased hardness.
- TiN is effective in lowering the frictional coefficient and hence in decreasing the machining resistance and in improving the appearance and color.
- the coating layer of TiAlN similarly to TiC, is effective in improving wear resistance. Any known coating methods, such as various PVD or CVD methods, may be used for coating.
- the grain size of constituent(crystal) grains of the coating layer is preferably not larger than 0.5 ⁇ m.
- the grain size of constituent(crystal) grains of the coating layer is preferably not larger than 0.5 ⁇ m.
- the grain size of the coating layer By setting the grain size of the coating layer to this range, not only the coating surface becomes smooth and the coating layer is improved in durability, but also is the finished surface of the processed workpiece improved. If the grain size exceeds 0.5 ⁇ m, it is likely that grains be detached from the coating surface thus possibly leading to chipping or peeling. The processed workpiece surface tends to be roughened such that satisfactory machining performance can occasionally not be achieved.
- the methods of lowering the coating temperature, shortening the coating time or adjusting the atmosphere may be employed.
- the film thickness of the coating layer is preferably 1 to 5 ⁇ m. With a film thickness less than 1 ⁇ m, the function as the coating layer cannot be fulfilled, such that the tool service life cannot be improved sufficiently. With a film thickness exceeding 5 ⁇ m, the stress in the coating layer is increased, such that the coating layer tends to be peeled off during machining. More preferably, the film thickness of the coating layer is set to a range of 2 to 5 ⁇ m.
- the coating layer may also be formed as plural layers.
- the total film thickness is set to a range of 1 to 5 ⁇ m and preferably to a range of 2 to 5 ⁇ m.
- the types of the materials and properties of respective layers may differ from one another.
- ⁇ -Si 3 N 4 powders with a mean particle size of 0.7 ⁇ m, powders of titanium carbo-nitride with a mean particle size of 1.2 ⁇ m (KN/(KC + KN) 0.5), and powders of sintering aids (powders of Yb 2 O 3 with a mean particle size of 1.5 ⁇ m, powders of CeO 2 with a mean particle size of 1.0 ⁇ m, powders of Y 2 O 3 with a mean particle size of 1.5 ⁇ m and powders of Dy 2 O 3 with a mean particle size of 1.5 ⁇ m) were used.
- the mixed powders were sintered to a pre-set shape using a hot-press method.
- the hot-press method was carried out under the following conditions: First, BN powders diluted with ethanol were applied, as a mold release agent, on the surface of a carbon mold. A pre-set amount of the powders were then charged into the mold which was then set in an induction heating furnace. The powders were placed in an N 2 atmosphere at 0.98 MPa (9.8 atm) and uniaxially pressed under a pressure of 20 MPa (200 kg/cm 2 ). The powders were simultaneously heated to 1800 to 1900°C for molding and sintering simultaneously. The density of sintered products thus produced was measured by the Archimedes method. The sintered products were all dense in structure with a density being not lower than 99.5% of the theoretical density. The compositions of the sintered products were analyzed by the X-ray fluorescence analysis.
- test piece shaped as prescribed in JISR1601 was cut out as a test piece for measuring the physical properties as now explained and was worked by grinding.
- the test pieces for evaluating the cutting performance were produced by grinding the sintered product to a tool shape, shown in Fig.1, as prescribed in JIS B4103 as SNGN120408, with a chamfer of 0.1 ⁇ 25°.
- a test piece 1 for evaluation of the cutting performance was flat and prism-shaped with a substantially square cross-section with each side of approximately 12.7 mm, with an R at a corner 1a being approximately 0.8 mm.
- the chamfer at an edge 1b was designed so that a width t on a main face 1c is approximately 0.1 mm and an inclination angle ⁇ relative to the main face 1c of approximately 25° as shown in Fig.1b.
- Kc fracture toughness
- Vickers hardness 300 N (30 kgf)
- the value of the Vickers hardness was also measured based on the area of the impression and the load.
- the value of bending strength was measured by three-point bending by the method provided in JISR1604, as described above, with a test piece installed in a heating furnace heated to 1000°C.
