EP0856098B1 - Einrichtung und verfahren zu diagnose des zustands einer, vor dem katalysator angeordneten, sonde - Google Patents

Einrichtung und verfahren zu diagnose des zustands einer, vor dem katalysator angeordneten, sonde Download PDF

Info

Publication number
EP0856098B1
EP0856098B1 EP96934934A EP96934934A EP0856098B1 EP 0856098 B1 EP0856098 B1 EP 0856098B1 EP 96934934 A EP96934934 A EP 96934934A EP 96934934 A EP96934934 A EP 96934934A EP 0856098 B1 EP0856098 B1 EP 0856098B1
Authority
EP
European Patent Office
Prior art keywords
krich
value
upstream
signal
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96934934A
Other languages
English (en)
French (fr)
Other versions
EP0856098A1 (de
Inventor
Eric Marcheguet
Vasco Afonso
François RATINET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0856098A1 publication Critical patent/EP0856098A1/de
Application granted granted Critical
Publication of EP0856098B1 publication Critical patent/EP0856098B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to internal combustion engines injection type and having an exhaust pipe catalytic preceded by a probe and, more particularly in such motors, a device and a method for diagnosing the condition of the probe arranged upstream of the catalytic converter.
  • the diagnosis then consists in declaring the failure of the probe if one or more faults are detected.
  • Such a diagnostic method is based on the analysis of the behavior of the probe to deduce a state of the probe by presuming degradation modes.
  • an aged probe has a voltage dynamic reduced and / or extended switching times.
  • the disadvantage of such a diagnostic method is that it there is no perfect bijection between these measurements and pollutant emissions.
  • a reduced voltage dynamic probe may prove good vis-à-vis the emission of pollutants if alone this characteristic is affected.
  • An object of the present invention is therefore to operates a device and a method for diagnosing the state of a probe placed upstream of a pot catalytic associated with an internal combustion engine of the injection type which does not have the disadvantages above listed devices and methods of the art prior.
  • Another object of the present invention is also to implement a device and a method of diagnosis of the state of an upstream probe which does not call for measurements of intrinsic characteristics of the probe.
  • the method of the invention is based on monitoring characteristics of the wealth loop which have an influence on pollutant emissions, namely, the average period and the average wealth of the closure. In this way, the state of the upstream probe is evaluated at from the effects it produces on the closure of wealth, that is to say on pollutant emissions, and not from its own characteristics.
  • the invention proposes to implement a second non-linear probe which is arranged downstream of the catalytic converter and which is an integral part of a second feedback loop thanks to which the output voltage V downstream of the second probe, called the downstream probe, is slaved to a setpoint voltage VC downstream corresponding to the center of the window for correct operation of the catalytic converter.
  • the signal which is provided by this loop is used to modify the signal of the first feedback loop comprising the upstream probe.
  • the logic circuit determines that the upstream probe is defective if the filtered signal is greater than one maximum value or less than a minimum value or again if the average period is greater than one maximum value.
  • the maximum and minimum values of the filtered signal KRICH F are determined by calibration as a function of the value of the average period and are recorded in a memory. This memory is addressed by the value of the average period to provide the maximum and minimum values to which the value of the filtered signal is compared.
  • an internal combustion engine 10 is controlled, in a known manner, by a computer electronic 12.
  • the exhaust gases from this engine are filtered by a type 14 exhaust catalytic, from which they escape towards the open air.
  • a first probe 16 is disposed at the entrance of the pot exhaust and measures the content of one of main exhaust components, this component usually being oxygen.
  • This probe is of the non-linear type and is often called, like indicated above, "lambda" probe or EGO probe.
  • This probe provides on its output terminal an upstream electrical signal V ( Figure 2-A) which is applied to a comparator circuit 18 in which V upstream is compared with a threshold voltage VS upstream to determine the sign of V upstream with respect to this threshold.
  • the value of the upstream VS threshold depends on the characteristics of the probe and corresponds to the tilting voltage of the probe when the stoichiometric conditions are met.
  • the corrector circuit 20 supplies a signal KCL which has the form represented by the diagram of FIG. 2-B. It is this signal KCL which is supplied to the computer 12 to control the quantity of fuel to be injected.
  • V upstream is less than VS upstream , this means that the mixture is poor in fuel and that the quantity of fuel must be increased.