- the cutting performance was evaluated under the following conditions: That is, a cylindrically-shaped workpiece W shown in Fig.2a was rotated about its own axis. On the outer peripheral surface of the workpiece W, a test piece 1, shown in Fig.1, was abutted as shown in Fig.2b. Using one of the main faces 1c and the lateral surface 1e as a rake face 1c' and as a flank, respectively, the outer peripheral face of the workpiece was continuously machined under conditions given below. Meanwhile, the detailed positional relation between the test piece 1 and the workpiece is shown in Fig.3. In this figure, 1g and 1f denote a major (side) flank and an major (end) flank, respectively. The meaning of the remaining reference letters are as follows:
- the test pieces of the embodiments having the composition stated in the claims of the present invention all exhibit excellent cutting performance.
- the cutting length of 15 km or longer can be realized with a composition containing 10 to 56 wt% of Ti and 11.6 to 51 wt% of Si
- the cutting length of 20 km or longer can be realized with a composition containing 19 to 41 wt% of Ti and 21 to 42.8 wt% of Si
- the cutting length of 40 km or longer can be realized with a composition containing 41 to 56 wt% of Ti and 11.8 to 28.8 wt% of Si.
- it is also seen that, with increased amount of Ti not only is the boundary wear resistance of the end cutting edge improved but is the cutting length increased such that the cutting length is 3 to 7 times as long as that of the Ti-free product (Comparative Example 1).
- test piece of Comparative Example 3 in which the amount of the sintering aid departs from the claimed scope, exhibits a cutting performance which is not satisfactory as compared to the value obtained with the tests of the Examples of the invention.
- the Ti amount is excessive, toughness proper to silicon nitride is lost, so that the edge is susceptible to chipping and hence the test piece is not suited as a tool (Comparative Example 4).
- test pieces having a Vickers hardness less than 16 GPa or a bending strength at 1000°C less than 800 MPa are inferior in wear resistance or resistance against chipping and hence are not sufficient as a cutting tool.
- test piece of Comparative Example 6 employing Al 2 O 3 as a sintering aid to test pieces of Examples 33 to 36 each having the amounts of Ti and Si substantially equal thereto reveals that the test pieces of the Examples are superior in bending strength, fracture toughness and cutting performance, despite the fact that the density is of approximately the same value.
- the test piece of Comparative Example 6 suffered from chipping before the amount of wear of the end cutting edge reaches the service life value, while the test pieces of the Examples were not susceptible to chipping.
- test pieces employing the HIP method in place of the hot press method were evaluated in the same way as in Example 1.
- the HIP was carried out under the following conditions: First, the powders were press-molded to a pre-set shape and preliminarily sintered at 1750°C for two hours in a N 2 atmosphere maintained at 1 atm. The resulting product was HIP-processed at 1600°C for two hours in a N 2 atmosphere maintained at 1500 atm. The results are shown in Table 6.
- compositions of the test pieces are relatively close to that of Example 1 of Table 1 and to that of Example 17 of Table 2 indicating that the test pieces are equivalent in physical properties and cutting properties to those of these Examples.
- Example 3 On the test piece No.33 prepared in Example 1 (Table 3), as a substrate, various coating layers were applied by the CVD method, and cutting performance tests were conducted under the same conditions as those of Example 1. The results are shown in Table 7. No. grain size of coating layer( ⁇ m) cutting length base material No.
- test pieces of the Examples having the coating layers satisfying the conditions stated in the claims exhibit the cutting performance further improved over the non-coated test pieces shown in Table 3.
- test pieces of the Comparative Examples having the coated layers outside the scope of the present invention are not improved significantly in the cutting performance, or the coating films have peeled off.
- the powder mixes were sintered to a pre-set shape using a hot-press method.
- the hot-press method was carried out under the following conditions: First, BN powders diluted with ethanol were applied, as a mold release agent, on the inner surface of a carbon mold. A pre-set amount of the granulated powders were then charged into the mold which was then set in an induction heating furnace with an N 2 atmosphere at 0.98 MPa (9.8 atm) and uniaxially pressed under a pressure of 20 MPa (200 kg/cm 2 ), and simultaneously heated at temperatures shown in Table 8 for molding and sintering simultaneously.
- the density of sintered products thus produced was measured by the Archimedes method and were all dense in structure with a density being not lower than 99.5% of the theoretical density.
- the TiCN present in the sintered products had a N/(C + N) ratio of 0.53.
- test pieces were prepared as in Example 1 and subjected to testings.
- the test pieces for evaluating the cutting performance were produced by grinding the sintered product to a tool shape, shown in Fig.1, as prescribed in JIS B4103 as SNGN120408, with a chamfer of 0.1 ⁇ 25°.
- the cutting performance was evaluated under the same conditions as Example 1, provided that the cutting length of workpiece was 150 mm.
- inventive test pieces Nos. 81 to 89 exhibit longer cutting length with increase of TiCN. Namely a cutting length 3 to 7 times of Comparative test piece No. R81 which is free of TiCN was achieved.
- Comparative test piece No. R82 having an excess amount of TiCN suffered chipping before the flank notch (wear) V n reached 0.1 mm. This is considered to be attributable to the loss of toughness caused by shortage of silicon nitride.
- Comparative test piece No. R83 containing the C-rich TiCN shows shorter service life than the inventive sintered products. Note, No. R83 had a N/(C + N) ratio about 0.45 of the TiCN in the sintered body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Products (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
Example No. | Ti (wt%) | Ce (wt%) | Y (wt%) | Yb (wt%) | Dy (wt%) | Si (wt%) | Kc (MPa·m1/2) | Hv (GPa) | σ 1000°C (MPa) | cutting length (km) |
1 | 11 | 2.4 | - | 7.7 | - | 44.6 | 6.5 | 16.1 | 1050 | 15 |
2 | 17 | 7.9 | - | - | - | 41.6 | 6.7 | 16.1 | 1040 | 17 |
3 | 17 | - | 5.3 | - | - | 43.0 | 6.6 | 16.2 | 1050 | 18 |
4 | 16 | - | - | 11 | - | 40.5 | 6.3 | 16.2 | 1040 | 17 |
5 | 16 | - | - | - | 9.6 | 41.0 | 6.7 | 16.1 | 1030 | 16 |
6 | 17 | 2.4 | 3.7 | - | - | 42.6 | 6.7 | 16.1 | 1040 | 16 |
7 | 16 | 2.3 | - | 7.5 | - | 40.9 | 6.3 | 16.2 | 1030 | 18 |
8 | 16 | 2.3 | - | - | 6.7 | 41.2 | 6.8 | 16.0 | 1020 | 15 |
9 | 16 | - | 1.5 | 7.6 | - | 41.2 | 7.0 | 16.2 | 1070 | 16 |
10 | 17 | - | 1.6 | - | 6.8 | 41.6 | 6.7 | 16.1 | 1030 | 15 |
11 | 16 | - | - | 5.3 | 4.8 | 40.8 | 6.5 | 16.1 | 1030 | 17 |
12 | 17 | 2.4 | 1.6 | 4.4 | - | 41.6 | 6.7 | 16.2 | 1050 | 17 |
13 | 17 | 2.4 | 1.6 | - | 3.9 | 41.8 | 6.6 | 16.0 | 1040 | 16 |
14 | 16 | 2.3 | - | 3.2 | 3.8 | 41.0 | 6.7 | 16.1 | 1030 | 17 |
15 | 17 | - | 1.5 | 3.3 | 3.9 | 41.4 | 6.5 | 16.0 | 1020 | 16 |
Example No. | Ti (wt%) | Ce (wt%) | Y (wt%) | Yb (wt%) | Dy (wt%) | Si (wt%) | Kc (MPa·m1/2) | Hv (GPa) | σ 1000°C (MPa) | cutting length (km) |
16 | 17 | 2.0 | 1.3 | 2.7 | 2.4 | 41.5 | 6.5 | 16.1 | 1020 | 16 |
17 | 21 | 2.3 | - | 7.3 | - | 37.3 | 5.8 | 16.4 | 1000 | 20 |
18 | 28 | 7.4 | - | - | - | 33.3 | 6.6 | 16.4 | 1020 | 23 |
19 | 29 | - | 5.0 | - | - | 34.3 | 6.1 | 16.5 | 1020 | 25 |
20 | 27 | - | - | 10 | - | 32.4 | 5.8 | 16.6 | 1010 | 25 |
21 | 28 | - | - | - | 9.0 | 32.8 | 6.2 | 16.4 | 1000 | 24 |
22 | 29 | 2.3 | 3.5 | - | - | 34.0 | 6.2 | 16.5 | 1010 | 24 |