  • the correction value KCL, supplied by the corrector circuit 20, is modified by a second corrector circuit 22, which introduces a corrector term KRICH, before being applied to the computer 12.
  • This corrector term KRICH is determined by a circuit 24 from an output signal V downstream of a second lambda probe 26 which is disposed at the outlet of the catalytic converter 14.
  • This circuit 24 essentially consists of a comparator 28 to which the signal V downstream are applied and a so-called downstream VC setpoint signal and a third corrector circuit 30 to which the signal (V downstream - VC downstream ) supplied by the comparator circuit 28 is applied.
  • the third corrector circuit 30 is for example of the proportional and integral type and provides the KRICH signal which is applied to the second correction circuit 22.
  • the second corrector circuit 22 can introduce the KRICH correction in different ways, one of which will be explained in relation to the time diagrams of FIGS. 3-A and 3-B. These diagrams are plots of the signal KCL as modified by the second correcting circuit 22, the modified signal KCL being called KCL m .
  • the signal KRICH is applied during the lean-to-rich transitions which are detected by the first probe, which corresponds to the falling edge of the signal KCL.
  • KRICH> 0 enrichment
  • the course of KCL m is that of the figure 3-A while in the case where KRICH ⁇ 0 (depletion), the course of KCL m is that of the figure 3-B .
  • the device for diagnosing the state of the probe 16 comprises the elements represented inside the rectangle 40 of the diagram in FIG. 1. It is a filter 32 to which the output signal KRICH of the correcting circuit is applied. 24 of the second loop as well as a calculation circuit 34 of the average period T m of the upstream signal V of the upstream probe 16.
  • the output terminals of the filter 32 and of the calculation circuit 34 are connected to a logic circuit 36 which determine the good or bad state of the probe 16 as a function of the output signal KRICH F of the filter 32 and of the value T m of the mean period of the upstream signal V.
  • the binary signal 1 or 0 of the good or bad state of the probe 16 appears on the DIAG output terminal of the logic circuit 36.
  • REG min and REG max being respectively the minimum and maximum values of the REG engine speed between which the diagnosis can be carried out; P min and P max being respectively the minimum and maximum values of the pressure P of the inlet manifold between which the diagnosis can be carried out.
  • the calculation circuit 34 performs the calculation of the average period T m according to the algorithm of FIG. 5. This calculation is only carried out if the conditions listed above are met (step 50). This calculation of the average period T m consists in counting the transitions of the upstream voltage V from a value below the threshold VS upstream to a value above the threshold during a certain time interval T D and in dividing this interval T D by the number N of transitions that have been detected.
  • the algorithm for calculating the average period T m of the first loop is represented by the diagram in FIG. 5.
  • the first step (50) consists in checking whether the diagnostic conditions listed above are fulfilled. If the answer is "YES”, the step of counting 52 of the time T is started, that is to say that the calculation of the average period T m begins.
  • the counter for the duration T D of the diagnosis is increased by the value T of the counter 52.
  • the next step 68 resets the counter 52 to zero for a new measurement T of the current period.
  • the logic circuit 36 performs the steps of the algorithm of FIG. 7 so as to compare the value of KRICH F with values which have been determined to be limit values beyond which the probe is considered to be defective and this for a determined value T m of the average period.
  • KRICH max for too high richness
  • KRICH min for too much depletion
  • This calibration makes it possible to plot the KRICH max and KRICH min curves as a function of the period T m (FIG. 6), curves which can be stored in the form of two cartographic tables or of a single table grouping the two. These cartographic tables can be produced by memories which are addressed by the value of T m , and the values read are KRICH max and KRICH min for the value of T m (FIG. 6).
  • the diagnosis is complete (step 94) and a new diagnosis can be launched to obtain a new value of KRICH F and of T m .
  • KRICH F is compared with the two selected thresholds while the value T m of the average value is compared with the threshold T ' max . If KRICH F is greater than KRICH ' max , or less than KRICH' min or greater than T ' max , the probe is considered to be defective. Otherwise, the probe is considered good.
  • the algorithm of Figure 7 can be performed under the as software or as circuits electronics in which the comparison steps 80, 82 and 84 would be carried out by comparators of numbers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (8)