23 | 28 | 2.2 | - | 7.0 | - | 32.7 | 5.9 | 16.5 | 1000 | 25 |
24 | 28 | 2.2 | - | - | 6.3 | 32.9 | 6.3 | 16.4 | 990 | 23 |
25 | 28 | - | 1.4 | 7.1 | - | 32.9 | 6.9 | 16.4 | 1050 | 23 |
26 | 28 | - | 1.5 | - | 6.4 | 33.2 | 6.2 | 16.4 | 1000 | 24 |
27 | 27 | - | - | 5.0 | 4.5 | 32.6 | 6.1 | 16.4 | 1000 | 24 |
28 | 28 | 2.2 | 1.5 | 4.1 | - | 33.2 | 6.6 | 16.5 | 1020 | 24 |
29 | 28 | 2.2 | 1.5 | - | 3.7 | 33.4 | 6.5 | 16.3 | 1010 | 23 |
30 | 28 | 2.2 | - | 3.0 | 3.6 | 32.8 | 6.6 | 16.4 | 1000 | 24 |
Example No. | Ti (wt%) | Ce (wt%) | Y (wt%) | Yb (wt%) | Dy (wt%) | Si (wt%) | Kc (MPa·m1/2) | Hv (GPa) | σ 1000°C (MPa) | cutting length (km) |
31 | 28 | - | 1.5 | 3.1 | 3.6 | 33.1 | 6.4 | 16.3 | 990 | 23 |
32 | 28 | 1.8 | 1.2 | 2.6 | 2.3 | 33.2 | 6.4 | 16.4 | 990 | 24 |
33 | 30 | 2.1 | - | 6.9 | - | 30.8 | 6.0 | 16.6 | 990 | 28 |
34 | 30 | - | 1.4 | 7.0 | - | 31.0 | 6.7 | 16.6 | 1100 | 26 |
35 | 31 | 2.2 | 3.4 | - | - | 32.0 | 6.4 | 16.5 | 1000 | 25 |
36 | 30 | 2.2 | - | - | 6.2 | 31.0 | 6.4 | 16.5 | 980 | 25 |
37 | 37 | 7.0 | - | - | - | 26.4 | 5.6 | 17.3 | 980 | 32 |
38 | 38 | - | 4.7 | - | - | 27.2 | 5.5 | 17.4 | 1000 | 33 |
39 | 36 | - | - | 9.2 | - | 25.2 | 5.3 | 17.6 | 990 | 33 |
40 | 37 | - | - | - | 8.5 | 26.1 | 5.6 | 17.4 | 990 | 33 |
41 | 38 | 2.1 | 3.3 | - | - | 26.9 | 5.6 | 17.3 | 990 | 32 |
42 | 37 | 2.1 | - | 6.7 | - | 26.0 | 5.2 | 17.4 | 970 | 33 |
43 | 37 | 2.1 | - | - | 6.0 | 26.2 | 5.7 | 17.2 | 960 | 30 |
44 | 37 | - | 1.4 | 6.7 | - | 26.2 | 5.8 | 17.3 | 1060 | 32 |
45 | 37 | - | 1.4 | - | 6.0 | 26.4 | 5.7 | 17.2 | 980 | 32 |
Example No. | Ti (wt%) | Ce (wt%) | Y (wt%) | Yb (wt%) | Dy (wt%) | Si (wt%) | Kc (MPa·m1/2) | Hv (GPa) | σ 1000°C (MPa) | cutting length (km) |
46 | 37 | - | - | 4.8 | 4.2 | 25.9 | 5.5 | 17.3 | 960 | 31 |
47 | 37 | 2.1 | 1.4 | 3.9 | - | 26.4 | 5.6 | 17.4 | 1010 | 33 |
48 | 37 | 2.1 | 1.4 | - | 3.5 | 26.5 | 5.0 | 17.2 | 1000 | 31 |
49 | 37 | 2.1 | - | 2.9 | 3.4 | 26.1 | 5.4 | 17.3 | 990 | 33 |
50 | 37 | - | 1.4 | 2.9 | 3.4 | 26.3 | 5.3 | 17.2 | 980 | 34 |
51 | 37 | 1.7 | 1.2 | 2.4 | 2.2 | 26.3 | 5.2 | 17.3 | 990 | 33 |
52 | 38 | 2.0 | - | 6.6 | - | 24.8 | 4.9 | 17.4 | 960 | 35 |
53 | 45 | 6.7 | - | - | - | 20.5 | 4.6 | 18.2 | 860 | 59 |
54 | 47 | - | 4.5 | - | - | 21.1 | 4.3 | 18.4 | 860 | 60 |
55 | 43 | - | - | 9.0 | - | 20.1 | 4.7 | 18.3 | 860 | 60 |
56 | 45 | - | - | - | 8.1 | 20.3 | 4.6 | 18.3 | 850 | 59 |
57 | 46 | 2.0 | 3.1 | - | - | 20.9 | 4.8 | 18.3 | 850 | 59 |
58 | 45 | 2.0 | - | 6.4 | - | 20.2 | 4.4 | 18.4 | 850 | 61 |
59 | 45 | 2.0 | - | - | 5.7 | 20.3 | 4.9 | 18.2 | 830 | 58 |
60 | 45 | - | 1.3 | 6.4 | - | 20.4 | 5.0 | 18.3 | 880 | 60 |
Example No. | Ti (wt%) | Ce (wt%) | Y (wt%) | Yb (wt%) | Dy (wt%) | Si (wt%) | Kc (MPa·m1/2) | Hv (GPa) | σ 1000°C (MPa) | cutting length (km) |
70 | 11 | 2.2 | - | 6.7 | - | 45.3 | 6.3 | 16.0 | 1010 | 13 |
71 | 21 | 2.3 | - | 6.3 | - | 37.9 | 5.5 | 16.3 | 1000 | 20 |
No. | grain size of coating layer(µm) | cutting length | base material No. | coating layer | |
Examples | 1 | 0.5 | 35 | 33 | TiN(1.5 µm) |
2 | 0.4 | 34 | 33 | TiCN(1.4 µm) | |
3 | 0.5 | 35 | 33 | Al2O3(0.8 µm)-TiCN(0.2 µm) | |
4 | 0.5 | 40 | 33 | Al2O3(1 µm)-TiCN(1.3 µm) | |
5 | 0.5 | 42 | 33 | Al2O3(1 µm)-TiCN(1 µm) | |
-Al2O3(1 µm)-TiCN(1 µm) | |||||
6 | 0.4 | 41 | 33 | Al2O3(1 µm)-TiCN(1.4 µm) | |
-Al2O3(1.1 µm)-TiCN(1.5 µm) | |||||
7 | 0.3 | 42 | 33 | Al2O3(1 µm)-TiCN(1.5 µm) | |
8 | 0.5 | 39 | 33 | AlON(1 µm)-TiCN(1 µm) | |
9 | 0.5 | 40 | 33 | Al2O3(1 µm)-TiC(1 µm)-TiN(1 µm) | |
10 | 0.5 | 41 | 33 | AlON(1 µm)-TiC(1 µm)-TiCN(1 µm) | |
Comparative Examples | 1 | 0.4 | 30 | 33 | Al2O3(0.6 µm)-TiCN(0.1 µm) |
2 | 0.8 | initial cutting tool | 33 | Al2O3(3 µm)-TiCN(5 µm) | |
3 | 0.5 | 5 km peeling | 33 | Al2O3(1 µm)-TiCN(7 µm) | |
4 | 1 | 31 | 33 | Al2O3(1.1 µm)-TiCN(1 µm) |
Exmaple No. | composition (vol %) | sintering temperature °C | physical properties | cutting performance km | ||||
Si3N4 | TiCN | sinteringaids | Kc MPa | Hv GPa | σ MPa | |||
81 | 85 | 10 | 3.5Yb2O3-1.5CeO2 | 1850 | 6.5 | 16.1 | 1050 | 15 |
82 | 75 | 20 | 3.5Yb2O3-1.5CeO2 | 1850 | 5.8 | 16.4 | 1000 | 20 |
83 | 65 | 30 | 3.5Yb2O3-1.5CeO2 | 1850 | 6.0 | 16.6 | 990 | 28 |
84 | 55 | 40 | 3.5Yb2O3-1.5CeO2 | 1850 | 4.9 | 17.4 | 960 | 35 |
85 | 45 | 50 | 3.5Yb2O3-1.5CeO2 | 1900 | 4.2 | 16.5 | 950 | 36 |
86 | 35 | 60 | 3.5Yb2O3-1.5CeO2 | 1900 | 4.1 | 16.3 | 900 | 36 |
87 | 65 | 30 | 3.5Yb2O3-1.5Y2O3 | 1900 | 6.7 | 16.6 | 1100 | 26 |
88 | 65 | 30 | 3.5Y2O3-1.5CeO2 | 1850 | 6.4 | 16.5 | 1000 | 25 |
89 | 65 | 30 | 3.5Dy2O3-1.5CeO2 | 1850 | 6.4 | 16.5 | 980 | 25 |
R81 | 95 | 0 | 3.5Yb2O3-1.5CeO2 | 1850 | 7.0 | 15.0 | 790 | 5 |
R82 | 25 | 70 | 3.5Yb2O3-1.5CeO2 | 1850 | 3.6 | 16.5 | 710 | 7 |
R83 | 65 | 30 | 3.5Yb2O3-1.5CeO2 | 1850 | 5.5 | 15.2 | 800 | 10 |
Claims (18)
- A titanium carbo-nitride complex silicon nitride tool composed mainly of titanium carbo-nitride and silicon nitride and containing 10 to 56 wt% of Ti, 11.6 to 51 wt% of Si and 1 to 21 wt% in total of one or two or more of Ce, Y, Yb and Dy.