  1. Einrichtung zur Diagnose des Zustandes einer nicht-linearen Sonde (16), die vor einem Abgaskatalysator (14) angeordnet ist, der einem Verbrennungsmotor (10) mit durch einen elektrischen Rechner (12) gesteuerter Einspritzung zugeordnet ist, wobei der Motor eine erste Steuerschleife aufweist, die diese nicht-lineare Sonde (16) enthält, um dem Rechner (12) ein erstes Korrektursignal (KCL) für die eingespritzte Kraftstoffmenge zuzuführen und eine zweite Steuerschleife aufweist, die eine zweite nicht-lineare Sonde (26) enthält, die nach dem Abgaskatalysator (14) angeordnet ist, um ein zweites Korrektursignal (KRICH) für die Menge des eingespritzten Kraftstoffes zu liefern, dadurch gekennzeichnet, dass die Einrichtung zur Diagnose aufweist:
    einen Filterschaltkreis (32), dem das zweite Korrektursignal (KRICH) zugeführt wird, um ein gefiltertes Signal (KRICHF) zu erzeugen,
    einen Meßschaltkreis (34), dem das Ausgangssignal (Vamont) der vorderen Sonde zugeführt wird zur Bestimmung des mittleren Wertes (Tm) der Korrekturperiode der ersten Steuerschleife und
    einen logischen Schaltkreis (36) zur Bestimmung des fehlerfreien oder fehlerhaften Zustandes (DIAG) der vorderen Sonde (16) als Funktion der Werte des gefilterten Signals (KRICHF) und der mittleren Periode (Tm).
  2. Einrichtung zur Diagnose nach Anspruch 1, dadurch gekennzeichnet, dass der Filterschaltkreis (32) eine Filterung der ersten Ordnung durchführt.
  3. Einrichtung zur Diagnose nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Filterschaltkreis (32) vom numerischen Typ ist.
  4. Einrichtung zur Diagnose nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Rechenschaltkreis (34) für den mittleren Wert (Tm) der Korrekturperiode der ersten Steuerschleife vom numerischen Typ ist.
  5. Einrichtung zur Diagnose nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der logische Schaltkreis (36) drei Vergleicher aufweist, wobei der erste Vergleicher den Wert des gefilterten Signals (KRICHF) mit einem Maximalwert (KRICHmax) vergleicht, der zweite Vergleicher den Wert des gefilterten Signals (KRICHF) mit einem Minimalwert (KRICHmin) vergleicht und der dritte Vergleicher den Wert der mittleren Periode mit einem Maximalwert (Tmax) vergleicht, wobei die vordere Sonde (16) als fehlerhaft eingestuft wird, wenn der Wert des gefilterten Signals (KRICHF) größer als der Maximalwert (KRICHmax) oder kleiner als der Minimalwert (KRICHmin) oder größer als der Maximalwert (Tmax) der mittleren Periode ist.
  6. Einrichtung zur Diagnose nach Anspruch 5, dadurch gekennzeichnet, dass der logische Schaltkreis (36) wenigstens eine Tabelle oder einen Speicher aufweist, in der bzw. dem die Maximalwerte (KRICHmax) und Minimalwerte (KRICHmin) des gefilterten Signals (KRICHF) als Funktion des Wertes der mittleren Periode (Tm) gespeichert sind, sowie zwei Vergleicher aufweist, wobei der erste den Wert des gefilterten Signals (KRICHF) mit einem aus der Tabelle abgelesenen Maximalwert (KRICHmax) vergleicht und der zweite den gefilterten Wert (KRICHF) mit einem aus der Tabelle abgelesenen Minimalwert (KRICHmin) vergleicht, wobei das Ablesen aus der Tabelle mit Hilfe der mittleren Periode (Tm) durchgeführt wird.
  7. Verfahren zur Diagnose des Zustandes einer nicht-linearen Sonde (16), die vor einem Abgaskatalysator (14) angeordnet ist, der einem Verbrennungsmotor (10) mit durch einen elektronischen Rechner (12) gesteuerter Einspritzung zugeordnet ist, wobei der Motor eine erste Steuerschleife aufweist, die diese nicht-lineare Sonde (16) enthält, um dem Motor (12) ein erstes Korrektursignal (KCL) für die eingespritzte Kraftstoffmenge zuzuführen, und eine zweite Steuerschleife aufweit, die eine zweite nicht-lineare Sonde (26) enthält, die nach dem Abgaskatalysator (14) angeordnet ist, um ein zweites Korrektursignal (KRICH) für die eingespritzte Kraftstoffmenge zu liefern, dadurch gekennzeichnet, dass das Verfahren zur Diagnose die folgenden Schritte aufweist:
    Filterung (32) des zweiten Korrektursignals (KRICH), um ein gefiltertes Signal (KRICHF) zu erhalten,
    Berechnung (34) des mittleren Wertes (Tm) der Periode des Ausgangssignals (Vamont) der vorderen Sonde (16),
    Vergleichen des gefilterten Signals (KRICHF) mit zwei Maximal- und Minimalwerten (KRICHmax bzw. KRICHmin) zur Bestimmung des fehlerfreien oder fehlerhaften Zustandes (DIAG) der vorderen Sonde (16) je nachdem, ob das gefilterte Signal (KRICHF) innerhalb der durch die Maximal- und Minimalwerte gebildeten Grenzen oder außerhalb dieser Grenzen für den Wert der mittleren Periode (Tm) liegt.
  8. Verfahren zur Diagnose nach Anspruch 7, dadurch gekennzeichnet, dass es außerdem die folgenden Schritte aufweist:
    Eichung, um die Maximal- und Minimalwerte (KRICHmax und KRICHmin) für eine Vielzahl von Werten der mittleren Periode (Tm) zu bestimmen,
    Einspeichern der Maximal- und Minimalwerte sowie der Werte für die mittlere Periode (Tm) in einen entsprechend seinem Inhalt adressierbaren Speicher und
    Auslesen des Speichers mit Hilfe des mittleren Wertes (Tm) für die Periode, um die Maximalwerte (KRICHmax) und Minimalwerte (KRICHmin) zu erhalten.
EP96934934A 1995-10-18 1996-10-18 Einrichtung und verfahren zu diagnose des zustands einer, vor dem katalysator angeordneten, sonde Expired - Lifetime EP0856098B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9512238 1995-10-18
FR9512238A FR2740173B1 (fr) 1995-10-18 1995-10-18 Dispositif et procede de diagnostic de l'etat d'une sonde disposee en amont du pot catalytique
PCT/FR1996/001631 WO1997014876A1 (fr) 1995-10-18 1996-10-18 Dispositif et procede de diagnostic de l'etat d'une sonde disposee en amont du pot catalytique