- The titanium carbo-nitride complex silicon nitride tool as defined in claim 1 wherein one or two or more of Ce, Y, Yb and Dy are contained in an amount of 3 to 15 wt% in total.
- The titanium carbo-nitride complex silicon nitride tool as defined in claim 1 or 2 having a Vickers hardness at room temperature of 16 GPa or higher and a bending strength at 1000°C of not lower than 800 MPa.
- The titanium carbo-nitride complex silicon nitride tool as defined in any one of claims 1 to 3 containing 19 to 41 wt% of Ti and 21 to 42.8 wt% of Si.
- The titanium carbo-nitride complex silicon nitride tool as defined in claim 4 having a Vickers hardness at room temperature of 17 GPa or higher and a bending strength at 1000°C of not lower than 850 MPa.
- The titanium carbo-nitride complex silicon nitride tool as defined in any one of claims 1 to 3 containing 41 to 56 wt% of Ti and 11.8 to 28.8 wt% of Si.
- The titanium carbo-nitride complex silicon nitride tool as defined in claim 6 having a Vickers hardness at room temperature of 18 GPa or higher.
- The titanium carbo-nitride complex silicon nitride tool as defined in any one of claims 1 to 7, wherein the tool is coated with a coating layer having a film thickness of 1 to 5 µm, said coating layer being mainly composed of a solid solution of one or two or more of carbide, nitride, carbo-nitride and oxide of Al, and carbide, nitride, carbo-nitride and oxide of Ti, provided that the grain size of constituent grains is not more than 0.5 µm.
- A method for producing titanium carbo-nitride complex silicon nitride ceramic comprising:preparing a starting powder mix comprising 10 to 60 vol % of TiCxN1-x (0.3< x≦ 0.5), 0.5 to 10 vol % of at least one oxide selected from the group consisting of CeO2, Y2O3, Yb2O3 and Dy2O3, and the balance bing silicon nitride, andsintering the starting powder mix under application of pressure in an inert or nitrogen containing atmosphere at a temperature of 1500 to 1900°C .
- The method as defined in claim 9, wherein said sintering is carried out by hot pressing (HP) at a temperature of 1850 to 1900°C .
- The method as defined in claim 9, wherein said sintering is carried out by hot isostatic pressing (HIP) at a temperature of 1500 to 1700°C .
- The method as defined in claim 11, wherein said HIP is preceded by preliminary sintering at 1550 to 2000°C , preferably 1550 to 1800°C , more preferably about 1750°C in a nitrogen atmosphere.
- The method as defined in claim 11, wherein said HIP is carried out in an inert gas under a pressure of at least 90 MPa (preferably 100 to 150 MPa), or up to 200 MPa.
- The method as defined in any one of claims 9 to 13, which further comprises a step of further processing the sintered ceramic into a cutting tool.
- A sintered article of titanium carbo-nitride complex silicon nitride ceramic produced according to any one of claims 9 to 14.
- A ceramic cutting tool formed of the sintered article as defined in claim 15.
- The ceramic cutting tool formed of the sinterd article as defined in claim 16 which has a coating layer mainly composed of a solid solution of at least one selected from the group consisting of carbide, nitride, carbo-nitride and oxide of Al, and carbide, nitride, carbo-nitride and oxide of Ti, provided that constituent grains of said coating layer has a grain size of not more than 0.5 µm.
- The ceramic cutting tool formed of the sinterd article as defined in claim 17, wherein said coating layer has a thickness of 1 to 5 µm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3318197 | 1997-01-31 | ||
JP9033181A JPH09268071A (en) | 1996-02-02 | 1997-01-31 | Titanium carbonitride composite silicon nitride tool |
JP33181/97 | 1997-01-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0856498A2 true EP0856498A2 (en) | 1998-08-05 |
EP0856498A3 EP0856498A3 (en) | 1998-12-30 |
EP0856498B1 EP0856498B1 (en) | 2002-01-30 |
Family
ID=12379344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97108146A Expired - Lifetime EP0856498B1 (en) | 1997-01-31 | 1997-05-20 | Titanium carbo-nitride complex silicon nitride tool |
Country Status (7)
Country | Link |
---|---|
US (1) | US6010777A (en) |
EP (1) | EP0856498B1 (en) |
KR (1) | KR100481075B1 (en) |
DE (1) | DE69710173T2 (en) |
ES (1) | ES2167639T3 (en) |
HU (1) | HUP9700936A3 (en) |
PL (1) | PL184535B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990075035A (en) * | 1998-03-17 | 1999-10-05 | 유창종 | Titanium Carbonitride-based Composite Carbonitride Ceramic Sintered Body and Manufacturing Method Thereof |
JP2948803B1 (en) * | 1998-03-31 | 1999-09-13 | 日本特殊陶業株式会社 | Cermet tool and its manufacturing method |
US20040144874A1 (en) * | 2003-01-24 | 2004-07-29 | Moskowitz Joel P. | Method and apparatus for making high purity silica powder by ball milling |
JP4975481B2 (en) * | 2007-02-27 | 2012-07-11 | トーヨーエイテック株式会社 | Die for press |
CN114538930B (en) * | 2022-03-23 | 2023-01-17 | 山东大学 | Crack self-healing gradient functional ceramic cutter material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4632910A (en) * | 1984-05-29 | 1986-12-30 | Korea Advanced Institute Of Science And Technology | Sintered material of silicon nitride for cutting tools and process therefor |
EP0592871A1 (en) * | 1992-10-12 | 1994-04-20 | Sumitomo Electric Industries, Limited | Ceramic composite material and method of manufacturing the same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5632377A (en) * | 1979-08-20 | 1981-04-01 | Mitsubishi Metal Corp | Silicon nitride base sintered material for cutting tool |
JPS5895662A (en) * | 1981-11-30 | 1983-06-07 | 京セラ株式会社 | Silicon nitride-titanium nitride composite sintered body |
US4406667A (en) * | 1982-05-20 | 1983-09-27 | Gte Laboratories Incorporated | Nitride coated composite silicon nitride cutting tools |
US4416670A (en) * | 1982-05-20 | 1983-11-22 | Gte Laboratories Incorporated | Carbide coated composite silicon nitride cutting tools |
DE3420848A1 (en) * | 1984-06-05 | 1985-12-05 | Gebr. Happich Gmbh, 5600 Wuppertal | METHOD AND DEVICE FOR ATTACHING END PIECES TO PLASTIC PROFILE STRIPS |
JPS61101482A (en) * | 1984-10-23 | 1986-05-20 | 住友電気工業株式会社 | Silicon nitride cutting tool |
JPS6117473A (en) * | 1985-05-17 | 1986-01-25 | 三菱マテリアル株式会社 | Silicon nitride base sintering material for cutting tool |
US5250477A (en) * | 1986-08-04 | 1993-10-05 | Gte Valenite Corporation | Silicon nitride based composite with improved fracture toughness |
JPH0625039B2 (en) * | 1988-07-08 | 1994-04-06 | 日本タングステン株式会社 | Silicon nitride sintered body and method for manufacturing the same |
ES2084850T3 (en) * | 1991-02-15 | 1996-05-16 | Sumitomo Electric Industries | SINTERED SILICON NITRIDE TOOL. |
JPH057122A (en) * | 1991-09-25 | 1993-01-14 | Murata Mfg Co Ltd | Electronic component |
-
1997
- 1997-05-14 US US08/856,164 patent/US6010777A/en not_active Expired - Fee Related
- 1997-05-20 DE DE69710173T patent/DE69710173T2/en not_active Expired - Fee Related
- 1997-05-20 ES ES97108146T patent/ES2167639T3/en not_active Expired - Lifetime
- 1997-05-20 EP EP97108146A patent/EP0856498B1/en not_active Expired - Lifetime
- 1997-05-22 HU HU9700936A patent/HUP9700936A3/en unknown
- 1997-06-10 PL PL97320470A patent/PL184535B1/en not_active IP Right Cessation
- 1997-07-19 KR KR1019970033793A patent/KR100481075B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4632910A (en) * | 1984-05-29 | 1986-12-30 | Korea Advanced Institute Of Science And Technology | Sintered material of silicon nitride for cutting tools and process therefor |