Publications (2)

Publication Number Publication Date
EP0856098A1 EP0856098A1 (de) 1998-08-05
EP0856098B1 true EP0856098B1 (de) 1999-12-22

Family

ID=9483660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96934934A Expired - Lifetime EP0856098B1 (de) 1995-10-18 1996-10-18 Einrichtung und verfahren zu diagnose des zustands einer, vor dem katalysator angeordneten, sonde

Country Status (7)

Country Link
US (1) US6192310B1 (de)
EP (1) EP0856098B1 (de)
JP (1) JP3993891B2 (de)
KR (1) KR100425426B1 (de)
DE (1) DE69605816T2 (de)
FR (1) FR2740173B1 (de)
WO (1) WO1997014876A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769985B1 (fr) * 1997-10-17 1999-12-31 Renault Procede et systeme de surveillance du fonctionnement et du vieillissement d'un capteur a oxygene lineaire
US6311680B1 (en) 2000-03-21 2001-11-06 Ford Global Technologies, Inc. Active adaptive bias for closed loop air/fuel control system
DE10128969C1 (de) * 2001-06-15 2002-12-12 Audi Ag Verfahren zur Diagnose einer Führungssonde
JP4802116B2 (ja) * 2007-02-21 2011-10-26 日本特殊陶業株式会社 ガスセンサの異常診断方法、ガスセンサの異常診断装置
JP4874918B2 (ja) * 2007-10-01 2012-02-15 日本特殊陶業株式会社 ガスセンサの異常診断方法、ガスセンサの異常診断装置
US9606160B2 (en) * 2014-03-05 2017-03-28 GM Global Technology Operations LLC Detection of stuck in range sensor and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747265A (en) * 1985-12-23 1988-05-31 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
DE4125154C2 (de) * 1991-07-30 2001-02-22 Bosch Gmbh Robert Verfahren und Einrichtung zur Lambdasonden-Überwachung bei einer Brennkraftmaschine
DE4139561A1 (de) * 1991-11-30 1993-06-03 Bosch Gmbh Robert Verfahren und vorrichtung zum ueberwachen des alterungszustandes einer sauerstoffsonde
US5337555A (en) * 1991-12-13 1994-08-16 Mazda Motor Corporation Failure detection system for air-fuel ratio control system
JP3303981B2 (ja) * 1991-12-20 2002-07-22 株式会社日立製作所 エンジン排気ガス浄化装置の診断装置
JP2978960B2 (ja) * 1992-07-31 1999-11-15 本田技研工業株式会社 内燃エンジンの酸素センサ劣化検出装置
DE4331153C2 (de) * 1992-09-26 2001-02-01 Volkswagen Ag Verfahren zur Gewinnung von fehlerspezifischen Beurteilungskriterien eines Abgaskatalysators und einer Regel-Lambdasonde
US5656765A (en) * 1995-06-28 1997-08-12 General Motors Corporation Air/fuel ratio control diagnostic