EP0592871A1 (en) * | 1992-10-12 | 1994-04-20 | Sumitomo Electric Industries, Limited | Ceramic composite material and method of manufacturing the same |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 8120 Derwent Publications Ltd., London, GB; AN 81-35376D XP002083032 & JP 56 032377 A (MITSUBISHI METAL CORP.) , 1 April 1981 * |
DATABASE WPI Week 8610 Derwent Publications Ltd., London, GB; AN 86-065674 XP002083031 & JP 61 017473 A (MITSUBISHI METAL CORP.) , 25 January 1986 * |
Also Published As
Publication number | Publication date |
---|---|
HUP9700936A2 (en) | 1999-06-28 |
HUP9700936A3 (en) | 2002-01-28 |
KR19980069846A (en) | 1998-10-26 |
EP0856498A3 (en) | 1998-12-30 |
ES2167639T3 (en) | 2002-05-16 |
PL320470A1 (en) | 1998-08-03 |
KR100481075B1 (en) | 2005-07-21 |
US6010777A (en) | 2000-01-04 |
HU9700936D0 (en) | 1997-07-28 |
EP0856498B1 (en) | 2002-01-30 |
DE69710173T2 (en) | 2002-11-28 |
DE69710173D1 (en) | 2002-03-14 |
PL184535B1 (en) | 2002-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2402098B2 (en) | Sialon insert and cutting tool equipped therewith | |
EP2266935B1 (en) | Wear resistant member and wear resistant device | |
US5411923A (en) | Silicon nitride base sintered body | |
JP4716855B2 (en) | Sialon cutting tool and tool equipped therewith | |
EP0856498B1 (en) | Titanium carbo-nitride complex silicon nitride tool | |
US6248681B1 (en) | Ceramic cutting tool | |
JP3588162B2 (en) | Silicon nitride cutting tool and method of manufacturing the same | |
JP4070417B2 (en) | Silicon nitride member, method for manufacturing the same, and cutting tool | |
JP3476504B2 (en) | Silicon nitride based sintered body and its coated sintered body | |
EP0963962A1 (en) | Alumina-base ceramic sinter and process for producing the same | |
JPH11217258A (en) | Sintered compact of alumina-base ceramic and its production | |
KR960016069B1 (en) | Silicon nitride base sintered body | |
JPS6152102B2 (en) | ||
JP3009310B2 (en) | Sialon-based sintered body and its coated sintered body | |
EP1043292A1 (en) | Cutting tool and method of manufacturing the same | |
JP3107168B2 (en) | Coated silicon nitride sintered body for tools | |
JPH09268071A (en) | Titanium carbonitride composite silicon nitride tool | |
JPH06298568A (en) | Whisker-reinforced sialon-based sintered compact and sintered and coated material | |
US20040009866A1 (en) | Sintered silicon nitride, cutting tip, wear-resistant member, cutting tool, and method for producing sintered silicon nitride | |
JP2001114562A (en) | Sintered ceramic part and coated sintered ceramic part | |
JP2002192405A (en) | Cutting tool | |
JP4798821B2 (en) | Cutting tool and manufacturing method thereof | |
JP3591799B2 (en) | High toughness silicon nitride based sintered body and method for producing the same | |
JP3615634B2 (en) | High toughness silicon nitride sintered body and manufacturing method thereof | |
JP2001322009A (en) | Alumina ceramic cutting tool and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE DK ES FR GB IT LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE DK ES FR GB IT LU NL SE |
|
17P | Request for examination filed |
Effective date: 19990428 |
|
AKX | Designation fees paid |
Free format text: BE DE DK ES FR GB IT LU NL SE |
|
17Q | First examination report despatched |
Effective date: 20000322 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE DK ES FR GB IT LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020130 |
|
REF | Corresponds to: |
Ref document number: 69710173 Country of ref document: DE Date of ref document: 20020314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2167639 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020520 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070508 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070524 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070516 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070507 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070510 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080529 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080520 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080520 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080521 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080521 |