Also Published As

Publication number Publication date
KR19990064350A (ko) 1999-07-26
US6192310B1 (en) 2001-02-20
FR2740173A1 (fr) 1997-04-25
DE69605816T2 (de) 2000-07-27
FR2740173B1 (fr) 1997-12-05
DE69605816D1 (de) 2000-01-27
JP2000508035A (ja) 2000-06-27
WO1997014876A1 (fr) 1997-04-24
JP3993891B2 (ja) 2007-10-17
KR100425426B1 (ko) 2004-07-15
EP0856098A1 (de) 1998-08-05

Similar Documents

Publication Publication Date Title
FR2929650A1 (fr) Procede et dispositif d'adaptation d'un modele dynamique d'une sonde de gaz d'echappement.
EP1568863A1 (de) Verfahren zur Diagnose eines für Brennkraftmachinenabgase gedachten Katalysators und dessen Anwendung in einem Kraftfahrzeug
FR2857410A1 (fr) Systeme de controle du bruit de combustion d'un moteur diesel de vehicule automobile
EP1766213A1 (de) System zur beurteilung des füllstandes eines ablasleitungsentgiftungsmittels
FR2767198A1 (fr) Procede de controle de la capacite de fonctionnement d'une sonde lambda
EP0856098B1 (de) Einrichtung und verfahren zu diagnose des zustands einer, vor dem katalysator angeordneten, sonde
FR2780447A1 (fr) Procede de correction de la duree d'injection dans un moteur a combustion interne a systeme d'air secondaire
FR2871849A1 (fr) Procede et dispositif pour gerer le fonctionnement d'un piege a oxydes d'azote, et diagnostiquer son etat de vieillissement
WO1999043939A1 (fr) Procede et dispositif d'autoadaptation rapide de richesse pour moteur a combustion interne
EP2427643A1 (de) Verfahren und vorrichtung zur diagnose des betriebszustands einer kraftstoffzufuhranlage eines kraftfahrzeugbrennkraftmotors
FR2864145A1 (fr) Procede de detection de la presence d'un systeme de depollution par mesure de temperature
FR2927174A1 (fr) Procede de detection de microcoupures electriques et de gestion du fonctionnement d'un moteur
WO2022018332A1 (fr) Procede de correction d'une derive de mesure de richesse
EP0856099B1 (de) System und verfahren mit einem doppelten regelungskreis für brennkraftmaschine
EP3511543B1 (de) Verfahren zur abschätzung der alterung eines katalysators für wärmekraftmotor
EP0909888B1 (de) Verfahren zur Überwachung der Funktionsfähigkeit und der Alterung einer linearen Sauerstoffsonde
EP3008315B1 (de) Verfahren zur diagnose des betriebszustands von kraftstoffinjektoren in einer brennkraftmaschine, brennkraftmaschine und kraftfahrzeug zur durchführung des verfahrens
FR2907169A1 (fr) Systeme et procede de controle du fonctionnement d'un moteur a combustion interne avec compensation des derives et des dispersions de la mesure de debit d'air admis
FR2840356A1 (fr) Procede et dispositif de determination de parametres d'un systeme d'epuration des gaz d'echappement
FR2851788A1 (fr) Procede de determination du gain d'un injecteur de carburant
FR3096085A1 (fr) Procédé de contrôle d’une sonde lambda
WO2022084067A1 (fr) Calculateur pour diagnostic d'encrassement d'une sonde pour vehicule
FR2755185A1 (fr) Dispositif de controle du fonctionnement d'un moteur diesel notamment de vehicule automobile
EP2650516A1 (de) Schätzverfahren des Kraftstoff-Luftgemischs in einem Verbrennungsmotor eines Kraftfahrzeugs
WO2021052808A1 (fr) Procede de reglage de la richesse d'un moteur a combustion interne a allumage commande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19991222

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991222

REF Corresponds to:

Ref document number: 69605816

Country of ref document: DE

Date of ref document: 20000127

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19991222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69605816

Country of ref document: DE

Effective date: 20130501